Attentional Deficits Following Preterm Birth: A Systematic Review and Meta-Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Search
2.2. Selection Criteria
2.3. Study Identification and Data Extraction
2.4. Quality Control and Risk of Bias of Included Studies
2.5. Statistical Analysis
3. Results
3.1. Sustained Attention
3.2. Selective Attention
4. Discussion
4.1. Development of Attention
4.2. Variability of Attention Performance in Preterm-Born Children
4.3. Structural and Functional Brain Alterations
4.4. Clinical Relevance and Treatment Options
5. Limitations
6. Conclusions and Future Research
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Born Too Soon: Decade of Action on Preterm Birth; World Health Organization: Geneva, Switzerland, 2012; Available online: https://www.who.int/publications-detail-redirect/9789240073890 (accessed on 7 April 2025).
- De Graaf-Peters, V.B.; Hadders-Algra, M. Ontogeny of the human central nervous system: What is happening when? Early Hum. Dev. 2006, 82, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Bracewell, M.; Marlow, N. Patterns of motor disability in very preterm children. Ment. Retard. Dev. Disabil. Res. Rev. 2002, 8, 241–248. [Google Scholar] [CrossRef]
- Moreira, R.S.; Magalhães, L.C.; Alves, C.R.L. Effect of preterm birth on motor development, behavior, and school performance of school-age children: A systematic review. J. Pediatr. (Rio J.) 2014, 90, 119–134. [Google Scholar] [CrossRef]
- Linsell, L.M.; Malouf, R.; Johnson, S.; Morris, J.; Kurinczuk, J.J.; Marlow, N. Prognostic Factors for Behavioral Problems and Psychiatric Disorders in Children Born Very Preterm or Very Low Birth Weight: A Systematic Review. J. Dev. Behav. Pediatr. JDBP 2016, 37, 88–102. [Google Scholar] [CrossRef]
- Bhutta, A.T.; Cleves, M.A.; Casey, P.H.; Cradock, M.M.; Anand, K.J.S. Cognitive and behavioral outcomes of school-aged children who were born preterm: A meta-analysis. JAMA 2002, 288, 728–737. [Google Scholar] [CrossRef] [PubMed]
- Kelly, C.E.; Shaul, M.; Thompson, D.K.; Mainzer, R.M.; Yang, J.Y.; Dhollander, T.; Cheong, J.L.; Inder, T.E.; Doyle, L.W.; Anderson, P.J. Long-lasting effects of very preterm birth on brain structure in adulthood: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2023, 147, 105082. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Nadal, S.; Bosch, L. Cognitive and Learning Outcomes in Late Preterm Infants at School Age: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 74. [Google Scholar] [CrossRef]
- Crump, C.; Sundquist, J.; Sundquist, K. Preterm or early term birth and risk of attention-deficit/hyperactivity disorder: A national cohort and co-sibling study. Ann. Epidemiol. 2023, 86, 119–125.e4. [Google Scholar] [CrossRef]
- Catroppa, C.; Anderson, V. Attentional skills in the acute phase following pediatric traumatic brain injury. Child Neuropsychol. J. Norm. Abnorm. Dev. Child Adolesc. 1999, 5, 251–264. [Google Scholar] [CrossRef]
- Betts, J.; McKay, J.; Maruff, P.; Anderson, V. The Development of Sustained Attention in Children: The Effect of Age and Task Load. Child Neuropsychol. J. Norm. Abnorm. Dev. Child Adolesc. 2006, 12, 205–221. [Google Scholar] [CrossRef]
- Finneran, D.A.; Francis, A.L.; Leonard, L.B. Sustained Attention in Children With Specific Language Impairment (SLI). J. Speech Lang. Hear. Res. 2009, 52, 915–929. [Google Scholar] [CrossRef] [PubMed]
