Cognitive Remediation as a Tool for Enhancing Treatment Dimensions of Schizophrenic Symptomatology: A Systematic Review of Randomized Controlled Trials
Abstract
1. Introduction
2. Materials and Methods
Literature Search
3. Results
3.1. Overview
3.2. Specific Symptom Outcomes
Study | Country | Sample (Training/Control, Age, % Males, Setting) | Type of Intervention | Study Duration and Dose | Cognitive Functions Targeted | Control Group | Results | Risk of Bias |
---|---|---|---|---|---|---|---|---|
Gharaeipour and Scott, 2012 [43] | Iran | N = 42, 21/21 CR 29.81 ± 7.61 GST 27.62 ± 5.66 71.4%. Inpatients, consecutive admissions | Cognitive remediation | 1 h/session, 6 sessions/w, 40 h, 8 weeks | Attention, working memory, executive functions | Group supportive therapy | No significant differences in PANSS, BDI, BAI | Moderate |
Zhu et al., 2021 [22] | China | N = 72, 22/24/26 CCT: 30 (25–39) CCT + MSST: 32 (26–41) Controls: 33 (26–41) 51.3% Inpatients, acute admissions, outpatients | Compensatory Cognitive Training combined with Medication Self-Management Skills Training; Compensatory Cognitive Training | CCT: 2 h/session, 2 sessions/w, 4 weeks CCT + MSST: CCT: 2 h/session, 2 sessions/w MSST: 2 h/ session, 3 sessions/w, 4 weeks | Prospective memory, conversational attention, task attention, verbal learning and memory, cognitive flexibility, problem solving, planning | Treatment as Usual (psychopharmacological therapy) | Significant group × time interaction for CCT + MSST compared with TAU in PANSS positive symptoms (MD = −0.101, p < 0.03, η2 = 0.211, 95% CI [−0.178, −0.025]) No significant difference between CCT + MSST and CCT or CCT and TAU | Moderate |
Vita et al., 2011b [41] | Italy | N = 31, 16/15 IPT-cog: 34.6 (7.6) Treatment as Usual: 39.9 (8.6) 83.8% Inpatients from rehabilitation center | Integrated Psychological Therapy (IPT) | 45 min/session, 2 sessions/w, 24 weeks | Attention (selective and sustained), memory, conceptualization abilities, cognitive flexibility | Treatment as Usual (psychopharmacological therapy) | Significant difference on PANSS total score (IPT: 95.8 ± 14.4 → 66.7 ± 11.5; control: 94.0 ± 11.7 → 77.8 ± 14.9, p < 0.04) Significant difference in PANSS negative scores (IPT: 31.3 ± 6.4 → 21.6 ± 5.6; control: 28.8 ± 6.8 → 26.0 ± 8.4, < 0.001) | Moderate |
Penadés et al., 2006 [15] | Spain | n = 60, 20/20/20 CRT 34.43 (8.3) CBT 35.84 (8.5) Treatment as Usual 38.30 (9.1) 63% Outpatients, chronic | Cognitive remediation therapy | 1 h/session, 2–3 sessions/w, 16 weeks, 40 sessions | Flexibility in thinking and information set maintenance, executive processes central to memory control, working memory, planning | CBT, Treatment as Usual (psychotropic medication) | Significant difference for the PANSS depression items (CBT: 10.9 ± 3.0 → 6.6 ± 1.9; CRT: 10.3 ± 3.3 → 116 ± 3.4); no significant differences for other subscales | Low |
Vita et al., 2011a [16] | Italy | N = 84, 26/30/28 IPT-Cog: 37.15 ± 9.10 Cogpack: 36.87 ± 11.40 REHAB: 43.00 ± 7.76 69% Inpatients from rehabilitation centers | Integrated Psychological Therapy–Cognitive Remediation; Cogpack | 45 min/session, 2 sessions/w, 24 weeks | IPT-Cog: cognitive differentiation, social perception, verbal communication, social skills, and interpersonal problem solving; Cogpack: verbal memory, verbal fluency, psychomotor speed and coordination, executive function, working memory, attention, language and calculation skills | Rehabilitation: art therapy, physical training, or occupational therapies | Significant differences between groups in CGI-S (IPT-Cog: −0.96 ± 0.72, ES = −80; Cogpack: −0.80 ± 0.76, ES = −0.57; rehabilitation: −0.36 ± 0.78, p = 0.02) Significant differences between groups for PANSS positive scores (IPT-Cog: 5.0 ± 3.40; ES = −0.83; Cogpack: −5.47 ± 4.92; ES = −0.79; rehabilitation: −1.79 ± 4.33, p< 0.001) Significant differences between groups for PANSS negative scores (IPT-Cog: −6.96 ± 5.6, ES = −1.29; Cogpack: −4.90 ± 6.31, ES = −0.94; rehabilitation: 0.04 ± 4.13, p < 0.001); significant differences between groups for PANSS total scores (IPT-Cog: −21.65 ± 15.40, ES = −1.19; Cogpack: −20.80 ± 18.35, ES = −1.03; rehabilitation: −3.71 ± 14.68, p < 0.001) | Low |
Zhu et al., 2022 [17] | China | N = 270, 144/72/54 CCRT 46.60 ± 8.94 CRT 47.56 ± 8.23 Active control 46.11 ± 8.21 63.7% | Computerized cognitive remediation therapy; cognitive remediation therapy | 45 min/session, 4–5 sessions/w, 12 weeks, 50 sessions | Cognitive flexibility, working memory and planning, facial emotion recognition, context emotion estimation, and emotional management | Active control: dance learning, playing a simple instrument | No significant effects on PANSS scores | Low |
Zhu et al., 2020 [23] | China | N = 157, 78/79 CCRT 43.74 (9.24) Treatment as Usual 43.65 (8.64) 54.1% Community-dwelling, clinically stable | Computerized cognitive remediation therapy | 45 min/session, 4–5 sessions/w, 12 weeks | Cognitive flexibility, working memory, planning, social functions, i.e., emotion management | Treatment as Usual (medication) | No significant effects on PANSS scores | Moderate |
