Confusion Assessment Protocol: Italian Cross-Cultural Adaptation and Validation
Abstract
1. Introduction
Severe Acquired Brain Injury (sABI) and Disorders of Consciousness (DoC)
2. Materials and Methods
2.1. Population
2.2. Translation and Cultural Adaptation
2.3. Pre-Test (Cross-Cultural Validity)
2.4. Validation
- -
- Fluctuation in symptom severity is coded as “present” if symptom intensity is rated as “fluctuating over hours or minutes”.
- -
- Night-time sleep disturbance severity is coded as “present” if symptom intensity is rated as “moderate or severe disruption of the sleep–wake cycle”.
- -
- Decreased daytime arousal is coded as “present” if symptoms intensity is rated as “patient has difficulty staying awake and alert during exam and therapy sessions or patient is unable to stay awake and alert”.
- -
- Psychotic-type symptoms are coded as “present” if (i) perceptual disturbance including illusions or hallucinations; (ii) if patient is suspicious, has unusual ideation, or is delusional; (iii) or if thought processes are tangential or show loose associations.
2.5. Statistical Analysis
3. Results
3.1. Descriptive Statistics
3.2. Internal Consistency (KR-20 Analysis)
3.3. Inter- and Intra-Rater Reliability (Cohen’s Kappa Analysis)
3.4. Convergent Validity (Correlations with LCF and DRS)
3.5. Symptom Association Analysis (Cramér’s V Analysis)
3.6. Relationship Between CAP and LCF
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Medical Disability Society. Working Party on the Management of Traumatic Brain Injury. In Report of the Working Party on the Management of Traumatic Brain Injury; Development Trust: London, UK, 1988. [Google Scholar]
- Laureys, S.; Celesia, G.G.; Cohadon, F.; Lavrijsen, J.; León-Carrión, J.; Sannita, W.G.; Sazbon, L.; Schmutzhard, E.; von Wild, K.R.; Zeman, A.; et al. Unresponsive wakefulness syndrome: A new name for the vegetative state or apallic syndrome. BMC Med. 2010, 8, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Giacino, J.T.; Ashwal, S.; Childs, N.; Cranford, R.; Jennett, B.; Katz, D.I.; Kelly, J.P.; Rosenberg, J.H.; Whyte, J.O.H.N.; Zafonte, R.D.; et al. The minimally conscious state: Definition and diagnostic criteria. Neurology 2002, 58, 349–353. [Google Scholar] [CrossRef] [PubMed]
- Giacino, J.T.; Fins, J.J.; Laureys, S.; Schiff, N.D. Disorders of consciousness after acquired brain injury: The state of the science. Nat. Rev. Neurol. 2014, 10, 99–114. [Google Scholar] [CrossRef] [PubMed]
- Symonds, C.P.; Russell, W.R. Accidental head injuries: Prognosis in service patients. Lancet 1943, 241, 7–10. [Google Scholar] [CrossRef]
- Rao, V.; Lyketsos, C. Neuropsychiatric sequelae of traumatic brain injury. Psychosomatics 2000, 41, 95–103. [Google Scholar] [CrossRef]
- Russell, W.R.; Smith, A. Post-traumatic amnesia in closed head injury. Arch. Neurol. 1961, 5, 4–17. [Google Scholar] [CrossRef]
- Symonds, C.P. Mental disorder following head injury. Proc. R. Soc. Med. 1937, 30, 1081–1094. [Google Scholar] [CrossRef]
- Shores, E.A.; Lammél, A.; Hullick, C.; Sheedy, J.; Flynn, M.; Levick, W.; Batchelor, J. The diagnostic accuracy of the Revised Westmead PTA Scale as an adjunct to the Glasgow Coma Scale in the early identification of cognitive impairment in patients with mild traumatic brain injury. J. Neurol. Neurosurg. Psychiatry 2008, 79, 1100–1106. [Google Scholar] [CrossRef]
