Strengthening the Aging Brain: Functional Connectivity Changes After a Language-Based Cognitive Program
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Materials and Procedures
2.2.1. Sociodemographic, Emotional, Functional and Cognitive Assessment
2.2.2. MRI Protocol
2.2.3. Cognitive Training
2.3. Analysis
2.3.1. Statistical Analysis of the Behavioral Data
2.3.2. Functional Connectivity Preprocessing
2.3.3. Functional Connectivity Analyses
3. Results
3.1. Behavioral Results
3.2. Functional Connectivity Results
3.2.1. ROI-to-ROI Connectivity
3.2.2. Seed-to-Voxel Connectivity
3.2.3. Default Mode Network (DMN)
3.2.4. The Dorsal Attention Network (DAN)
3.2.5. The Ventral Attention Network (VAN)
3.2.6. Frontoparietal Network (FPN)
3.2.7. Salience Network (SN)
4. Discussion
4.1. Cognitive Gains Post-Intervention
4.2. Functional Connectivity Changes in Response to Cognitive Training
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ACE-R | Addenbrooke’s Cognitive Examination–Revised |
| ACTIVE | Advanced Training for Independent and Vital Elderly (study) |
| AD | Alzheimer’s disease |
| BALE | Battery for Language Assessment in Aging |
| BH | Benjamini–Hochberg (correction) |
| BOLD | Blood-Oxygen-Level-Dependent |
| CCT | Camel and Cactus Test |
| CEN | Central executive network |
| CSF | Cerebrospinal Fluid |
| CTT | Colors Trail Test |
| DAN | Dorsal attention network |
| DMN | Default mode network |
| ECN | Executive control network |
| FAQ | Functional Activities Questionnaire |
| FOV | Field of view |
| FP | Frontal pole |
| FPN | Frontoparietal network |
| fMRI | Functional magnetic resonance imaging |
| FWE | Family-wise error |
| GAI | Geriatric Anxiety Inventory |
| GDS | Geriatric Depression Scale |
| GLM | General Linear Model |
| GRE-EPI | Gradient-recalled echo planar imaging (sequence) |
| IC | Insular cortex |
| IADL | Instrumental activities of daily living |
| IFG | Inferior frontal gyrus |
| MFG | Middle frontal gyrus |
| MNI | Montreal Neurological Institute |
| MMSE | Mini-Mental State Examination |
| MP-RAGE | Magnetization-prepared rapid gradient echo (sequence) |
| mPFC | Medial prefrontal cortex |
| MTG | Middle temporal gyrus |
| PCC | Posterior cingulate cortex |
| RAVLT | Rey Auditory Verbal Learning Test |
| ROI | Region of interest |
| RWH | Reading and writing habits |
| SBC | Seed-based connectivity |
| SD | Standard deviation |
| SES | Socioeconomic status |
| SN | Salience network |
| SPL | Superior parietal lobule |
| STG | Superior temporal gyrus |
| TE | Echo time |
| TI | Inversion time |
| TP | Temporal pole |
| TR | Repetition time |
| VAN | Ventral attention network |
References
- Jackson, J.D.; Balota, D.A. Age-Related Changes in Attentional Selection: Quality of Task Set or Degradation of Task Set across Time? Psychol. Aging 2013, 28, 744–753. [Google Scholar] [CrossRef] [PubMed]
- Nicosia, J.; Cohen-Shikora, E.R.; Balota, D.A. Re-Examining Age Differences in the Stroop Effect: The Importance of the Trees in the Forest (Plot). Psychol. Aging 2021, 36, 214–231. [Google Scholar] [CrossRef] [PubMed]
- Bisiacchi, P.S.; Borella, E.; Bergamaschi, S.; Carretti, B.; Mondini, S. Interplay between Memory and Executive Functions in Normal and Pathological Aging. J. Clin. Exp. Neuropsychol. 2008, 30, 723–733. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Ficarro, S.; Duberstein, P.; Chapman, B.P.; Dubovsky, S.; Paroski, M.; Szigeti, K.; Benedict, R.H.B. Executive Function and Personality Predict Instrumental Activities of Daily Living in Alzheimer Disease. Am. J. Geriatr. Psychiatry 2016, 24, 1074–1083. [Google Scholar] [CrossRef]
- Raposo Pereira, F.; George, N.; Dalla Barba, G.; Dubois, B.; La Corte, V. The Memory Binding Test Can Anticipate Alzheimer’s Disease Diagnosis at an Early Preclinical Stage: A Longitudinal Study in the INSIGHTpreAD Cohort. Front. Aging Neurosci. 2024, 16, 1414419. [Google Scholar] [CrossRef]
- Bahar-Fuchs, A.; Webb, S.; Bartsch, L.; Clare, L.; Rebok, G.; Cherbuin, N.; Anstey, K.J. Tailored and Adaptive Computerized Cognitive Training in Older Adults at Risk for Dementia: A Randomized Controlled Trial. J. Alzheimer’s Dis. 2017, 60, 889–911. [Google Scholar] [CrossRef]
- Brum, P.S.; Forlenza, O.V.; Yassuda, M.S. Cognitive Training in Older Adults with Mild Cognitive Impairment: Impact on Cognitive and Functional Performance. Dement. Neuropsychol. 2009, 3, 124–131. [Google Scholar] [CrossRef]