- Chien, Y.-L.; Gau, S.S.-F.; Shang, C.-Y.; Chiu, Y.-N.; Tsai, W.-C.; Wu, Y.-Y. Visual memory and sustained attention impairment in youths with autism spectrum disorders. Psychol. Med. 2015, 45, 2263–2273. [Google Scholar] [CrossRef]
- Dockree, P.M.; Kelly, S.P.; Roche, R.A.; Hogan, M.J.; Reilly, R.B.; Robertson, I.H. Behavioural and physiological impairments of sustained attention after traumatic brain injury. Cogn. Brain Res. 2004, 20, 403–414. [Google Scholar] [CrossRef]
- Bacon, W.F.; Egeth, H.E. Overriding stimulus-driven attentional capture. Percept. Psychophys. 1994, 55, 485–496. [Google Scholar] [CrossRef]
- Leber, A.B.; Egeth, H.E. It’s under control: Top-down search strategies can override attentional capture. Psychon. Bull. Rev. 2006, 13, 132–138. [Google Scholar] [CrossRef]
- Hanania, R.; Smith, L.B. Selective attention and attention switching: Towards a unified developmental approach. Dev. Sci. 2010, 13, 622–635. [Google Scholar] [CrossRef] [PubMed]
- Plude, D.J.; Enns, J.T.; Brodeur, D. The development of selective attention: A life-span overview. Acta Psychol. 1994, 86, 227–272. [Google Scholar] [CrossRef]
- Plebanek, D.J.; Sloutsky, V.M. Costs of Selective Attention: When Children Notice What Adults Miss. Psychol. Sci. 2017, 28, 723–732. [Google Scholar] [CrossRef] [PubMed]
- Robinson, C.W.; Sloutsky, V.M. Auditory dominance and its change in the course of development. Child Dev. 2004, 75, 1387–1401. [Google Scholar] [CrossRef]
- Shaw, P.; Eckstrand, K.; Sharp, W.; Blumenthal, J.; Lerch, J.P.; Greenstein, D.; Clasen, L.; Evans, A.; Giedd, J.; Rapoport, J.L. Attention-deficit/hyperactivity disorder is characterized by a delay in cortical maturation. Proc. Natl. Acad. Sci. USA 2007, 104, 19649–19654. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 71. [Google Scholar] [CrossRef]
- Wells, G.A.; Shea, B.; O’Connell, D.; Pereson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle–Ottawa Scale (NOS) for Assessing the Quality of Non-Randomized Studies in Meta-Analysis. 2000. Available online: https://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed on 5 May 2025).
- Hedges, L.V. Distribution Theory for Glass’s Estimator of Effect size and Related Estimators. J. Educ. Stat. 1981, 6, 107–128. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002, 21, 1539–1558. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Sutton, A.J.; Ioannidis, J.P.A.; Terrin, N.; Jones, D.R.; Lau, J.; Carpenter, J.; Rücker, G.; Harbord, R.M.; Schmid, C.H.; et al. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ 2011, 343, d4002. [Google Scholar] [CrossRef]
- Anderson, P.J.; De Luca, C.R.; Hutchinson, E.; Spencer-Smith, M.M.; Roberts, G.; Doyle, L.W. Victorian Infant Collaborative Study Group*. Attention Problems in a Representative Sample of Extremely Preterm/Extremely Low Birth Weight Children. Dev. Neuropsychol. 2011, 36, 57–73. [Google Scholar] [CrossRef]
- Bayless, S.; Stevenson, J. Executive functions in school-age children born very prematurely. Early Hum. Dev. 2007, 83, 247–254. [Google Scholar] [CrossRef]
- Begega, A.; Méndez López, M.; de Iscar, M.J.; Cuesta-Izquierdo, M.; Solís, G.; Fernández-Colomer, B.; Álvarez, L.; Méndez, M.; Arias, J.L. Assessment of the global intelligence and selective cognitive capacities in preterm 8-year-old children. Psicothema 2010, 22, 648–653. [Google Scholar] [PubMed]