Tan et al., 2016 [18] | China | N = 90, 44/46 CRT: 46.77 ± 7.18 MDT: 46.09 ± 5.52 60% Inpatients, chronic | Group cognitive remediation therapy, Frontal/Executive Function Program (Revised) (Chinese) | 1 h/session, 4 sessions/w, 10 weeks, 40 sessions | Flexibility in thinking and information set maintenance, working memory, goal-oriented, set/schema formation, manipulation, and planning | Musical and Dancing Therapy (MDT) | No significant effect on PANSS scores | Low |
D’Amato et al., 2011 [44] | France | N = 77, 39/38 Intervention 33.4 ± 6.9 Control 32.2 ± 6.0 75.3% Outpatients, remitted | Cognitive remediation therapy, Rehacom | 2 h/session, 2 sessions/w, 7 weeks, 14 sessions | Attention/ concentration, working memory, logic, and executive functions | Treatment as Usual, waiting list | No significant effect on PANSS, CGI scores | High |
Ricarte et al., 2012 [33] | Spain | N = 50, 24/26 Active 38.34 ± 9.6 Control 35.21 ± 13.3 82% Inpatients, outpatients | Event-Specific Memory Training | 90 min/session, 1 session/w, 10 weeks | Autobiographical memory | Social skills and occupational therapy | Significant differences between groups for BDI scores (experiment: 18.25 ± 12.3 → 10.16 ± 8.4; control: 12.42 ± 10.2 → 11.92 ± 11.0, p = 0.006, ηp2 =0.15) | Moderate |
Omiya et al., 2016 [20] | Japan | N = 17, 8/9 Fep 43.25 ± 14.50 Control 39.00 ± 11.09 41.1% Inpatients, outpatients, chronic | Frontal/Executive Program | 60 min/session, 2 sessions/w, 24 weeks, 44 sessions | Cognitive flexibility, working memory, planning | Treatment as Usual (psychopharmacological therapy) | Significant differences for PANSS total scores (FEP: 79.9 ± 7.9 → 68 ± 10.2; control 77.4 ± 6.2 → 78.1 ± 7.59, p < 0.03) | Low |
Wykes et al., 2007 [24] | U.K. | N = 40, 21/19 CRT 18.8 (2.6) Control 17.5 (2.2) 65% inpatients at follow-up | Cognitive remediation therapy | 1 h/session, 3 sessions/w, 12 weeks | Memory, cognitive flexibility, planning | Treatment as Usual (psychopharmacological therapy) | No significant effect on SPRS | Moderate |
Rakitzi et al., 2016 [25] | N = 48, 24/24 IPT 31.3 ± 7.2 Control 33.8 ± 6.7 66% Outpatients | Integrated Psychological Therapy (IPT) – Group Therapy Cognitive Component | 1 h/session, 2 sessions/w, 10 weeks, 20 sessions | Vigilance/attention, working memory, verbal memory, social perception | Treatment as Usual (psychopharmacological) | Significant differences between groups for PANSS negative scores (IPT: 33.5 ± 4.5 → 26.1 ± 4.3 → 24.0 ± 4.6; control: 31.0 ± 4.3 → 30.3 ± 5.8 → 28.9 ± 4.7; T1–T2: p = 0.00 d = 0.89; T1–T3: p = 0.00 d = 1.12); significant differences between groups for PANSS total scores (IPT: 59.9 ± 14.3 → 45.6 ± 9.4 → 43.9 ± 13.8; control: 59.0 ± 12.6 → 55.5 ± 9.9 → 52.2 ± 13.0; T1–T3: p = 0.01, d = 0.75) | Moderate | |
Wykes et al., 2003 [26] | U.K. | N = 33, 17/16 CRT 36.5 (19–55) Control 40.6 (24–64) 75% Outpatients | Cognitive remediation therapy | 12 weeks | Flexibility, memory, planning | Intensive occupational therapy activities | No significant effect on BPRS scores | Moderate |
Sachs et al., 2012 [34] | Austria | N = 38, 20/18 TAR 27.20 ± 7.17 Treatment as Usual 31.72 ± 9.35 52.6% Inpatients, outpatients | Training of Affect Recognition (TAR) | 2 sessions/w, 6 weeks, 12 sessions | Facial affect recognition | Treatment as Usual, occupational therapy | Significant within-group differences for PANSS negative scores (TAR: 27.35 ± 7.72 → 18.45 ± 6.18, p < 0.001 d = 1.27); significant interaction between group and time (F(1,36) = 12.671, p = 0.001); significant within-group differences for BDI scores (TAR 13.00 ± 9.82 → 8.25 ± 8.16. d = 0.53, p = 0.001) | High |
Giuliani et al., 2024 [45] | Italy | N = 40, 20/20 Intervention 37.15 ± 9.96 Control 36.70 ± 9.44 70% Outpatients | Modified Social Cognition Individualized Activities Lab (mSoCIAL) | 30 min/session, 1 session/w, 10 weeks | Social cognition and metacognitive skills, emotion recognition, Theory of Mind, narrative enhancement | Treatment as Usual (pharmacological, psychological, rehabilitative, occupational) | No significant effect on PANSS scores | High |
Li et al., 2022 [35] | China | N = 62, 30/32 VRT 46 (37, 50) Control 47.5 (37.25, 51.75) Gender Males 62.9% Inpatients, remitted | Virtual reality (VR) | 5 sessions/w, 2 weeks | Working memory, processing speed, attention, verbal memory, visual memory, reasoning problem solving, social cognition | Treatment as Usual (antipsychotic treatment) | Significant pre and post differences for PANSS general scores (VR: 19 (18, 23) vs. 17 (16, 21)); Treatment as Usual 19 (17.5, 21) vs. 19 (17.25, 20.75), p = 0.016, ES = 0.458 Significant difference for volition scores, VR < Treatment as Usual, p = 0.014 | Moderate |