- Gavelin, H.M.; Domellöf, M.E.; Leung, I.; Neely, A.S.; Launder, N.H.; Nategh, L.; Finke, C.; Lampit, A. Computerized Cognitive Training in Parkinson’s Disease: A Systematic Review and Meta-Analysis. Ageing Res. Rev. 2022, 80, 101671. [Google Scholar] [CrossRef]
- Hyer, L.; Scott, C.; Atkinson, M.M.; Mullen, C.M.; Lee, A.; Johnson, A.; Mckenzie, L.C. Cognitive Training Program to Improve Working Memory in Older Adults with MCI. Clin. Gerontol. 2016, 39, 410–427. [Google Scholar] [CrossRef]
- Yang, Y.; Kwak, Y.T. Improvement of Cognitive Function after Computer-Based Cognitive Training in Early Stage of Alzheimer’s Dementia. Dement. Neurocogn Disord. 2017, 16, 7–11. [Google Scholar] [CrossRef]
- Borella, E.; Cantarella, A.; Carretti, B.; De Lucia, A.; De Beni, R. Improving Everyday Functioning in the Old-Old with Working Memory Training. Am. J. Geriatr. Psychiatry 2019, 27, 975–983. [Google Scholar] [CrossRef]
- Corbett, A.; Owen, A.; Hampshire, A.; Grahn, J.; Stenton, R.; Dajani, S.; Burns, A.; Howard, R.; Williams, N.; Williams, G.; et al. The Effect of an Online Cognitive Training Package in Healthy Older Adults: An Online Randomized Controlled Trial. J. Am. Med. Dir. Assoc. 2015, 16, 990–997. [Google Scholar] [CrossRef]
- Gavelin, H.M.; Lampit, A.; Hallock, H.; Sabatés, J.; Bahar-Fuchs, A. Cognition-Oriented Treatments for Older Adults: A Systematic Overview of Systematic Reviews. Neuropsychol. Rev. 2020, 30, 167–193. [Google Scholar] [CrossRef]
- Rebok, G.W.; Ball, K.; Guey, L.T.; Jones, R.N.; Kim, H.; King, J.W.; Marsiske, M.; Morris, J.N.; Tennstedt, S.L.; Unverzagt, F.W.; et al. Ten-Year Effects of the Advanced Cognitive Training for Independent and Vital Elderly Cognitive Training Trial on Cognition and Everyday Functioning in Older Adults. J. Am. Geriatr. Soc. 2014, 62, 16–24. [Google Scholar] [CrossRef]
- Willis, S.L.; Tennstedt, S.L.; Marsiske, M.; Ball, K.; Elias, J.; Koepke, K.M.; Morris, J.N.; Rebok, G.W.; Unverzagt, F.W.; Stoddard, A.M.; et al. Long-Term Effects of Cognitive Training on Everyday Functional Outcomes in Older Adults. JAMA 2006, 296, 2805. [Google Scholar] [CrossRef]
- Zhang, H.; Huntley, J.; Bhome, R.; Holmes, B.; Cahill, J.; Gould, R.L.; Wang, H.; Yu, X.; Howard, R. Effect of Computerised Cognitive Training on Cognitive Outcomes in Mild Cognitive Impairment: A Systematic Review and Meta-Analysis. BMJ Open 2019, 9, e027062. [Google Scholar] [CrossRef]
- Duda, B.M.; Sweet, L.H. Functional Brain Changes Associated with Cognitive Training in Healthy Older Adults: A Preliminary ALE Meta-Analysis. Brain Imaging Behav. 2020, 14, 1247–1262. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.; Wang, D.; Tang, L.; Cheng, Y.; Wang, G.; Hu, G.; Gong, X.; Cao, X.; Jiang, L.; Li, C. Effects of Different Cognitive Trainings on Amnestic Mild Cognitive Impairment in the Elderly: A One-Year Longitudinal Functional Magnetic Resonance Imaging (MRI) Study. Med. Sci. Monit. 2018, 24, 5517–5527. [Google Scholar] [CrossRef] [PubMed]
- Jolles, D.D.; van Buchem, M.A.; Crone, E.A.; Rombouts, S.A.R.B. Functional Brain Connectivity at Rest Changes after Working Memory Training. Hum. Brain Mapp. 2013, 34, 396–406. [Google Scholar] [CrossRef]
- Simon, S.S.; Hampstead, B.M.; Nucci, M.P.; Duran, F.L.S.; Fonseca, L.M.; Martin, M.d.G.M.; Ávila, R.; Porto, F.H.G.; Brucki, S.M.D.; Martins, C.B.; et al. Training Gains and Transfer Effects after Mnemonic Strategy Training in Mild Cognitive Impairment: A FMRI Study. Int. J. Psychophysiol. 2020, 154, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Wollesen, B.; Wildbredt, A.; van Schooten, K.S.; Lim, M.L.; Delbaere, K. The Effects of Cognitive-Motor Training Interventions on Executive Functions in Older People: A Systematic Review and Meta-Analysis. Eur. Rev. Aging Phys. Act. 2020, 17, 9. [Google Scholar] [CrossRef]
- Mendonça, A.R.; Loureiro, L.M.; Nórte, C.E.; Landeira-Fernandez, J. Episodic Memory Training in Elderly: A Systematic Review. Front. Psychol. 2022, 13, 947519. [Google Scholar] [CrossRef]
- Kaspary, L.M.; Souza Espinosa Borges, F.; De Lima Amaral, M.; Silva da Rocha, G.; Hübner, L.C. Tarefas Linguísticas Para Treino Cognitivo No Envelhecimento Típico e No Declínio Cognitivo. Letrônica 2023, 16, e44274. [Google Scholar] [CrossRef]