- Levin, H.S.; O’donnell, V.M.; Grossman, R.G. The Galveston Orientation and Amnesia Test: A practical scale to assess cognition after head injury. J. Nerv. Ment. Dis. 1979, 167, 675–684. [Google Scholar] [CrossRef]
- Spiteri, C.; Ponsford, J.; Jones, H.; McKay, A. Comparing the Westmead posttraumatic amnesia scale, Galveston orientation and amnesia test, and confusion assessment protocol as measures of acute recovery following traumatic brain injury. J. Head Trauma Rehabil. 2021, 36, 156–163. [Google Scholar] [CrossRef]
- Stuss, D.T.; Binns, M.A.; Carruth, F.G.; Levine, B.; Brandys, C.E.; Moulton, R.J.; Snow, W.G.; Schwartz, M.L. The acute period of recovery from traumatic brain injury: Posttraumatic amnesia or posttraumatic confusional state? J. Neurosurg. 1999, 90, 635–643. [Google Scholar] [CrossRef]
- Adams, J.H.; Doyle, D.; Ford, I.; Gennarelli, T.A.; Graham, D.I.; McLellan, D.R. Diffuse axonal injury in head injury: Definition, diagnosis and grading. Histopathology 1989, 15, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Le, T.H.; Mukherjee, P.; Henry, R.G.; Berman, J.I.; Ware, M.; Manley, G.T. Diffusion tensor imaging with three-dimensional fiber tractography of traumatic axonal shearing injury: An imaging correlate for the posterior callosal “disconnection” syndrome: Case report. Neurosurgery 2005, 56, 189. [Google Scholar] [CrossRef] [PubMed]
- Pirau, L.; Lui, F. Frontal Lobe Syndrome; StatPearls Publishing: Treasure Island, FL, USA, 2018. [Google Scholar]
- Vieira, R.D.C.A.; Pipek, L.Z.; Oliveira, D.V.D.; Paiva, W.S.; Sousa, R.M.C.D. The relationship between injury characteristics and post-traumatic recovery after diffuse axonal injury. Biomedicines 2024, 12, 311. [Google Scholar] [CrossRef] [PubMed]
- Zafonte, R.D.; Mann, N.R.; Millis, S.R.; Black, K.L.; Wood, D.L.; Hammond, F. Posttraumatic amnesia: Its relation to functional outcome. Arch. Phys. Med. Rehabil. 1997, 78, 1103–1106. [Google Scholar] [CrossRef]
- Sherer, M.; Katz, D.I.; Bodien, Y.G.; Arciniegas, D.B.; Block, C.; Blum, S.; Doiron, M.; Frey, K.; Giacino, J.T.; Graf, M.J.P.; et al. Post-traumatic confusional state: A case definition and diagnostic criteria. Arch. Phys. Med. Rehabil. 2020, 101, 2041–2050. [Google Scholar] [CrossRef]
- Ponsford, J.; Trevena-Peters, J.; Janzen, S.; Harnett, A.; Marshall, S.; Patsakos, E.; Kua, A.; McIntyre, A.; Teasell, R.; Wiseman-Hakes, C.; et al. INCOG 2.0 guidelines for cognitive rehabilitation following traumatic brain injury, part I: Posttraumatic amnesia. J. Head Trauma Rehabil. 2023, 38, 24–37. [Google Scholar] [CrossRef]
- Trzepacz, P.T.; Mittal, D.; Torres, R.; Kanary, K.; Norton, J.; Jimerson, N. Validation of the Delirium Rating Scale-revised-98: Comparison with the delirium rating scale and the cognitive test for delirium. J. Neuropsychiatry Clin. Neurosci. 2001, 13, 229–242. [Google Scholar] [CrossRef]
- Hagen, C.; Malkmus, D.; Durham, P. Levels of Cognitive Functioning; Rancho Los Amigos Hospital: Downey, CA, USA, 1972. [Google Scholar]
- Rappaport, M.; Hall, K.M.; Hopkins, K.; Belleza, T.; Cope, D.N. Disability Rating Scale for severe head trauma: Coma to community. Arch. Phys. Med. Rehabil. 1982, 63, 118–123. [Google Scholar] [PubMed]