Fathi et al., 2025 [19] | Iran | N = 54, 27/27 CCT41.78 ± 5.22 Control 40.67 ± 8.04 61% | Computerized Cognitive Training (CCT)-CANTAB | 1 h/session, 3 sessions/w, 10 weeks | Spatial Recognition Memory (SRM), Paired Associate Learning (PAL), Spatial Working Memory (SWM), Spatial Planning and Spatial Span (SSP) | Active control: computer games with high cognitive demands | Significant main effects of time and time × group interaction on DASS-D scores (CCT: MD = −1.85, 95% CI [−1.90, 0.42], p = 0.005); significant time × group interaction for DASS-S scores within the CCT group; T1 and T2 were significantly higher than T0 (MD (95% CI) = 2.96 (1.54 to 4.38), p < 0.001; MD = 2.67, 95% CI [1.18, 4.16], p < 0.001); significant difference between the two groups at both T1 and T2 (MD = 2.15, 95% CI [0.69, 3.61], p < 0.001; MD = −1.93, 95% CI [3.27, −0.59], p < 0.001); significant difference between the intervention and control groups (MD (95% CI) = 4.30 (1.38 to 7.22), p < 0.001), with the positive effects of the intervention persisting up to 3 months post-intervention (MD (95% CI) = −3.70 (−6.54 to −1.18), p = 0.001) | Low |
Zhang et al., 2024 [46] | China | N = 40, 20/20 CCRT 48.200 ± 2.114 Control 46.850 ± 2.048 100% Inpatients, institutionalized | Computerized cognitive remediation therapy | 40 min/session, 5 sessions/w, 8 weeks | Attention, working memory, speed of processing, cognitive flexibility, reasoning and problem solving, social cognition | Treatment as Usual (medication only) | Significant time × group interaction for PANSS total scores (CCRT: 77.30 ± 2.68 vs. 75.90 ± 2.72 vs. 74.90 ± 2.85; control: 80.90 ± 2.11 vs. 80.90 ± 2.11 vs. 80.90 ± 2.11, p < 0.001); significant within-group differences for PANSS negative scores (CCRT: 27.00 ± 1.21 vs. 26.15 ± 1.21 vs. 25.65 ± 1.24; control: 27.40 ± 1.27 vs. 27.40 ± 1.27 vs. 27.40 ± 1.27, p < 0.001); significant time × group interaction for HDRS (CCRT: 5.25 ± 0.68 vs. 3.20 ± 0.56 vs. 2.75 ± 0.43; control: 4.10 ± 0.56 vs. 3.35 ± 0.64 vs. 4.40 ± 0.91, p < 0.015) | High |
Dai et al., 2022 [27] | China | N = 82, 25/26/31 CAE 41.50 (8.72) Aerobic 41.40 (7.86) Control 44.06 (8.40) 75.6% Inpatients, remitted | Computerized cognitive remediation therapy; CCRT + aerobic exercise = CAE | 30 min/session, 2 sessions/w, 8 weeks | Processing speed, cognitive flexibility | Aerobic, Treatment as Usual (antipsychotics, psychological consultation, medical care, and behavior modification) | Significant pre and post differences for PANSS negative scores (CAE: −2.69 (1.83); AE: −1.48 (2.22), control: −1.06 (2.37), CAE vs. control: p = 0.018 ES = 0.096) | Moderate |
Fekete et al., 2022 [36] | Hungary | N = 46, 23/23 MCT 44.22 ± 10.45 Control 38.39 ± 10.41 47.8% Outpatients | Group Metacognitive Training (MCT) | 1 session/w, 16 weeks | Mental flexibility, jumping to conclusions, emotion recognition, Theory Of Mind, metacognitive functioning, attributional style | Treatment as Usual (psychopharmacological therapy, regular psychiatric control and care) | PANSS between groups post intervention positive, b = −4.66, p = 0.045, disorganized b = −5.98, p = 0.018, total b = −14.34, p = 0.026; between groups, post vs. 6 months positive b = −4.78 p = 0.046, disorganized b = −6.89 p = 0.022, total b = −14.95, p = 0.033 Within-group, mct post vs. baseline positive total b = −10.44, p = 0.029, negative b = −3.84, p = 0.048, disorganized b = −4.57 p = 0.007, post vs. 6 months no difference Control: no difference Baseline PANSS scores (≥75 PANSS total score or <75 PANSS, greater improvement) T0–T1 B = −21.8 p < 0.001 T0–T2 B = −16.9, p = 0.046 | Moderate |
Sampedro et al., 2021 [28] | Spain | N = 94, 47/47 Rehacop 40.60 ± 10.45 Control 41.43 ± 10.41 83% Inpatients, outpatients, rehabilitation unit | Rehacop + psychoeducation | 60 min/session, 3 sessions/w, 20 weeks | Attention, visual and verbal learning, recall, recognition memory, working memory; language: verbal comprehension, verbal fluency, and abstract language; executive functions planning, problem solving, cognitive flexibility, reasoning, categorization and conceptualization, processing speed, social cognition emotion | Active control, occupational group activities (gardening, sewing, handicrafts, painting, and music), psychoeducation | Significant pre and post differences for negative scores (Rehacop: 6.83 [−9.18, −4.58]; control: −1.60 [−3.60, −0.12], p = 0.03, ηp2 = 0.108) Disorganization Rehacop: −0.97 [−1.48, −0.49]; control: −0.13 [−0.47, −0.25], p = 0.007, ηp2 = 0.086 Excitement Rehacop: −1.20 [−1.74, −0.65]; control: −0.24 [−0.98, −0.49], p = 0.041, ηp2 = 0.049 | Moderate |
Rocha et al., 2021 [21] | Portugal | N = 11, 6/5 SCIT 29.5 ± 13.38 Control 27 ± 6.12 90.9% Outpatients, illness duration <2 years | Group Social Cognition and Interaction Training (SCIT) | 45–60 min/ session, 1 session/w, 20 sessions | Theory of Mind, emotion perception, attributional bias | Psychoeducation | No significant effect on PSP or PANSS scores | Moderate |