- Poptsi, E.; Lazarou, I.; Markou, N.; Vassiloglou, M.; Nikolaidou, E.; Diamantidou, A.; Siatra, V.; Karathanassi, E.; Karakostas, A.; Zafeiropoulou, F.K.; et al. A Comparative Single-Blind Randomized Controlled Trial With Language Training in People With Mild Cognitive Impairment. Am. J. Alzheimers Dis. Other Demen. 2019, 34, 176–187. [Google Scholar] [CrossRef]
- Bisol, V.; Malcorra, B.L.C.; Rocha, B.R.d.; Peruzzo, A.L.L.; Zanatta, L.; Pacheco, L.P.; Rodrigues, E.d.S.; Carthery-Goulart, M.T.; Hübner, L.C. Episodic Memory Improvement in Community-Dwelling Women Following a Remote Language-Based Stimulation Program. Dement. Neuropsychol. 2025, 19, e20240248. [Google Scholar] [CrossRef]
- Malcorra, B.L.C.; Mota, N.B.; Weissheimer, J.; Schilling, L.P.; Wilson, M.A.; Hübner, L.C. Reading and Writing Habits Compensate for Aging Effects in Speech Connectedness. NPJ Sci. Learn. 2022, 7, 13. [Google Scholar] [CrossRef]
- Ye, Z.; Zhou, X. Executive Control in Language Processing. Neurosci. Biobehav. Rev. 2009, 33, 1168–1177. [Google Scholar] [CrossRef]
- Shokrkon, A.; Nicoladis, E. The Directionality of the Relationship Between Executive Functions and Language Skills: A Literature Review. Front. Psychol. 2022, 13, 848696. [Google Scholar] [CrossRef] [PubMed]
- Polsinelli, A.J.; Moseley, S.A.; Grilli, M.D.; Glisky, E.L.; Mehl, M.R. Natural, Everyday Language Use Provides a Window Into the Integrity of Older Adults’ Executive Functioning. J. Gerontol. Ser. B 2020, 75, e215–e220. [Google Scholar] [CrossRef] [PubMed]
- Martin, R.; Allen, C. A Disorder of Executive Function and Its Role in Language Processing. Semin. Speech Lang. 2008, 29, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Federmeier, K.D.; Jongman, S.R.; Szewczyk, J.M. Examining the Role of General Cognitive Skills in Language Processing: A Window Into Complex Cognition. Curr. Dir. Psychol. Sci. 2020, 29, 575–582. [Google Scholar] [CrossRef]
- Faßbender, R.V.; Risius, O.J.; Dronse, J.; Richter, N.; Gramespacher, H.; Befahr, Q.; Fink, G.R.; Kukolja, J.; Onur, O.A. Decreased Efficiency of Between-Network Dynamics During Early Memory Consolidation With Aging. Front. Aging Neurosci. 2022, 14, 780630. [Google Scholar] [CrossRef] [PubMed]
- Chiou, R.; Humphreys, G.F.; Jung, J.; Lambon Ralph, M.A. Controlled Semantic Cognition Relies upon Dynamic and Flexible Interactions between the Executive ‘Semantic Control’ and Hub-and-Spoke ‘Semantic Representation’ Systems. Cortex 2018, 103, 100–116. [Google Scholar] [CrossRef] [PubMed]
- Marek, S.; Dosenbach, N.U.F. The Frontoparietal Network: Function, Electrophysiology, and Importance of Individual Precision Mapping. Dialogues Clin. Neurosci. 2018, 20, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Campbell, K.L.; Grady, C.L.; Ng, C.; Hasher, L. Age Differences in the Frontoparietal Cognitive Control Network: Implications for Distractibility. Neuropsychologia 2012, 50, 2212–2223. [Google Scholar] [CrossRef]
- Dixon, M.L.; De La Vega, A.; Mills, C.; Andrews-Hanna, J.; Spreng, R.N.; Cole, M.W.; Christoff, K. Heterogeneity within the Frontoparietal Control Network and Its Relationship to the Default and Dorsal Attention Networks. Proc. Natl. Acad. Sci. USA 2018, 115, E1598–E1607. [Google Scholar] [CrossRef] [PubMed]
- Spreng, R.N.; Stevens, W.D.; Chamberlain, J.P.; Gilmore, A.W.; Schacter, D.L. Default Network Activity, Coupled with the Frontoparietal Control Network, Supports Goal-Directed Cognition. Neuroimage 2010, 53, 303–317. [Google Scholar] [CrossRef]
- Corbetta, M.; Shulman, G.L. Control of Goal-Directed and Stimulus-Driven Attention in the Brain. Nat. Rev. Neurosci. 2002, 3, 201–215. [Google Scholar] [CrossRef]
- Vogel, A.C.; Miezin, F.M.; Petersen, S.E.; Schlaggar, B.L. The Putative Visual Word Form Area Is Functionally Connected to the Dorsal Attention Network. Cereb. Cortex 2012, 22, 537–549. [Google Scholar] [CrossRef]
- Freedman, L.; Zivan, M.; Farah, R.; Horowitz-Kraus, T. Greater Functional Connectivity within the Cingulo-Opercular and Ventral Attention Networks Is Related to Better Fluent Reading: A Resting-State Functional Connectivity Study. Neuroimage Clin. 2020, 26, 102214. [Google Scholar] [CrossRef]
- Wang, Y.; Guan, H.; Ma, L.; Luo, J.; Chu, C.; Hu, M.; Zhao, G.; Men, W.; Tan, S.; Gao, J.-H.; et al. Learning to Read May Help Promote Attention by Increasing the Volume of the Left Middle Frontal Gyrus and Enhancing Its Connectivity to the Ventral Attention Network. Cereb. Cortex 2023, 33, 2260–2272. [Google Scholar] [CrossRef]