- Sherer, M.; Nakase-Thompson, R.; Yablon, S.A.; Gontkovsky, S.T. Multidimensional assessment of acute confusion after traumatic brain injury. Arch. Phys. Med. Rehabil. 2005, 86, 896–904. [Google Scholar] [CrossRef]
- Teasdale, G.; Jennett, B. Assessment of coma and impaired consciousness: A practical scale. Lancet 1974, 304, 81–84. [Google Scholar] [CrossRef]
- Lombardi, F.; Gatta, G.; Sacco, S.; Muratori, A.; Carolei, A. The Italian version of the Coma Recovery Scale-Revised (CRS-R). Funct. Neurol. 2007, 22, 47–61. [Google Scholar] [PubMed]
- Estraneo, A.; Moretta, P.; Cardinale, V.; De Tanti, A.; Gatta, G.; Giacino, J.T.; Trojano, L. A multicentre study of intentional behavioural responses measured using the Coma Recovery Scale-Revised in patients with minimally conscious state. Clin. Rehabil. 2015, 29, 803–808. [Google Scholar] [CrossRef] [PubMed]
- Cantín, M. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. Reviewing the latest version. Int. J. Med. Surg. Sci. 2014, 1, 339–346. [Google Scholar]
- Wild, D.; Grove, A.; Martin, M.; Eremenco, S.; McElroy, S.; Verjee-Lorenz, A.; Erikson, P. Principles of good practice for the translation and cultural adaptation process for patient-reported outcomes (PRO) measures: Report of the ISPOR task force for translation and cultural adaptation. Value Health 2005, 8, 94–104. [Google Scholar] [CrossRef] [PubMed]
- Mokkink, L.B.; Terwee, C.B.; Patrick, D.L.; Alonso, J.; Stratford, P.W.; Knol, D.L.; Bouter, L.M.; De Vet, H.C. The COSMIN checklist for assessing the methodological quality of studies on measurement properties of health status measurement instruments: An international Delphi study. Qual. Life Res. 2010, 19, 539–549. [Google Scholar] [CrossRef]
- Hart, R.P.; Levenson, J.L.; Sessler, C.N.; Best, A.M.; Schwartz, S.M.; Rutherford, L.E. Validation of a cognitive test for delirium in medical ICU patients. Psychosomatics 1996, 37, 533–546. [Google Scholar] [CrossRef]
- Corrigan, J.D. Development of a scale for assessment of agitation following traumatic brain injury. J. Clin. Exp. Neuropsychol. 1989, 11, 261–277. [Google Scholar] [CrossRef]
- Sim, J.; Wright, C.C. The kappa statistic in reliability studies: Use, interpretation, and sample size requirements. Phys. Ther. 2005, 85, 257–268. [Google Scholar] [CrossRef]
- Wong, S.Y.; Ulang, N.M.; Husain, S.H. Measuring the internal consistency and reliability of the hierarchy of controls in preventing infectious diseases on construction sites: The Kuder-Richardson (KR-20) and Cronbach’s alpha. J. Adv. Res. Appl. Sci. Eng. Technol. 2023, 33, 392–405. [Google Scholar]
- Hinkle, D.E.; Wiersma, W.; Jurs, S.G. Applied Statistics for the Behavioral Sciences, 5th ed.; Houghton Mifflin: Boston, MA, USA, 2003. [Google Scholar]
- Kuder, G.F.; Richardson, M.W. The theory of the estimation of test reliability. Psychometrika 1937, 2, 151–160. [Google Scholar] [CrossRef]
- Iacobucci, D.; Duhachek, A. Advancing alpha: Measuring reliability with confidence. J. Consum. Psychol. 2003, 13, 478–487. [Google Scholar] [CrossRef]
- Nunnally, J.C.; Bernstein, I.H. Psychometric Theory, 3rd ed.; McGraw-Hill: New York, NY, USA, 1994. [Google Scholar]