Bossert et al., 2020 [37] | Germany | N = 59, 19/18/21 I-CACR 32.37 ± 8.71 G-CACR 28.68 ± 9.43 Treatment as Usual 29.67 ± 6.65 72.8% Inpatients, outpatients | Group Computer-Assisted Cognitive Remediation CogniPlus (I-CACR); Individualized Computer-Assisted Cognitive Remediation (I-CACR) | 50 min/session, 4 sessions/w, 5 weeks | Attention: alertness, selective, divided; working memory, executive functions | Treatment as Usual (pharmacological and psychotherapeutic treatment, occupational therapy, and social skill training) | No significant effect on PANSS or HAMD scores, except for self-reported depression (BDI-scores), where a main effect of time was revealed: F(1, 52) = 22.82, p < 0.001, ηp2 = 0.31 for the total sample | Moderate |
Matsuda et al., 2018 [29] | Japan | N = 62, 31/31 Outpatients | Japanese Cognitive Rehabilitation Program for Schizophrenia (JCORES) | 60 min/session, 2 sessions/w, 12 weeks | Attention, psychomotor speed, learning, memory, executive functions | Treatment as Usual, waiting list | Significant differences between groups for PANSS on PANSS general subscales (JCORES: −3.17 ± 4.33; control: −0.06 ± 5.93, p = 0.032) | Moderate |
Peña et al., 2016 [30] | Spain | N = 101, 52/49 Inpatients, outpatients | Rehacop Social Cognitive Intervention and Functional Skills Training | 90 min/session, 3 sessions/w, 16 weeks | Attention: sustained, selective, alternating, divided; memory: visual and verbal learning, recall, recognition; language: verbal fluency, verbal comprehension, abstract language; executive functions: planning, social cognition | Occupational group activities | Significant effect on PANSS negative scores (Rehacop: −5.29 [−6.45, −4.13]; control: −2.82 [−4.01, −1.62] p = 0.004, ηp2 = 0.082) Emotional distress (Rehacop: −2.68 [−3.33, −2.02]; control: −0.81 [−1.49, −0.14], p = 0.001, ηp2 = 0.136); negative subfactor (Rehacop −5.29 [−6.45, −4.13]; control: −2.82 [−4.01, −1.62], ES = 0.082); differences for negative subdomains: social amotivation, p = 0.005, ηp2 = 0.077 | Moderate |
Cella et al., 2014 [38] | U.K. | N = 85 Community mental health teams | Cognitive rehabilitation | 3 sessions/w, 40 sessions | Executive functions, working memory, long-term memory, attention | Treatment as Usual (psychopharmacological therapy) | Significant reduction of negative symptoms and disorganization in the CR group: W_Neg, F(2, 80) = 21.1, p < 0.0001, ηp2 = 0.07, and W_Dis, F(2, 80) = 14.2, p < 0.0001, ηp2 = 0.1 | Moderate |
Klingberg et al., 2011 [14] | Germany | 198 36.9 ± 9.9 56.1% | Cognitive rehabilitation, restitution, compensation of cognitive deficits | 47.5 min/session (mean), 13.7 sessions | Attention, memory, executive functions | CBT | No significant effect on PANSS, SANS, CDSS, or CGI scores | Low |
Kayser et al., 2006 [31] | France | 14 Video: 32.4 ± 9.4 Control: 38.2 ± 9.2 50% | Theory of Mind Training using videos depicting emotional interactions | 1 session/w, 12 weeks | Theory of Mind | Treatment as Usual (psychopharmacological therapy) | No significant effects on PANSS and BPRS scores | High |
Reeder et al., 2004 [32] | U.K. | 31 31.3 ± 13.5 16–64 73% | Cognitive rehabilitation training | 3 sessions/w, 40 sessions | Attention, memory; executive functions: cognitive shift, working memory, planning | Occupational therapy, activities to account for therapist contact | No significant effects on BPRS scores | High |
Beigi et al., 2008 [42] | Iran | 42 Unclear Unclear | Cognitive rehabilitation therapy | 30–45 min/session, 2 sessions/w, 8 weeks | Attention, memory, executive function, abstract thinking | Treatment as Usual (pharmacological therapy) | Significant differences between groups for SAPS scores (CRT: 66.15 ± 13.98 → 53.75 ± 12.32, TAU: 66.85 ± 15.21 → 66.35 ± 17.71, p < 0.001); significant differences between groups for SANS scores (CRT: 59.35 ± 13.05 → 54.1 ± 12.37; TAU: 63.15 ± 10.29 → 63.85 ± 10.83, p < 0.05) | High |
Tao et al., 2015 [47] | China | 86 CR: 28.95 ± 7.38 Control: 29.71 ± 6.36 54.6% | Cognitive rehabilitation | 30 min/session, 2 sessions/w, 16 weeks | Memory, attention, language, executive functions, coordination | Treatment as Usual, pharmacological | No significant effects on PANSS scores | |
Yamanushi et al., 2024 [39] | Japan | 15/15 | Cognitive remediation therapy, Rehacom | 60 min/session, 2 sessions/w, 12 weeks, 24 sessions | Attention/vigilance, working memory, verbal learning and memory, visual learning and memory, reasoning and problem solving, and social cognition | Treatment as Usual (psychopharmacological therapy) | Significant time × group interaction for (SANS) anhedonia/asociality scores (Rehacom: 21.57 ± 4.16 → 18.36 ± 4.80; control: 21.69 ± 3.84 → 21.23 ± 3.30, p = 0.019, ES = 0.19); no significant effect on the PANSS and other subscales | Moderate |
Ojeda et al., 2012 [48] | Spain | 93 33.81± 9.7/37.75± 8.3 81.1% | Rehacop | 90 min/session, 3 sessions/w, 12 weeks | Attention, processing speed, memory, language, executive functions, social cognition | Occupational therapy | Significant difference between groups when controlling cognitive change in insight and CGI scores improved (Rehacop-insight: 5.46 ± 3.5 → 7.92 ± 3.1; control: 8.50 ± 4.4 → 8.64 ± 4.2) (Rehacop-CGI: 5.12 ± 1.3 → 4.12 ± 1.3; control CGI: 4.63 ± 1.3 → 3.94 ± 1.5) | High |