- Ardila, A.; Bernal, B.; Rosselli, M. Participation of the Insula in Language Revisited: A Meta-Analytic Connectivity Study. J. Neurolinguistics 2014, 29, 31–41. [Google Scholar] [CrossRef]
- Menon, V.; Uddin, L.Q. Saliency, Switching, Attention and Control: A Network Model of Insula Function. Brain Struct. Funct. 2010, 214, 655–667. [Google Scholar] [CrossRef]
- Oh, A.; Duerden, E.G.; Pang, E.W. The Role of the Insula in Speech and Language Processing. Brain Lang. 2014, 135, 96–103. [Google Scholar] [CrossRef]
- La Corte, V.; Sperduti, M.; Malherbe, C.; Vialatte, F.; Lion, S.; Gallarda, T.; Oppenheim, C.; Piolino, P. Cognitive Decline and Reorganization of Functional Connectivity in Healthy Aging: The Pivotal Role of the Salience Network in the Prediction of Age and Cognitive Performances. Front. Aging Neurosci. 2016, 8, 204. [Google Scholar] [CrossRef]
- Cao, W.; Cao, X.; Hou, C.; Li, T.; Cheng, Y.; Jiang, L.; Luo, C.; Li, C.; Yao, D. Effects of Cognitive Training on Resting-State Functional Connectivity of Default Mode, Salience, and Central Executive Networks. Front. Aging Neurosci. 2016, 8, 70. [Google Scholar] [CrossRef]
- Chapman, S.B.; Aslan, S.; Spence, J.S.; Hart, J.J.; Bartz, E.K.; Didehbani, N.; Keebler, M.W.; Gardner, C.M.; Strain, J.F.; DeFina, L.F.; et al. Neural Mechanisms of Brain Plasticity with Complex Cognitive Training in Healthy Seniors. Cereb. Cortex 2015, 25, 396–405. [Google Scholar] [CrossRef]
- De Marco, M.; Meneghello, F.; Duzzi, D.; Rigon, J.; Pilosio, C.; Venneri, A. Cognitive Stimulation of the Default-Mode Network Modulates Functional Connectivity in Healthy Aging. Brain Res. Bull. 2016, 121, 26–41. [Google Scholar] [CrossRef]
- Hardcastle, C.; Hausman, H.K.; Kraft, J.N.; Albizu, A.; O’Shea, A.; Boutzoukas, E.M.; Evangelista, N.D.; Langer, K.; Van Etten, E.J.; Bharadwaj, P.K.; et al. Proximal Improvement and Higher-Order Resting State Network Change after Multidomain Cognitive Training Intervention in Healthy Older Adults. Geroscience 2022, 44, 1011–1027. [Google Scholar] [CrossRef]
- Strenziok, M.; Parasuraman, R.; Clarke, E.; Cisler, D.S.; Thompson, J.C.; Greenwood, P.M. Neurocognitive Enhancement in Older Adults: Comparison of Three Cognitive Training Tasks to Test a Hypothesis of Training Transfer in Brain Connectivity. Neuroimage 2014, 85, 1027–1039. [Google Scholar] [CrossRef]
- Greenwood, P.M.; Parasuraman, R. The Mechanisms of Far Transfer from Cognitive Training: Review and Hypothesis. Neuropsychology 2016, 30, 742–755. [Google Scholar] [CrossRef]
- Hampstead, B.M.; Stringer, A.Y.; Stilla, R.F.; Deshpande, G.; Hu, X.; Moore, A.B.; Sathian, K. Activation and Effective Connectivity Changes Following Explicit-Memory Training for Face–Name Pairs in Patients With Mild Cognitive Impairment. Neurorehabil. Neural Repair 2011, 25, 210–222. [Google Scholar] [CrossRef]
- Bialystok, E. Bilingualism and the Development of Executive Function: The Role of Attention. Child Dev. Perspect. 2015, 9, 117–121. [Google Scholar] [CrossRef]
- Grundy, J.G. The Effects of Bilingualism on Executive Functions: An Updated Quantitative Analysis. J. Cult. Cogn. Sci. 2020, 4, 177–199. [Google Scholar] [CrossRef]
- Bialystok, E. The Bilingual Adaptation: How Minds Accommodate Experience. Psychol. Bull. 2017, 143, 233–262. [Google Scholar] [CrossRef]
- Bubbico, G.; Chiacchiaretta, P.; Parenti, M.; di Marco, M.; Panara, V.; Sepede, G.; Ferretti, A.; Perrucci, M.G. Effects of Second Language Learning on the Plastic Aging Brain: Functional Connectivity, Cognitive Decline, and Reorganization. Front. Neurosci. 2019, 13, 423. [Google Scholar] [CrossRef]
- Mohammadi, B.; Münte, T.F.; Cole, D.M.; Sami, A.; Boltzmann, M.; Rüsseler, J. Changed Functional Connectivity at Rest in Functional Illiterates after Extensive Literacy Training. Neurol. Res. Pract. 2020, 2, 12. [Google Scholar] [CrossRef]
- Oldfield, R.C. The Assessment and Analysis of Handedness: The Edinburgh Inventory. Neuropsychologia 1971, 9, 97–113. [Google Scholar] [CrossRef]
- Associação Brasileira de Empresas de Pesquisa. Critério de Classificação Econômica Brasil [Website]. 2024. Available online: https://www.abep.org/criterio-brasil (accessed on 2 January 2025).