- Cserjesi, R.; Van Braeckel, K.N.J.A.; Butcher, P.R.; Kerstjens, J.M.; Reijneveld, S.A.; Bouma, A.; Geuze, R.H.; Bos, A.F. Functioning of 7-year-old children born at 32 to 35 weeks’ gestational age. Pediatrics 2012, 130, e838–e846. [Google Scholar] [CrossRef] [PubMed]
- Delane, L.; Campbell, C.; Bayliss, D.M.; Reid, C.; Stephens, A.; French, N.; Anderson, M. Poorer divided attention in children born very preterm can be explained by difficulty with each component task, not the executive requirement to dual-task. Child Neuropsychol. 2017, 23, 510–522. [Google Scholar] [CrossRef] [PubMed]
- Giordano, V.; Fuiko, R.; Leiss, U.; Brandstetter, S.; Hayde, M.; Bartha-Doering, E.; Klebermaß-Schrehof, K.; Weiler, L.J. Differences in attentional functioning between preterm and full-term children underline the importance of new neuropsychological detection techniques. Acta Paediatr. 2017, 106, 601–611. [Google Scholar] [CrossRef]
- Hagmann-von Arx, P.; Perkinson-Gloor, N.; Brand, S.; Albert, D.; Holsboer-Trachsler, E.; Grob, A.; Weber, P.; Lemola, S. In School-Age Children Who Were Born Very Preterm Sleep Efficiency Is Associated with Cognitive Function. Neuropsychobiology 2015, 70, 244–252. [Google Scholar] [CrossRef]
- Jaeger, D.A.; Gawehn, N.; Schneider, D.T.; Suchan, B. Phasic and tonic alertness in preterm 5-year-old healthy children. Child Neuropsychol. 2021, 27, 1073–1087. [Google Scholar] [CrossRef]
- Ji, W.; Li, G.; Jiang, F.; Zhang, Y.; Wu, F.; Zhang, W.; Hu, Y.; Wang, J.; Wei, X.; Li, Y.; et al. Preterm birth associated alterations in brain structure, cognitive functioning and behavior in children from the ABCD dataset. Psychol. Med. 2024, 54, 409–418. [Google Scholar] [CrossRef] [PubMed]
- Lean, R.E.; Melzer, T.R.; Bora, S.; Watts, R.; Woodward, L.J. Attention and Regional Gray Matter Development in Very Preterm Children at Age 12 Years. J. Int. Neuropsychol. Soc. 2017, 23, 539–550. [Google Scholar] [CrossRef] [PubMed]
- Mulder, H.; Pitchford, N.J.; Marlow, N. Processing Speed Mediates Executive Function Difficulties in Very Preterm Children in Middle Childhood. J. Int. Neuropsychol. Soc. 2011, 17, 445–454. [Google Scholar] [CrossRef] [PubMed]
- Murray, A.L.; Scratch, S.E.; Thompson, D.K.; Inder, T.E.; Doyle, L.W.; Anderson, J.F.I.; Anderson, P.J. Neonatal brain pathology predicts adverse attention and processing speed outcomes in very preterm and/or very low birth weight children. Neuropsychology 2014, 28, 552–562. [Google Scholar] [CrossRef]
- Potharst, E.S.; VAN Wassenaer-Leemhuis, A.G.; Houtzager, B.A.; Livesey, D.; Kok, J.H.; Last, B.F.; Oosterlaan, J. Perinatal risk factors for neurocognitive impairments in preschool children born very preterm. Dev. Med. Child Neurol. 2013, 55, 178–184. [Google Scholar] [CrossRef]
- Rose, S.A.; Feldman, J.F.; Jankowski, J.J.; Van Rossem, R. Basic Information Processing Abilities at 11 years Account for Deficits in IQ Associated with Preterm Birth. Intelligence 2011, 39, 198–209. [Google Scholar] [CrossRef]
- Sejer, E.P.F.; Bruun, F.J.; Slavensky, J.A.; Mortensen, E.L.; Schiøler Kesmodel, U. Impact of gestational age on child intelligence, attention and executive function at age 5: A cohort study. BMJ Open 2019, 9, e028982. [Google Scholar] [CrossRef]