Sánchez et al., 2014 [40] | Spain | N = 92, 36/48 Rehacop: 33.60 ± 9.4 Control: 36.92 + 10.5 69.5% | Rehacop | 90 min/session, 3 sessions/w, 12 weeks | Attention, memory, processing speed, language, executive functions, social cognition | Treatment as Usual (psychopharmacological therapy) | Significant time × group interaction between groups for negative symptoms (Rehacop: 27.23 ± 11.6 → 21.91 ± 9.4; control: 24.85 ± 9.7 → 22.84 ± 10.1, ES = 0.48); significant time × group interaction for disorganization scores (Rehacop: 17.03 ± 7.2 → 12.91 ± 5.6; control 14.13 ± 5.4 → 12.67 → 6.1, ES = 0.58) Significant time × group interaction for emotional distress (Rehacop: 10.97 ± 6.2 → 7.66 ± 3.9; control: 7.95 ± 4.7 → 6.33 ± 3.5, ES = 0.47); significant differences for PANSS total scores (Rehacop: 99.39 ± 34.8 → 74.83 ± 23.5; control: 84.56 ± 25.1 → 71.70 ± 25.6, ES = −0.50) | Moderate |
4. Discussion
5. Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CR | Cognitive remediation |
References
- Jauhar, S.; Johnstone, M.; McKenna, P.J. Schizophrenia. Lancet 2022, 399, 473–486. [Google Scholar] [CrossRef]
- Leucht, S.; Priller, J.; Davis, J.M. Antipsychotic Drugs: A Concise Review of History, Classification, Indications, Mechanism, Efficacy, Side Effects, Dosing, and Clinical Application. Am. J. Psychiatry 2024, 181, 865–878. [Google Scholar] [CrossRef] [PubMed]
- Vita, A.; Barlati, S. Recovery from Schizophrenia: Is It Possible? Curr. Opin. Psychiatry 2018, 31, 246–255. [Google Scholar] [CrossRef]
- Takeda, T.; Umehara, H.; Matsumoto, Y.; Yoshida, T.; Nakataki, M.; Numata, S. Schizophrenia and Cognitive Dysfunction. J. Med. Investig. 2024, 71, 205–209. [Google Scholar] [CrossRef]
- Dziwota, E.; Stepulak, M.Z.; Włoszczak-Szubzda, A.; Olajossy, M. Social Functioning and the Quality of Life of Patients Diagnosed with Schizophrenia. Ann. Agric. Environ. Med. 2018, 25, 50–55. [Google Scholar] [CrossRef]
- Javitt, D.C. Cognitive Impairment Associated with Schizophrenia: From Pathophysiology to Treatment. Annu. Rev. Pharmacol. Toxicol. 2023, 63, 119–141. [Google Scholar] [CrossRef]
- Rangaswamy, T.; Greeshma, M. Course and Outcome of Schizophrenia. Int. Rev. Psychiatry 2012, 24, 417–422. [Google Scholar] [CrossRef]
- Diniz, E.; Fonseca, L.; Rocha, D.; Trevizol, A.; Cerqueira, R.; Ortiz, B.; Brunoni, A.; Bressan, R.; Correll, C.; Gadelha, A. Treatment Resistance in Schizophrenia: A Meta-Analysis of Prevalence and Correlates. Braz. J. Psychiatry 2023, 45, 448–458. [Google Scholar] [CrossRef]
- Skokou, M.; Messinis, L.; Nasios, G.; Gourzis, P.; Dardiotis, E. Cognitive Rehabilitation for Patients with Schizophrenia: A Narrative Review of Moderating Factors, Strategies, and Outcomes. Adv. Exp. Med. Biol. 2023, 1423, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Vita, A.; Gaebel, W.; Mucci, A.; Sachs, G.; Barlati, S.; Giordano, G.M.; Nibbio, G.; Nordentoft, M.; Wykes, T.; Galderisi, S. European Psychiatric Association Guidance on Treatment of Cognitive Impairment in Schizophrenia. Eur. Psychiatry J. Assoc. Eur. Psychiatr. 2022, 65, e57. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Kohl, C.; McIntosh, E.J.; Unger, S.; Haddaway, N.R.; Kecke, S.; Schiemann, J.; Wilhelm, R. Online Tools Supporting the Conduct and Reporting of Systematic Reviews and Systematic Maps: A Case Study on CADIMA and Review of Existing Tools. Environ. Evid. 2018, 7, 8. [Google Scholar] [CrossRef]
- Barker, T.; Stone, J.; Sears, K.; Klugar, M.; Tufanaru, C.; Leonardi-Bee, J.; Aromataris, E.; Munn, Z. The Revised JBI Critical Appraisal Tool for the Assessment of Risk of Bias for Randomized Controlled Trials. JBI Evid. Synth. 2023, 21, 494–506. [Google Scholar] [CrossRef] [PubMed]
- Klingberg, S.; Wölwer, W.; Engel, C.; Wittorf, A.; Herrlich, J.; Meisner, C.; Buchkremer, G.; Wiedemann, G. Negative Symptoms of Schizophrenia as Primary Target of Cognitive Behavioral Therapy: Results of the Randomized Clinical TONES Study. Schizophr. Bull. 2011, 37 (Suppl. 2), S98–S110. [Google Scholar] [CrossRef]
- Penadés, R.; Catalán, R.; Salamero, M.; Boget, T.; Puig, O.; Guarch, J.; Gastó, C. Cognitive Remediation Therapy for Outpatients with Chronic Schizophrenia: A Controlled and Randomized Study. Schizophr. Res. 2006, 87, 323–331. [Google Scholar] [CrossRef]
- Vita, A.; De Peri, L.; Barlati, S.; Cacciani, P.; Deste, G.; Poli, R.; Agrimi, E.; Cesana, B.M.; Sacchetti, E. Effectiveness of Different Modalities of Cognitive Remediation on Symptomatological, Neuropsychological, and Functional Outcome Domains in Schizophrenia: A Prospective Study in a Real-World Setting. Schizophr. Res. 2011, 133, 223–231. [Google Scholar] [CrossRef]
- Zhu, X.; Fan, H.; Zou, Y.; Tan, Y.; Yang, F.; Wang, Z.; Zhao, Y.; Fan, F.; Reeder, C.; Zhou, D.; et al. Computerized or Manual? Long Term Effects of Cognitive Remediation on Schizophrenia. Schizophr. Res. 2022, 239, 47–54. [Google Scholar] [CrossRef]