- Pacheco, L.P. Leitura de Palavras e Pseudopalavras em Português Brasileiro por Pessoas Adultas Jovens e Idosas. Doctoral Dissertation, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil, 2024. [Google Scholar]
- Almeida, O.; Almeida, S. Confiabilidade Da Versão Brasileira Da Escala de Depressão Em Geriatria (GDS) Versão Reduzida. Arq. Neuropsiquiatr. 1999, 57, 421–426. [Google Scholar] [CrossRef]
- Pfeffer, R.I.; Kurosaki, T.T.; Harrah, C.H.; Chance, J.M.; Filos, S. Measurement of functional activities in older adults in the community. J. Gerontol. 1982, 37, 323–329. [Google Scholar] [CrossRef]
- Massena, P.N.; de Araújo, N.B.; Pachana, N.A.; Laks, J.; de Pádua, A.C.; Oude Voshaar, R.C. Validation of the Brazilian Portuguese Version of Geriatric Anxiety Inventory–GAI-BR. Int. Psychogeriatr. 2015, 27, 1113–1119. [Google Scholar] [CrossRef]
- Mioshi, E.; Dawson, K.; Mitchell, J.; Arnold, R.; Hodges, J.R. The Addenbrooke’s Cognitive Examination Revised (ACE-R): A Brief Cognitive Test Battery for Dementia Screening. Int. J. Geriatr. Psychiatry 2006, 21, 1078–1085. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, V.A.; Caramelli, P. Brazilian Adaptation of the Addenbrooke’s Cognitive Examination-Revised (ACE-R). Dement. Neuropsychol. 2007, 1, 212–216. [Google Scholar] [CrossRef]
- Brucki, S.M.D.; Nitrini, R.; Caramelli, P.; Bertolucci, P.H.F.; Okamoto, I.H. Sugestões Para o Uso Do Mini-Exame Do Estado Mental No Brasil. Arq. Neuropsiquiatr. 2003, 61, 777–781. [Google Scholar] [CrossRef]
- Malloy-Diniz, L.F.; Lasmar, V.A.P.; Gazinelli, L.d.S.R.; Fuentes, D.; Salgado, J.V. The Rey Auditory-Verbal Learning Test: Applicability for the Brazilian Elderly Population. Rev. Bras. Psiquiatr. 2007, 29, 324–329. [Google Scholar] [CrossRef]
- Wechsler, D. Wechsler Adult Intelligence Scale, 3rd ed.; The Psychological Corporation: San Antonio, TX, USA, 1997. [Google Scholar]
- Bayard, S.; Erkes, J.; Moroni, C. Victoria Stroop Test: Normative Data in a Sample Group of Older People and the Study of Their Clinical Applications in the Assessment of Inhibition in Alzheimer’s Disease. Arch. Clin. Neuropsychol. 2011, 26, 653–661. [Google Scholar] [CrossRef]
- Bozeat, S.; Lambon Ralph, M.A.; Patterson, K.; Garrard, P.; Hodges, J.R. Non-Verbal Semantic Impairment in Semantic Dementia. Neuropsychologia 2000, 38, 1207–1215. [Google Scholar] [CrossRef]
- D’Elia, L.F.; Satz, P.; Uchiyama, C.L.; White, T. Color Trails Test: Professional Manual; Psychological Assessment Resources: Odessa, FL, USA, 1996. [Google Scholar]
- Hübner, L.C.; Loureiro, F.S.; Smidarle, A.D.; Tessaro, B.; Siqueira, E.C.G.; Jerônimo, G.M.; Quadros, T.D.; Garcia, V.R.M.; Kochhann, R. Bateria de Avaliação da Linguagem no Envelhecimento (BALE). In Tarefas Para Avaliação Neuropsicológica 3: Avaliação de Memória Episódica, Percepção, Linguagem e Componentes Executivos Para Adultos; Zimmermann, N., Delaere, F.J., Fonseca, R.P., Eds.; Memnon: Porto Alegre, Brazil, 2019; Volume 1, pp. 188–218. [Google Scholar]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 16 October 2025).
- Posit Team. RStudio: Integrated Development Environment for R; Posit Software, PBC: Boston, MA, USA, 2025; Available online: http://www.posit.co/ (accessed on 16 October 2025).
- Nieto-Castanon, A.; Whitfield-Gabrieli, S. CONN Functional Connectivity Toolbox: RRID SCR_009550, Release 22; Hilbert Press: Boston, MA, USA, 2022. [Google Scholar]
- Wellcome Centre for Human Neuroimaging. SPM12 (Statistical Parametric Mapping); Wellcome Centre for Human Neuroimaging: London, UK, 2014. [Google Scholar]
- MathWorks MATLAB; Version R2024a; The MathWorks Inc.: Natick, MA, USA , 2024.
- Nieto-Castanon, A. FMRI Denoising Pipeline. In Handbook of Functional Connectivity Magnetic Resonance Imaging Methods in CONN; Amazon Digital Services LLC—Kdp: Seattle, WA, USA, 2020; pp. 17–25. [Google Scholar]
- Andersson, J.L.R.; Hutton, C.; Ashburner, J.; Turner, R.; Friston, K. Modeling Geometric Deformations in EPI Time Series. Neuroimage 2001, 13, 903–919. [Google Scholar] [CrossRef]
- Henson, R.N.A.; Buechel, C.; Josephs, O.; Friston, K.J. The Slice-Timing Problem in Event-Related FMRI. Neuroimage 1999, 9, 125. [Google Scholar]
- Sladky, R.; Friston, K.J.; Tröstl, J.; Cunnington, R.; Moser, E.; Windischberger, C. Slice-Timing Effects and Their Correction in Functional MRI. Neuroimage 2011, 58, 588–594. [Google Scholar] [CrossRef] [PubMed]
- Whitfield-Gabrieli, S.; Nieto-Castanon, A.; Ghosh , S. Artifact Detection Tools (ART), Release Version 7:11; Artifact Detection Tools: Cambridge, MA, USA, 2011. [Google Scholar]
- Friston, K.J.; Ashburner, J.; Frith, C.D.; Poline, J.B.; Heather, J.D.; Frackowiak, R.S. Spatial Registration and Normalization of Images. Hum. Brain Mapp. 1994, 3, 165–189. [Google Scholar] [CrossRef]
- Power, J.D.; Mitra, A.; Laumann, T.O.; Snyder, A.Z.; Schlaggar, B.L.; Petersen, S.E. Methods to Detect, Characterize, and Remove Motion Artifact in Resting State FMRI. Neuroimage 2014, 84, 320–341. [Google Scholar] [CrossRef]
- Ashburner, J. A Fast Diffeomorphic Image Registration Algorithm. Neuroimage 2007, 38, 95–113. [Google Scholar] [CrossRef]
- Ashburner, J.; Friston, K.J. Unified Segmentation. Neuroimage 2005, 26, 839–851. [Google Scholar] [CrossRef]
- Calhoun, V.D.; Wager, T.D.; Krishnan, A.; Rosch, K.S.; Seymour, K.E.; Nebel, M.B.; Mostofsky, S.H.; Nyalakanai, P.; Kiehl, K. The Impact of T1 versus EPI Spatial Normalization Templates for FMRI Data Analyses. Hum. Brain Mapp. 2017, 38, 5331–5342. [Google Scholar] [CrossRef]
- Behzadi, Y.; Restom, K.; Liau, J.; Liu, T.T. A Component Based Noise Correction Method (CompCor) for BOLD and Perfusion Based FMRI. Neuroimage 2007, 37, 90–101. [Google Scholar] [CrossRef]
- Chai, X.J.; Castañón, A.N.; Öngür, D.; Whitfield-Gabrieli, S. Anticorrelations in Resting State Networks without Global Signal Regression. Neuroimage 2012, 59, 1420–1428. [Google Scholar] [CrossRef]
- Hallquist, M.N.; Hwang, K.; Luna, B. The Nuisance of Nuisance Regression: Spectral Misspecification in a Common Approach to Resting-State FMRI Preprocessing Reintroduces Noise and Obscures Functional Connectivity. Neuroimage 2013, 82, 208–225. [Google Scholar] [CrossRef]
- Nieto-Castanon, A. Preparing FMRI Data for Statistical Analysis. arXiv 2022, arXiv:2210.13564. [Google Scholar] [CrossRef]
- Harvard-Oxford Cortical and Subcortical Structural Atlases; Center for Morphometric Analysis: Charlestown, MA, USA, 2014.