- Shum, D.; Gill, H.; Banks, M.; Maujean, A.; Griffin, J.; Ward, H. Planning Ability Following Moderate to Severe Traumatic Brain Injury: Performance on a 4-Disk Version of the Tower of London. Brain Impair. 2009, 10, 320–324. [Google Scholar] [CrossRef]
- Tinelli, F.; Anobile, G.; Gori, M.; Aagten-Murphy, D.; Bartoli, M.; Burr, D.C.; Cioni, G.; Concetta Morrone, M. Time, number and attention in very low birth weight children. Neuropsychologia 2015, 73, 60–69. [Google Scholar] [CrossRef]
- van Baar, A.L.; Vermaas, J.; Knots, E.; de Kleine, M.J.K.; Soons, P. Functioning at school age of moderately preterm children born at 32 to 36 weeks’ gestational age. Pediatrics 2009, 124, 251–257. [Google Scholar] [CrossRef]
- Callaghan, W.M.; MacDorman, M.F.; Rasmussen, S.A.; Qin, C.; Lackritz, E.M. The Contribution of Preterm Birth to Infant Mortality Rates in the United States. Pediatrics 2006, 118, 1566–1573. [Google Scholar] [CrossRef]
- Purisch, S.E.; Gyamfi-Bannerman, C. Epidemiology of preterm birth. Semin. Perinatol. 2017, 41, 387–391. [Google Scholar] [CrossRef] [PubMed]
- Arpino, C.; Compagnone, E.; Montanaro, M.L.; Cacciatore, D.; De Luca, A.; Cerulli, A.; Di Girolamo, S.; Curatolo, P. Preterm birth and neurodevelopmental outcome: A review. Childs Nerv. Syst. 2010, 26, 1139–1149. [Google Scholar] [CrossRef]
- Petersen, S.E.; Posner, M.I. The attention system of the human brain: 20 years after. Annu. Rev. Neurosci. 2012, 35, 73–89. [Google Scholar] [CrossRef] [PubMed]
- Colombo, J. The development of visual attention in infancy. Annu. Rev. Psychol. 2001, 52, 337–367. [Google Scholar] [CrossRef] [PubMed]
- Rueda, M.R.; Posner, M.I.; Rothbart, M.K. The Development of Executive Attention: Contributions to the Emergence of Self-Regulation. Dev. Neuropsychol. 2005, 28, 573–594. [Google Scholar] [CrossRef]
- Konrad, K.; Neufang, S.; Thiel, C.M.; Specht, K.; Hanisch, C.; Fan, J.; Herpertz-Dahlmann, B.; Fink, G.R. Development of attentional networks: An fMRI study with children and adults. NeuroImage 2005, 28, 429–439. [Google Scholar] [CrossRef]
- Posner, M.I.; Petersen, S.E. The Attention System of the Human Brain. Annu. Rev. Neurosci. 1990, 13, 25–42. [Google Scholar] [CrossRef]
- Rueda, M.R.; Posner, M.I. Development of Attention Networks. In The Oxford Handbook of Developmental Psychology, Vol. 1: Body and Mind; Zelazo, P.D., Ed.; Oxford University Press: Oxford, UK, 2013. [Google Scholar] [CrossRef]
- Casey, B.J.; Giedd, J.N.; Thomas, K.M. Structural and functional brain development and its relation to cognitive development. Biol. Psychol. 2000, 54, 241–257. [Google Scholar] [CrossRef]
- Luna, B.; Padmanabhan, A.; O’Hearn, K. What has fMRI told us about the Development of Cognitive Control through Adolescence? Brain Cogn. 2010, 72, 101–113. [Google Scholar] [CrossRef]
- Goldenberg, R.L.; Culhane, J.F.; Iams, J.D.; Romero, R. Epidemiology and causes of preterm birth. Lancet 2008, 371, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Eryigit-Madzwamuse, S.; Wolke, D. Attention problems in relation to gestational age at birth and smallness for gestational age. Early Hum. Dev. 2015, 91, 131–138. [Google Scholar] [CrossRef]
- Hall, J.; Jaekel, J.; Wolke, D. Gender distinctive impacts of prematurity and small for gestational age (SGA) on age-6 attention problems. Child Adolesc. Ment. Health 2012, 17, 238–245. [Google Scholar] [CrossRef]