- Tan, S.; Zou, Y.; Wykes, T.; Reeder, C.; Zhu, X.; Yang, F.; Zhao, Y.; Tan, Y.; Fan, F.; Zhou, D. Group Cognitive Remediation Therapy for Chronic Schizophrenia: A Randomized Controlled Trial. Neurosci. Lett. 2016, 626, 106–111. [Google Scholar] [CrossRef]
- Fathi Azar, E.; Mirzaie, H.; Hosseinzadeh, S.; Haghgoo, H.A. Acceptability and Impact of Computerised Cognitive Training on Mental Health and Cognitive Skills in Schizophrenia: A Double-Blind Controlled Trial. Gen. Psychiatry 2025, 38, e101969. [Google Scholar] [CrossRef]
- Omiya, H.; Yamashita, K.; Miyata, T.; Hatakeyama, Y.; Miyajima, M.; Yambe, K.; Matsumoto, I.; Matsui, M.; Toyomaki, A.; Denda, K. Pilot Study of the Effects of Cognitive Remediation Therapy Using the Frontal/Executive Program for Treating Chronic Schizophrenia. Open Psychol. J. 2016, 9, 121–128. [Google Scholar] [CrossRef]
- Rocha, N.B.; Campos, C.; Figueiredo, J.M.; Saraiva, S.; Almeida, C.; Moreira, C.; Pereira, G.; Telles-Correia, D.; Roberts, D. Social Cognition and Interaction Training for Recent-Onset Schizophrenia: A Preliminary Randomized Trial. Early Interv. Psychiatry 2021, 15, 206–212. [Google Scholar] [CrossRef]
- Zhu, X.; Song, H.; Chang, R.; Chen, B.; Song, Y.; Liu, J.; Wang, K. Combining Compensatory Cognitive Training and Medication Self-Management Skills Training, in Inpatients with Schizophrenia: A Three-Arm Parallel, Single-Blind, Randomized Controlled Trial. Gen. Hosp. Psychiatry 2021, 69, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Fan, H.; Fan, F.; Zhao, Y.; Tan, Y.; Yang, F.; Wang, Z.; Xue, F.; Xiao, C.; Li, W.; et al. Improving Social Functioning in Community-Dwelling Patients with Schizophrenia: A Randomized Controlled Computer Cognitive Remediation Therapy Trial with Six Months Follow-Up. Psychiatry Res. 2020, 287, 112913. [Google Scholar] [CrossRef]
- Wykes, T.; Newton, E.; Landau, S.; Rice, C.; Thompson, N.; Frangou, S. Cognitive Remediation Therapy (CRT) for Young Early Onset Patients with Schizophrenia: An Exploratory Randomized Controlled Trial. Schizophr. Res. 2007, 94, 221–230. [Google Scholar] [CrossRef]
- Rakitzi, S.; Georgila, P.; Efthimiou, K.; Mueller, D.R. Efficacy and Feasibility of the Integrated Psychological Therapy for Outpatients with Schizophrenia in Greece: Final Results of a RCT. Psychiatry Res. 2016, 242, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Wykes, T.; Reeder, C.; Williams, C.; Corner, J.; Rice, C.; Everitt, B. Are the Effects of Cognitive Remediation Therapy (CRT) Durable? Results from an Exploratory Trial in Schizophrenia. Schizophr. Res. 2003, 61, 163–174. [Google Scholar] [CrossRef]
- Dai, Y.; Ding, H.; Lu, X.; Wu, X.; Xu, C.; Jiang, T.; Ming, L.; Xia, Z.; Song, C.; Shen, H.; et al. CCRT and Aerobic Exercise: A Randomised Controlled Study of Processing Speed, Cognitive Flexibility, and Serum BDNF Expression in Schizophrenia. Schizophr. Heidelb. Ger. 2022, 8, 84. [Google Scholar] [CrossRef] [PubMed]
- Sampedro, A.; Peña, J.; Sánchez, P.; Ibarretxe-Bilbao, N.; Gómez-Gastiasoro, A.; Iriarte-Yoller, N.; Pavón, C.; Tous-Espelosin, M.; Ojeda, N. Cognitive, Creative, Functional, and Clinical Symptom Improvements in Schizophrenia after an Integrative Cognitive Remediation Program: A Randomized Controlled Trial. NPJ Schizophr. 2021, 7, 52. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, Y.; Morimoto, T.; Furukawa, S.; Sato, S.; Hatsuse, N.; Iwata, K.; Kimura, M.; Kishimoto, T.; Ikebuchi, E. Feasibility and Effectiveness of a Cognitive Remediation Programme with Original Computerised Cognitive Training and Group Intervention for Schizophrenia: A Multicentre Randomised Trial. Neuropsychol. Rehabil. 2018, 28, 387–397. [Google Scholar] [CrossRef]
- Peña, J.; Ibarretxe-Bilbao, N.; Sánchez, P.; Iriarte, M.B.; Elizagarate, E.; Garay, M.A.; Gutiérrez, M.; Iribarren, A.; Ojeda, N. Combining Social Cognitive Treatment, Cognitive Remediation, and Functional Skills Training in Schizophrenia: A Randomized Controlled Trial. NPJ Schizophr. 2016, 2, 16037. [Google Scholar] [CrossRef]
- Kayser, N.; Sarfati, Y.; Besche, C.; Hardy-Baylé, M.-C. Elaboration of a Rehabilitation Method Based on a Pathogenetic Hypothesis of “Theory of Mind” Impairment in Schizophrenia. Neuropsychol. Rehabil. 2006, 16, 83–95. [Google Scholar] [CrossRef]
- Reeder, C.; Newton, E.; Frangou, S.; Wykes, T. Which Executive Skills Should We Target to Affect Social Functioning and Symptom Change? A Study of a Cognitive Remediation Therapy Program. Schizophr. Bull. 2004, 30, 87–100. [Google Scholar] [CrossRef] [PubMed]
- Ricarte, J.J.; Hernández-Viadel, J.V.; Latorre, J.M.; Ros, L. Effects of Event-Specific Memory Training on Autobiographical Memory Retrieval and Depressive Symptoms in Schizophrenic Patients. Autobiographical Mem. Psychopathol. 2012, 43, S12–S20. [Google Scholar] [CrossRef] [PubMed]
- Sachs, G.; Winklbaur, B.; Jagsch, R.; Lasser, I.; Kryspin-Exner, I.; Frommann, N.; Wölwer, W. Training of Affect Recognition (TAR) in Schizophrenia—Impact on Functional Outcome. Schizophr. Res. 2012, 138, 262–267. [Google Scholar] [CrossRef]