- Nieto-Castanon, A. Handbook of Functional Connectivity Magnetic Resonance Imaging Methods in CONN; Amazon Digital Services LLC—Kdp: Seattle, WA, USA, 2020; pp. 26–82. [Google Scholar]
- Dubois, B. The Emergence of a New Conceptual Framework for Alzheimer’s Disease. J. Alzheimer’s Dis. 2018, 62, 1059–1066. [Google Scholar] [CrossRef]
- Basak, C.; Qin, S.; O’Connell, M.A. Differential Effects of Cognitive Training Modules in Healthy Aging and Mild Cognitive Impairment: A Comprehensive Meta-Analysis of Randomized Controlled Trials. Psychol. Aging 2020, 35, 220–249. [Google Scholar] [CrossRef]
- Iidaka, T.; Matsumoto, A.; Nogawa, J.; Yamamoto, Y.; Sadato, N. Frontoparietal Network Involved in Successful Retrieval from Episodic Memory. Spatial and Temporal Analyses Using FMRI and ERP. Cereb. Cortex 2006, 16, 1349–1360. [Google Scholar] [CrossRef]
- Hsu, C.L.; Manor, B.; Travison, T.; Pascual-Leone, A.; Lipsitz, L.A. Sensorimotor and Frontoparietal Network Connectivity Are Associated With Subsequent Maintenance of Gait Speed and Episodic Memory in Older Adults. J. Gerontol. Ser. A 2023, 78, 521–526. [Google Scholar] [CrossRef]
- Binder, J.R.; Desai, R.H.; Graves, W.W.; Conant, L.L. Where Is the Semantic System? A Critical Review and Meta-Analysis of 120 Functional Neuroimaging Studies. Cereb. Cortex 2009, 19, 2767–2796. [Google Scholar] [CrossRef]
- Humphries, C.; Binder, J.R.; Medler, D.A.; Liebenthal, E. Syntactic and Semantic Modulation of Neural Activity during Auditory Sentence Comprehension. J. Cogn. Neurosci. 2006, 18, 665–679. [Google Scholar] [CrossRef]
- Baddeley, A. Working Memory: Looking Back and Looking Forward. Nat. Rev. Neurosci. 2003, 4, 829–839. [Google Scholar] [CrossRef]
- Cabeza, R. Hemispheric Asymmetry Reduction in Older Adults: The HAROLD Model. Psychol. Aging 2002, 17, 85–100. [Google Scholar] [CrossRef]
- Davey, J.; Thompson, H.E.; Hallam, G.; Karapanagiotidis, T.; Murphy, C.; De Caso, I.; Krieger-Redwood, K.; Bernhardt, B.C.; Smallwood, J.; Jefferies, E. Exploring the Role of the Posterior Middle Temporal Gyrus in Semantic Cognition: Integration of Anterior Temporal Lobe with Executive Processes. Neuroimage 2016, 137, 165–177. [Google Scholar] [CrossRef]
- Humphreys, G.F.; Lambon Ralph, M.A. Fusion and Fission of Cognitive Functions in the Human Parietal Cortex. Cereb. Cortex 2015, 25, 3547–3560. [Google Scholar] [CrossRef]
- Graves, W.W.; Binder, J.R.; Desai, R.H.; Conant, L.L.; Seidenberg, M.S. Neural Correlates of Implicit and Explicit Combinatorial Semantic Processing. Neuroimage 2010, 53, 638–646. [Google Scholar] [CrossRef]
- Jackson, R.L.; Hoffman, P.; Pobric, G.; Lambon Ralph, M.A. The Semantic Network at Work and Rest: Differential Connectivity of Anterior Temporal Lobe Subregions. J. Neurosci. 2016, 36, 1490–1501. [Google Scholar] [CrossRef]
- Tyler, L.K.; Shafto, M.A.; Randall, B.; Wright, P.; Marslen-Wilson, W.D.; Stamatakis, E.A. Preserving Syntactic Processing across the Adult Life Span: The Modulation of the Frontotemporal Language System in the Context of Age-Related Atrophy. Cereb. Cortex 2010, 20, 352–364. [Google Scholar] [CrossRef]
- Friederici, A.D. The Brain Basis of Language Processing: From Structure to Function. Physiol. Rev. 2011, 91, 1357–1392. [Google Scholar] [CrossRef]
- Hickok, G.; Poeppel, D. The Cortical Organization of Speech Processing. Nat. Rev. Neurosci. 2007, 8, 393–402. [Google Scholar] [CrossRef]
- Seeley, W.W.; Menon, V.; Schatzberg, A.F.; Keller, J.; Glover, G.H.; Kenna, H.; Reiss, A.L.; Greicius, M.D. Dissociable Intrinsic Connectivity Networks for Salience Processing and Executive Control. J. Neurosci. 2007, 27, 2349–2356. [Google Scholar] [CrossRef]
- Baldassarre, A.; Lewis, C.M.; Committeri, G.; Snyder, A.Z.; Romani, G.L.; Corbetta, M. Individual Variability in Functional Connectivity Predicts Performance of a Perceptual Task. Proc. Natl. Acad. Sci. USA 2012, 109, 3516–3521. [Google Scholar] [CrossRef]