- Réveillon, M.; Urben, S.; Barisnikov, K.; Tolsa, C.B.; Hüppi, P.S.; Lazeyras, F. Functional neuroimaging study of performances on a Go/No-go task in 6- to 7-year-old preterm children: Impact of intrauterine growth restriction. NeuroImage Clin. 2013, 3, 429–437. [Google Scholar] [CrossRef]
- Tanis, J.C.; van der Ree, M.H.; Roze, E.; Huis in‘t Veld, A.E.; van den Berg, P.P.; Van Braeckel, K.N.; Bos, A.F. Functional outcome of very preterm–born and small-for-gestational-age children at school age. Pediatr. Res. 2012, 72, 641–648. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.; Shastri, S.; Sharma, P. Intrauterine Growth Restriction: Antenatal and Postnatal Aspects. Clin. Med. Insights Pediatr. 2016, 10, 67–83. [Google Scholar] [CrossRef] [PubMed]
- Ward, R.M.; Beachy, J.C. Neonatal complications following preterm birth. BJOG Int. J. Obstet. Gynaecol. 2003, 110, 8–16. [Google Scholar] [CrossRef]
- Nobre, F.D.; Gaspardo, C.M.; Linhares, M.B.M. Effortful control and attention as predictors of cognition in children born preterm. Clin. Child Psychol. Psychiatry 2020, 25, 372–385. [Google Scholar] [CrossRef]
- Walczak-Kozłowska, T.; Chrzan-Dętkoś, M.; Harciarek, M. Heterogeneity of the attentional system’s efficiency among very prematurely born pre-schoolers. Child Neuropsychol. 2022, 28, 120–142. [Google Scholar] [CrossRef]
- Brown, R.N.; Pascoe, L.; Treyvaud, K.; McMahon, G.; Nguyen, T.-N.; Ellis, R.; Stedall, P.; Haebich, K.; Collins, S.E.; Cheong, J.; et al. Early parenting behaviour is associated with complex attention outcomes in middle to late childhood in children born very preterm. Child Neuropsychol. 2023, 29, 165–182. [Google Scholar] [CrossRef]
- Toplak, M.E.; West, R.F.; Stanovich, K.E. Practitioner Review: Do performance-based measures and ratings of executive function assess the same construct? J. Child Psychol. Psychiatry 2013, 54, 131–143. [Google Scholar] [CrossRef]
- Kollndorfer, K.; Fischmeister, F.P.; Novak, A.; Seidl, R.; Kasprian, G.; Bartha-Doering, L. The impact of lesion size on executive function performance in children and adolescents after pediatric stroke. Eur. J. Paediatr. Neurol. 2025, 54, 193–199. [Google Scholar] [CrossRef]
- Bogičević, L.; Verhoeven, M.; van Baar, A.L. Distinct Profiles of Attention in Children Born Moderate-to-Late Preterm at 6 Years. J. Pediatr. Psychol. 2020, 45, 685–694. [Google Scholar] [CrossRef]
- De Kieviet, J.F.; Zoetebier, L.; Van Elburg, R.M.; Vermeulen, R.J.; Oosterlaan, J. Brain development of very preterm and very low-birthweight children in childhood and adolescence: A meta-analysis. Dev. Med. Child Neurol. 2012, 54, 313–323. [Google Scholar] [CrossRef]
- Murray, A.L.; Thompson, D.K.; Pascoe, L.; Leemans, A.; Inder, T.E.; Doyle, L.W.; Anderson, J.F.; Anderson, P.J. White matter abnormalities and impaired attention abilities in children born very preterm. NeuroImage 2016, 124, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Arhan, E.; Gücüyener, K.; Soysal, Ş.; Şalvarlı, Ş.; Gürses, M.A.; Serdaroğlu, A.; Demir, E.; Ergenekon, E.; Türkyılmaz, C.; Önal, E.; et al. Regional brain volume reduction and cognitive outcomes in preterm children at low risk at 9 years of age. Childs Nerv. Syst. 2017, 33, 1317–1326. [Google Scholar] [CrossRef]
- De Kieviet, J.F.; Heslenfeld, D.J.; Pouwels, P.J.; Lafeber, H.N.; Vermeulen, R.J.; van Elburg, R.M.; Oosterlaan, J. A crucial role for white matter alterations in interference control problems of very preterm children. Pediatr. Res. 2014, 75, 731–737. [Google Scholar] [CrossRef] [PubMed]