- Li, S.; Liu, R.; Sun, B.; Wei, N.; Shen, Z.; Xu, Y.; Huang, M. Effect of Virtual Reality on Cognitive Impairment and Clinical Symptoms among Patients with Schizophrenia in the Remission Stage: A Randomized Controlled Trial. Brain Sci. 2022, 12, 1572. [Google Scholar] [CrossRef]
- Fekete, Z.; Vass, E.; Balajthy, R.; Tana, Ü.; Nagy, A.C.; Oláh, B.; Domján, N.; Kuritárné, I.S. Efficacy of Metacognitive Training on Symptom Severity, Neurocognition and Social Cognition in Patients with Schizophrenia: A Single-Blind Randomized Controlled Trial. Scand. J. Psychol. 2022, 63, 321–333. [Google Scholar] [CrossRef]
- Bossert, M.; Westermann, C.; Schilling, T.M.; Weisbrod, M.; Roesch-Ely, D.; Aschenbrenner, S. Computer-Assisted Cognitive Remediation in Schizophrenia: Efficacy of an Individualized vs. Generic Exercise Plan. Front. Psychiatry 2020, 11, 555052. [Google Scholar] [CrossRef]
- Cella, M.; Reeder, C.; Wykes, T. It Is All in the Factors: Effects of Cognitive Remediation on Symptom Dimensions. Schizophr. Res. 2014, 156, 60–62. [Google Scholar] [CrossRef]
- Yamanushi, A.; Shimada, T.; Koizumi, A.; Kobayashi, M. Effect of Computer-Assisted Cognitive Remediation Therapy on Cognition among Patients with Schizophrenia: A Pilot Randomized Controlled Trial. Biomedicines 2024, 12, 1498. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, P.; Peña, J.; Bengoetxea, E.; Ojeda, N.; Elizagárate, E.; Ezcurra, J.; Gutiérrez, M. Improvements in Negative Symptoms and Functional Outcome after a New Generation Cognitive Remediation Program: A Randomized Controlled Trial. Schizophr. Bull. 2014, 40, 707–715. [Google Scholar] [CrossRef] [PubMed]
- Vita, A.; De Peri, L.; Barlati, S.; Cacciani, P.; Cisima, M.; Deste, G.; Cesana, B.M.; Sacchetti, E. Psychopathologic, Neuropsychological and Functional Outcome Measures during Cognitive Rehabilitation in Schizophrenia: A Prospective Controlled Study in a Real-World Setting. Eur. Psychiatry 2011, 26, 276–283. [Google Scholar] [CrossRef]
- Beigi, N.A.; Mohamadkhani, P.; Mazinani, R.; Dolatshahi, B. A Randomized Clinical Trial of Group Cognitive- Rehabilitation Therapy for Patients with Schizophrenia Resistant to Medication. Iran. Rehabil. J. 2008, 6, 59–67. [Google Scholar]
- Gharaeipour, M.; Scott, B. Effects of Cognitive Remediation on Neurocognitive Functions and Psychiatric Symptoms in Schizophrenia Inpatients. Schizophr. Res. 2012, 142, 165–170. [Google Scholar] [CrossRef] [PubMed]
- d’Amato, T.; Bation, R.; Cochet, A.; Jalenques, I.; Galland, F.; Giraud-Baro, E.; Pacaud-Troncin, M.; Augier-Astolfi, F.; Llorca, P.-M.; Saoud, M.; et al. A Randomized, Controlled Trial of Computer-Assisted Cognitive Remediation for Schizophrenia. Schizophr. Res. 2011, 125, 284–290. [Google Scholar] [CrossRef]
- Giuliani, L.; Pezzella, P.; Mucci, A.; Palumbo, D.; Caporusso, E.; Piegari, G.; Giordano, G.M.; Blasio, P.; Mencacci, C.; Torriero, S.; et al. Effectiveness of a Social Cognition Remediation Intervention for Patients with Schizophrenia: A Randomized-Controlled Study. Ann. Gen. Psychiatry 2024, 23, 52. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Chen, L.; Qin, Q.; Liu, C.; Zhu, H.; Hu, W.; He, X.; Tang, K.; Yan, Q.; Shen, H. Enhanced Computerized Cognitive Remediation Therapy Improved Cognitive Function, Negative Symptoms, and GDNF in Male Long-Term Inpatients with Schizophrenia. Front. Psychiatry 2024, 15, 1477285. [Google Scholar] [CrossRef]
- Tao, J.; Zeng, Q.; Liang, J.; Zhou, A.; Yin, X.; Xu, A. Effects of Cognitive Rehabilitation Training on Schizophrenia: 2 Years of Follow-Up. Int. J. Clin. Exp. Med. 2015, 8, 16089–16094. [Google Scholar] [CrossRef]
- Ojeda, N.; Peña, J.; Bengoetxea, E.; Garcia, A.; Sánchez, P.; Elizagárate, E.; Segarra, R.; Ezcurra, J.; Gutiérrez-Fraile, M.; Eguíluz, J.I. Evidence of the Effectiveness of Cognitive Rehabilitation in Psychosis and Schizophrenia with the REHACOP Programme. Rev. Neurol. 2012, 54, 577–586. [Google Scholar] [PubMed]
- Mothersill, D.; Donohoe, G. Neural Effects of Cognitive Training in Schizophrenia: A Systematic Review and Activation Likelihood Estimation Meta-Analysis. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2019, 4, 688–696. [Google Scholar] [CrossRef]
- Penadés, R.; Pujol, N.; Catalán, R.; Massana, G.; Rametti, G.; García-Rizo, C.; Bargalló, N.; Gastó, C.; Bernardo, M.; Junqué, C. Brain Effects of Cognitive Remediation Therapy in Schizophrenia: A Structural and Functional Neuroimaging Study. Schizophr. Context Mem. 2013, 73, 1015–1023. [Google Scholar] [CrossRef]
- Sampedro, A.; Ibarretxe-Bilbao, N.; Peña, J.; Cabrera-Zubizarreta, A.; Sánchez, P.; Gómez-Gastiasoro, A.; Iriarte-Yoller, N.; Pavón, C.; Tous-Espelosin, M.; Ojeda, N. Analyzing Structural and Functional Brain Changes Related to an Integrative Cognitive Remediation Program for Schizophrenia: A Randomized Controlled Trial. Schizophr. Res. 2023, 255, 82–92. [Google Scholar] [CrossRef] [PubMed]
- Luvsannyam, E.; Jain, M.S.; Pormento, M.K.L.; Siddiqui, H.; Balagtas, A.R.A.; Emuze, B.O.; Poprawski, T. Neurobiology of Schizophrenia: A Comprehensive Review. Cureus 2022, 14, e23959. [Google Scholar] [CrossRef]