- Fox, M.D.; Snyder, A.Z.; Vincent, J.L.; Corbetta, M.; Van Essen, D.C.; Raichle, M.E. The Human Brain Is Intrinsically Organized into Dynamic, Anticorrelated Functional Networks. Proc. Natl. Acad. Sci. USA 2005, 102, 9673–9678. [Google Scholar] [CrossRef]
- Jones, D.T.; Machulda, M.M.; Vemuri, P.; McDade, E.M.; Zeng, G.; Senjem, M.L.; Gunter, J.L.; Przybelski, S.A.; Avula, R.T.; Knopman, D.S.; et al. Age-Related Changes in the Default Mode Network Are More Advanced in Alzheimer Disease. Neurology 2011, 77, 1524–1531. [Google Scholar] [CrossRef]


| Participants n = 20 | |||
|---|---|---|---|
| Variable | Mean | SD | Range |
| Sociodemographic data | |||
| Age (years) | 69.30 | 4.64 | 63–77 |
| Schooling (years) | 14.85 | 3.25 | 9–20 |
| Socioeconomic status † | 28.25 | 8.46 | 15–49 |
| Reading and writing habits § | 48.60 | 16.16 | 14–74 |
| Emotional, functional and cognitive assessment | |||
| Geriatric Depression Scale | 2.15 | 2.46 | 0–9 |
| Geriatric Anxiety Inventory | 6.40 | 5.79 | 0–17 |
| Functional Activities Questionnaire | 53.80 | 2.53 | 45–55 |
| Addenbrooke’s Cognitive Examination–Revised | 89.63 | 5.96 | 82–98 |
| Pre | Post | ||||||
|---|---|---|---|---|---|---|---|
| Test | Mean | SD | Mean | SD | W | p | BH-Corrected p |
| RAVLT | 43.9 | 8.73 | 49.35 | 8.56 | 169.0 | 0.003 | 0.036 |
| ACE-R | 89.95 | 5.97 | 92.20 | 5.24 | 131.0 | 0.010 | 0.060 |
| Camel and Cactus Test | 31.0 | 2.96 | 32.25 | 2.77 | 140.5 | 0.069 | 0.218 |
| Digit Span-inverse | 2.80 | 0.89 | 3.30 | 0.92 | 61.5 | 0.076 | 0.218 |
| Phonemic verbal fluency (/p/) | 14.07 | 4.64 | 16.25 | 4.85 | 150.5 | 0.091 | 0.218 |
| Stroop word | 1.27 | 0.16 | 1.22 | 0.23 | 64.0 | 0.133 | 0.245 |
| Stroop color-word | 2.14 | 0.57 | 1.97 | 0.51 | 65.0 | 0.143 | 0.245 |
| Subjective memory complaint | 32.67 | 10.4 | 32.5 | 8.49 | 64.0 | 0.569 | 0.787 |
| Semantic verbal fluency (animals) | 19.05 | 5.04 | 20.0 | 4.6 | 84.5 | 0.721 | 0.778 |
| Digit Span-direct | 4.45 | 1.1 | 4.55 | 0.94 | 26.0 | 0.713 | 0.787 |
| Color trails test | 1.23 | 0.57 | 1.12 | 0.48 | 91.0 | 0.622 | 0.787 |
| Naming (BALE) | 55.95 | 2.68 | 56.15 | 3.07 | 49.0 | 0.833 | 0.934 |
| Seed Region | Connected Regions | Hemisphere | MNI Coordinates x, y, z | Cluster | t | k | p-FWE |
|---|---|---|---|---|---|---|---|
| Default Mode Network (DMN) | |||||||
| Posterior cingulate cortex | No significant results | ||||||
| Medial prefrontal cortex | Superior lateral occipital cortex | Right | +44, −64, +42 | 1 | −5.50 | 320 | <0.001 |
| Dorsal Attention Network (DAN) | |||||||
| Left intraparietal sulcus | No significant results | ||||||
| Right intraparietal sulcus | No significant results | ||||||
| Left frontal eye field | No significant results | ||||||
| Right frontal eye field | No significant results | ||||||
| Ventral Attention Network (VAN) | |||||||
| Left IFG pars opercularis | Precuneus | Left | −6, −66, +18 | 2 | 6.67 | 193 | <0.001 |
| Right IFG pars opercularis | Superior parietal lobule | Left | −38, −40, +48 | 3 | 6.22 | 182 | <0.001 |
| Postcentral gyrus | Left | −36, −38, +44 | 3 | 6.22 | 182 | <0.001 | |
| Left middle frontal gyrus | No significant results | ||||||
| Right middle frontal gyrus | Frontal pole | Right | +14, +52, +40 | 4 | −6.23 | 99 | 0.020 |
| Left anterior STG | Temporal pole, | Right | +50, +10, −24 | 5 | 6.63 | 305 | <0.001 |
| Anterior middle temporal gyrus | Right | +54, +2, −28 | |||||
| Temporal pole | Left | −54, +8, −22 | 6 | 6.37 | 112 | 0.011 | |
| Posterior middle temporal gyrus | Right | +58, −28, −6 | 7 | 6.04 | 90 | 0.033 | |
| Posterior middle temporal gyrus | Right | +54, −12, −14 | 8 | 5.87 | 86 | 0.041 | |
| Right anterior STG | Frontal pole | Right | +30, +46, +30 | 9 | −7.50 | 238 | <0.001 |
| Cerebellum 6 | Left | −34, −54, −28 | 10 | −7.05 | 85 | 0.039 | |
| Left posterior STG | Temporal pole | Right | +48, +10, −22 | 11 | 6.56 | 148 | 0.002 |