- Kostović, I.; Jovanov-Milošević, N. The development of cerebral connections during the first 20–45 weeks’ gestation. Semin. Fetal. Neonatal Med. 2006, 11, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Volpe, J.J. Brain injury in premature infants: A complex amalgam of destructive and developmental disturbances. Lancet Neurol. 2009, 8, 110–124. [Google Scholar] [CrossRef]
- Griffiths, S.T.; Gundersen, H.; Neto, E.; Elgen, I.; Markestad, T.; Aukland, S.M.; Hugdahl, K. fMRI: Blood oxygen level–dependent activation during a working memory–selective attention task in children born extremely preterm. Pediatr. Res. 2013, 74, 196–205. [Google Scholar] [CrossRef]
- Wheelock, M.D.; Lean, R.E.; Bora, S.; Melzer, T.R.; Eggebrecht, A.T.; Smyser, C.D.; Woodward, L.J. Functional Connectivity Network Disruption Underlies Domain-Specific Impairments in Attention for Children Born Very Preterm. Cereb. Cortex 2021, 31, 1383–1394. [Google Scholar] [CrossRef]
- De Schuymer, L.; De Groote, I.; Desoete, A.; Roeyers, H. Gaze aversion during social interaction in preterm infants: A function of attention skills? Infant. Behav. Dev. 2012, 35, 129–139. [Google Scholar] [CrossRef]
- Kooiker, M.J.G.; Swarte, R.M.C.; Smit, L.S.; Reiss, I.K.M. Perinatal risk factors for visuospatial attention and processing dysfunctions at 1 year of age in children born between 26 and 32 weeks. Early Hum. Dev. 2019, 130, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Ross-Sheehy, S.; Perone, S.; Macek, K.L.; Eschman, B. Visual orienting and attention deficits in 5- and 10-month-old preterm infants. Infant. Behav. Dev. 2017, 46, 80–90. [Google Scholar] [CrossRef]
- Ruys, C.A.; Bröring, T.; van Schie, P.E.; van de Lagemaat, M.; Rotteveel, J.; Finken, M.J.; Oostrom, K.J.; Lafeber, H.N. Neurodevelopment of children born very preterm and/or with a very low birth weight: 8-Year follow-up of a nutritional RCT. Clin. Nutr. ESPEN 2019, 30, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Landsem, I.P.; Handegård, B.H.; Ulvund, S.E.; Tunby, J.; Kaaresen, P.I.; Rønning, J.A. Does An Early Intervention Influence Behavioral Development Until Age 9 in Children Born Prematurely? Child Dev. 2015, 86, 1063–1079. [Google Scholar] [CrossRef] [PubMed]
- García-Bermúdez, O.; Cruz-Quintana, F.; Pérez-García, M.; Hidalgo-Ruzzante, N.; Fernández-Alcántara, M.; Pérez-Marfil, M.N. Improvement of executive functions after the application of a neuropsychological intervention program (PEFEN) in pre-term children. Child Youth Serv. Rev. 2019, 98, 328–336. [Google Scholar] [CrossRef]
- Aarnoudse-Moens, C.S.; Twilhaar, E.S.; Oosterlaan, J.; van Veen, H.G.; Prins, P.J.; van Kaam, A.H.; van Wassenaer-Leemhuis, A.G. Executive Function Computerized Training in Very Preterm-Born Children: A Pilot Study. Games Health J. 2018, 7, 175–181. [Google Scholar] [CrossRef]
- Van Houdt, C.A.; Aarnoudse-Moens, C.S.; van Wassenaer-Leemhuis, A.G.; Laarman, A.C.; Koopman-Esseboom, C.; van Kaam, A.H.; Oosterlaan, J. Effects of Executive Function Training on Attentional, Behavioral and Emotional Functioning and Self-Perceived Competence in Very Preterm Children: A Randomized Controlled Trial. Front. Psychol. 2019, 10, 2100. [Google Scholar] [CrossRef] [PubMed]