- Tang, S.W.; Tang, W.H. Hallucinations: Diagnosis, Neurobiology and Clinical Management. Int. Clin. Psychopharmacol. 2020, 35, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Galderisi, S.; Merlotti, E.; Mucci, A. Neurobiological Background of Negative Symptoms. Eur. Arch. Psychiatry Clin. Neurosci. 2015, 265, 543–558. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, G.M. Neuropsychological and Neuroimaging Evidence for the Involvement of the Frontal Lobes in Depression: 20 Years On. J. Psychopharmacol. 2016, 30, 1090–1094. [Google Scholar] [CrossRef] [PubMed]
- Garrido, G.; Barrios, M.; Penadés, R.; Enríquez, M.; Garolera, M.; Aragay, N.; Pajares, M.; Vallès, V.; Delgado, L.; Alberni, J.; et al. Computer-Assisted Cognitive Remediation Therapy: Cognition, Self-Esteem and Quality of Life in Schizophrenia. Spec. Sect. Negat. Symptoms 2013, 150, 563–569. [Google Scholar] [CrossRef]
- Iliff, J.J.; Wang, M.; Liao, Y.; Plogg, B.A.; Peng, W.; Gundersen, G.A.; Benveniste, H.; Vates, G.E.; Deane, R.; Goldman, S.A.; et al. A Paravascular Pathway Facilitates CSF Flow Through the Brain Parenchyma and the Clearance of Interstitial Solutes, Including Amyloid β. Sci. Transl. Med. 2012, 4, ra111–ra147. [Google Scholar] [CrossRef]
- Xie, L.; Kang, H.; Xu, Q.; Chen, M.J.; Liao, Y.; Thiyagarajan, M.; O’Donnell, J.; Christensen, D.J.; Nicholson, C.; Iliff, J.J.; et al. Sleep Drives Metabolite Clearance from the Adult Brain. Science 2013, 342, 373–377. [Google Scholar] [CrossRef]
- Reddy, O.C.; van der Werf, Y.D. The Sleeping Brain: Harnessing the Power of the Glymphatic System through Lifestyle Choices. Brain Sci. 2020, 10, 868. [Google Scholar] [CrossRef]
- Barlattani, T.; De Luca, D.; Giambartolomei, S.; Bologna, A.; Innocenzi, A.; Bruno, F.; Socci, V.; Malavolta, M.; Rossi, A.; de Berardis, D.; et al. Glymphatic System Dysfunction in Young Adults Hospitalized for an Acute Psychotic Episode: A Preliminary Report from a Pilot Study. Front. Psychiatry 2025, 16, 1653144. [Google Scholar] [CrossRef]
- Tu, Y.; Fang, Y.; Li, G.; Xiong, F.; Gao, F. Glymphatic System Dysfunction Underlying Schizophrenia Is Associated With Cognitive Impairment. Schizophr. Bull. 2024, 50, 1223–1231. [Google Scholar] [CrossRef] [PubMed]
- Hua, L.; Zeng, X.; Zhang, K.; Zhao, Z.; Yuan, Z. Reduced Glymphatic Clearance in Early Psychosis. Mol. Psychiatry 2025, 30, 4665–4676. [Google Scholar] [CrossRef]
- Eack, S.M.; Mesholam-Gately, R.I.; Greenwald, D.P.; Hogarty, S.S.; Keshavan, M.S. Negative Symptom Improvement during Cognitive Rehabilitation: Results from a 2-Year Trial of Cognitive Enhancement Therapy. Psychiatry Res. 2013, 209, 21–26. [Google Scholar] [CrossRef]
- Yazdanbakhsh, K.; Aivazy, S.; Moradi, A. The Effectiveness of Response Inhibition Cognitive Rehabilitation in Improving the Quality of Sleep and Behavioral Symptoms of Children with Attention-Deficit/Hyperactivity Disorder. J. Kermanshah Univ. Med. Sci. 2018, 22, 89–100. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Erlbaum: Mahwah, NJ, USA, 1988. [Google Scholar]
- Cohen, J. A power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef]
- Richardson, J.T.E. Eta squared and partial eta squared as measures of effect size in educational research. Educ. Res. Rev. 2011, 6, 135–147. [Google Scholar] [CrossRef]
- Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science. Front. Psychol. 2013, 4, 863. [Google Scholar] [CrossRef] [PubMed]
- Sawilowsky, S.S. New effect size rules of thumb. J. Modern Appl. Stat. Methods 2009, 8, 467–474. [Google Scholar] [CrossRef]
- Rosenthal, R. Parametric measures of effect size. In The Handbook of Research Synthesis; Cooper, H., Hedges, L.V., Eds.; Russell Sage Foundation: New York, NY, USA, 1994; pp. 231–244. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skokou, M.; Stavridis, P.-D.; Ntoskou-Messini, A.; Messinis, L. Cognitive Remediation as a Tool for Enhancing Treatment Dimensions of Schizophrenic Symptomatology: A Systematic Review of Randomized Controlled Trials. Brain Sci. 2025, 15, 1130. https://doi.org/10.3390/brainsci15101130
Skokou M, Stavridis P-D, Ntoskou-Messini A, Messinis L. Cognitive Remediation as a Tool for Enhancing Treatment Dimensions of Schizophrenic Symptomatology: A Systematic Review of Randomized Controlled Trials. Brain Sciences. 2025; 15(10):1130. https://doi.org/10.3390/brainsci15101130
Chicago/Turabian StyleSkokou, Maria, Panagiotis-Diogenis Stavridis, Aikaterini Ntoskou-Messini, and Lambros Messinis. 2025. "Cognitive Remediation as a Tool for Enhancing Treatment Dimensions of Schizophrenic Symptomatology: A Systematic Review of Randomized Controlled Trials" Brain Sciences 15, no. 10: 1130. https://doi.org/10.3390/brainsci15101130
APA StyleSkokou, M., Stavridis, P.-D., Ntoskou-Messini, A., & Messinis, L. (2025). Cognitive Remediation as a Tool for Enhancing Treatment Dimensions of Schizophrenic Symptomatology: A Systematic Review of Randomized Controlled Trials. Brain Sciences, 15(10), 1130. https://doi.org/10.3390/brainsci15101130