| Right posterior STG | Planum temporale, | Left | −50, −26, +6 | 12 | 5.85 | 109 | 0.011 |
| Heschl’s gyrus | Left | −50, −20, +6 | |||||
| Postcentral gyrus | Left | −58, −10, +20 | 13 | 5.24 | 100 | 0.018 | |
| Frontoparietal Network (FPN) | |||||||
| Left posterior parietal cortex | No significant results | ||||||
| Right posterior parietal cortex | Frontal pole | Right | +20, +44, +46 | 14 | −5.67 | 108 | 0.010 |
| Left posterior MTG | No significant results | ||||||
| Right posterior MTG | Precentral gyrus, | Left | −54, −4, +30 | 15 | 6.96 | 430 | <0.001 |
| Postcentral gyrus | Left | −48, −16, +34 | |||||
| Precentral gyrus | Left | −40, −8, +58 | 16 | 6.15 | 173 | <0.001 | |
| Precentral gyrus | Right | +8, −18, +48 | 17 | 5.33 | 103 | 0.014 | |
| Precentral gyrus | Right | +44, −12, +48 | 18 | 5.05 | 83 | 0.041 | |
| Left temporo-occipital MTG | No significant results | ||||||
| Right temporo-occipital MTG | Medial frontal gyrus | Right | +38, +28, +42 | 19 | −6.96 | 146 | 0.003 |
| Left anterior MTG | Angular gyrus | Left | −54, −54, +42 | 20 | −5.98 | 87 | 0.023 |
| Left anterior MTG | Precentral gyrus | Right | +10, −18, +48 | 21 | 6.80 | 82 | 0.031 |
| Right anterior MTG | Precentral | Right | +28, −22, +54 | 22 | 5.49 | 683 | <0.001 |
| Postcentral gyrus | +30, −28, +58 | ||||||
| Cerebellum 8 | Left | −40, −44, −46 | 23 | −9.16 | 217 | <0.001 | |
| Precentral gyrus | Left | −20, −26, +62 | 24 | 5.20 | 208 | <0.001 | |
| Insular cortex | Left | −34, −22, +12 | 25 | 6.21 | 99 | 0.015 | |
| Temporal pole | Left | −40, +6, −18 | 26 | 5.84 | 94 | 0.019 | |
| Inferior lateral occipital cortex | Left | −40, −70, +6 | 27 | 5.11 | 80 | 0.042 | |
| Precentral gyrus | Left | −38, −8, +56 | 28 | 5.57 | 79 | 0.044 | |
| Left superior frontal gyrus | No significant results | ||||||
| Right superior frontal gyrus | No significant results | ||||||
| Left lateral prefrontal cortex | No significant results | ||||||
| Right lateral prefrontal cortex | No significant results | ||||||
| Salience Network (SN) | |||||||
| Anterior cingulate cortex | No significant results | ||||||
| Left insular cortex | Anterior parahippocampal gyrus | Right | +18, −6, −26 | 29 | 7.68 | 114 | 0.006 |
| Amygdala | Right | +18, −6, −20 | |||||
| Right insular cortex | No significant results | ||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beaumier, A.-S.; Bastos, A.P.; Malcorra, B.; da Rocha, B.R.; Bisol, V.; Borges, F.S.E.; Rodrigues, E.d.S.; Carthery-Goulart, M.T.; Schilling, L.P.; Marcotte, K.; et al. Strengthening the Aging Brain: Functional Connectivity Changes After a Language-Based Cognitive Program. Brain Sci. 2025, 15, 1139. https://doi.org/10.3390/brainsci15111139
Beaumier A-S, Bastos AP, Malcorra B, da Rocha BR, Bisol V, Borges FSE, Rodrigues EdS, Carthery-Goulart MT, Schilling LP, Marcotte K, et al. Strengthening the Aging Brain: Functional Connectivity Changes After a Language-Based Cognitive Program. Brain Sciences. 2025; 15(11):1139. https://doi.org/10.3390/brainsci15111139
Chicago/Turabian StyleBeaumier, Anne-Sophie, Ana Paula Bastos, Bárbara Malcorra, Bárbara Rusch da Rocha, Vanessa Bisol, Fernanda Souza Espinosa Borges, Erica dos Santos Rodrigues, Maria Teresa Carthery-Goulart, Lucas Porcello Schilling, Karine Marcotte, and et al. 2025. "Strengthening the Aging Brain: Functional Connectivity Changes After a Language-Based Cognitive Program" Brain Sciences 15, no. 11: 1139. https://doi.org/10.3390/brainsci15111139
APA StyleBeaumier, A.-S., Bastos, A. P., Malcorra, B., da Rocha, B. R., Bisol, V., Borges, F. S. E., Rodrigues, E. d. S., Carthery-Goulart, M. T., Schilling, L. P., Marcotte, K., & Hübner, L. C. (2025). Strengthening the Aging Brain: Functional Connectivity Changes After a Language-Based Cognitive Program. Brain Sciences, 15(11), 1139. https://doi.org/10.3390/brainsci15111139