- Van Houdt, C.A.; van Wassenaer-Leemhuis, A.G.; Oosterlaan, J.; Königs, M.; Koopman-Esseboom, C.; Laarman, A.C.; van Kaam, A.H.; Aarnoudse-Moens, C.S. Executive function training in very preterm children: A randomized controlled trial. Eur. Child Adolesc. Psychiatry 2021, 30, 785–797. [Google Scholar] [CrossRef] [PubMed]
Study | Sample PT | Sample FT | Attention Task | Age at Testing | ||||
---|---|---|---|---|---|---|---|---|
N | Mean GA | Mean BW | N | Mean GA | Mean BW | |||
Anderson et al., 2011 [27] | 189 | 26.5 | 833 | 173 | 39.3 | 3507 | TEACh: Score! Sky Search | 8 years |
Bayless & Stevenson 2007 [28] | 40 | 28.46 | 1200.75 | 41 | - | - | TEACh: Score! Sky Search | 8 years |
Begega et al., 2010 [29] | 63 | 33 | 2041 | 78 | 39–40 | 3102 | d2 Selective Attention | 8 years |
Cserjesi et al., 2012 [30] | 248 | 33.9 | 2239 | 130 | 39.7 | 3577 | TEACh: Score! Map mission | 6 years |
Delane et al., 2017 [31] | 77 | 27 | 940 | 66 | 40 | - | TEACh: Score! Sky Search | 7 years |
Giordano et al., 2017 [32] | 52 | 28.71 | 1172.91 | 52 | 39 | 3455.37 | Sustained attention (KITAP) | 5 years |
Hagmann-von Arx et al., 2015 [33] | 58 | 29.7 | 1302 | 55 | 39.7 | 3338 | Selective attention (IDS) | 8 years |
Jaeger et al., 2021 [34] | 31 | 32 | 1701 | 22 | 41 | 3662 | Tonic alertness (modified from KITAP) | 5 years |
Ji et al., 2024 [35] | 1706 | 32.1 | 2245 | 1865 | - | 3043 | Flanker task | 10 years |
Lean et al., 2017 [36] | 100 | 27.9 | 1063.5 | 106 | 39.5 | 3601.1 | TEACh: Score! Sky Search | 12 years |
Mulder et al., 2011 [37] | 56 | 27.6 | - | 22 | - | - | TEACh: Score! Sky Search | 9 years |
Murray et al., 2014 [38] | 198 | 27.4 | 960 | 70 | 39.1 | 3322 | TEACh: Score! Sky Search | 7 years |
Potharst et al., 2013 [39] | 102 | 28.71 | 1042 | 95 | 39.86 | 3436 | Stop Signal Task | 5 years |
Rose et al., 2011 [40] | 44 | 29.7 | 1165.2 | 86 | - | - | CANTAB: Rapid Visual Information Processing Span of Apprehension | 11 years |
Sejer et al., 2019 [41] | 40 | 35.8 | 2740.8 | 1728 | 40.29 | 3627.2 | TEACh-5: Barking/Draw a line Great Balloon hunt/Hide and seek II | 5 years |
Shum et al., 2009 [42] | 45 | 26.44 | 838.24 | 49 | 39.86 | 3577.84 | NEPSY: Visual attention | 8 years |
Tinelli et al., 2015 [43] | 29 | 28.3 | 1180 | 26 | - | - | Visual sustained attention | 8 years |
van Baar et al., 2009 [44] | 377 | 34.7 | 2425 | 182 | 39.5 | 3431 | Bourdon-Vos Test | 8 years |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kollndorfer, K.; Hörle, D.A.; Fischmeister, F.P.S. Attentional Deficits Following Preterm Birth: A Systematic Review and Meta-Analysis. Brain Sci. 2025, 15, 1115. https://doi.org/10.3390/brainsci15101115
Kollndorfer K, Hörle DA, Fischmeister FPS. Attentional Deficits Following Preterm Birth: A Systematic Review and Meta-Analysis. Brain Sciences. 2025; 15(10):1115. https://doi.org/10.3390/brainsci15101115
Chicago/Turabian StyleKollndorfer, Kathrin, Darlene Alicia Hörle, and Florian Ph. S. Fischmeister. 2025. "Attentional Deficits Following Preterm Birth: A Systematic Review and Meta-Analysis" Brain Sciences 15, no. 10: 1115. https://doi.org/10.3390/brainsci15101115
APA StyleKollndorfer, K., Hörle, D. A., & Fischmeister, F. P. S. (2025). Attentional Deficits Following Preterm Birth: A Systematic Review and Meta-Analysis. Brain Sciences, 15(10), 1115. https://doi.org/10.3390/brainsci15101115