- Zijlmans, E.A.; Tijmstra, J.; van der Ark, L.A.; Sijtsma, K. Item-score reliability in empirical-data sets and its relationship with other item indices. Educ. Psychol. Meas. 2018, 78, 998–1020. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.A. Coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Kotrlik, J.; Williams, H.A. The incorporation of effect size in information technology, learning, information technology, learning, and performance research and performance research. Inf. Technol. J. 2003, 21, 1. [Google Scholar]
- Clopper, C.J.; Pearson, E.S. The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika 1934, 26, 404–413. [Google Scholar] [CrossRef]
Male Gender (N/%) | 31 (73.8%) |
---|---|
Age (years, mean/sd) | 52.0 (±15.2) |
Educational years (years, mean/sd) | 12.4 (±3.7) |
Coma duration (days, mean/sd) | 15.5 (±11.5) |
Time interval from injury to admission in rehabilitation (days, mean/sd) | 69.3 (±82.9) |
DRS at admission (median/IQR) | 15 (14–17) |
LCF at admission (median/IQR) | 5 (5–6) |
GCS at admission (median/IQR) | 8 (8–8) |
Etiology (N/%) | |
Traumatic Brain Injury (TBI) | 26 (61.9%) |
Vascular | 14 (33.3%) |
Other etiology | 2 (4.8%) |
Rater | Key Symptoms | Obs. | Item Difficulty | Item Variance | Item-Rest Correlation |
---|---|---|---|---|---|
A | Cognitive impairment | 42 | 0.86 | 0.12 | 0.26 |
B | Cognitive impairment | 42 | 0.69 | 0.21 | 0.26 |
A2 | Cognitive impairment | 42 | 0.81 | 0.15 | 0.27 |
A | Disorientation | 42 | 0.88 | 0.10 | 0.37 |
B | Disorientation | 42 | 0.88 | 0.10 | 0.37 |
A2 | Disorientation | 42 | 0.74 | 0.19 | 0.29 |
A | Restlessness | 42 | 0.88 | 0.10 | 0.37 |
B | Restlessness | 42 | 0.90 | 0.09 | 0.38 |
A2 | Restlessness | 42 | 0.88 | 0.10 | 0.35 |
A | Fluctuation of presentation | 42 | 0.76 | 0.18 | 0.43 |
B | Fluctuation of presentation | 42 | 0.81 | 0.15 | 0.42 |
A2 | Fluctuation of presentation | 42 | 0.69 | 0.21 | 0.28 |
A | Night-time sleep disturbance | 42 | 0.43 | 0.24 | 0.55 |
B | Night-time sleep disturbance | 42 | 0.43 | 0.24 | 0.49 |
A2 | Night-time sleep disturbance | 42 | 0.40 | 0.24 | 0.60 |
A | Daytime decreased arousal | 42 | 0.24 | 0.18 | 0.52 |
B | Daytime decreased arousal | 42 | 0.26 | 0.19 | 0.54 |
A2 | Daytime decreased arousal | 42 | 0.24 | 0.18 | 0.54 |
A | Psychotic-type symptoms | 42 | 0.38 | 0.24 | 0.34 |
B | Psychotic-type symptoms | 42 | 0.48 | 0.25 | 0.38 |
A2 | Psychotic-type symptoms | 42 | 0.40 | 0.24 | 0.32 |
KR20 coefficient is 0.84 |
Inter-Rater Reliability | Intra-Rater Reliability | |||||
---|---|---|---|---|---|---|
Key Symptoms | k | z | p | k | z | p |
Cognitive impairment | 0.41 | 3.00 | 0.0014 | 0.49 | 3.21 | 0.0007 |
Disorientation | 0.77 | 5.01 | 0.0000 | 0.55 | 4.00 | 0.0000 |
Restlessness | 0.63 | 4.10 | 0.0000 | 0.55 | 3.54 | 0.0002 |
Fluctuation of presentation | 0.72 | 4.70 | 0.0000 | 0.70 | 4.63 | 0.0000 |
Night-time sleep disturbance | 0.90 | 5.85 | 0.0000 | 0.66 | 4.27 | 0.0000 |
Daytime decreased arousal | 0.94 | 6.08 | 0.0000 | 0.74 | 4.78 | 0.0000 |
Psychotic-type symptoms | 0.81 | 5.33 | 0.0000 | 0.75 | 4.87 | 0.0000 |
A CAP Score | B CAP Score | A2 CAP Score | LCF | DRS | |
---|---|---|---|---|---|
A CAP score | 1.00 | ||||
B CAP score | 0.90 * | 1.00 | |||
A2 CAP score | 0.64 * | 0.71 * | 1.00 | ||
LCF | −0.46 * | −0.55 * | −0.47 * | 1.00 | |
DRS | 0.22 | 0.28 | 0.33 * | −0.70 * | 1.00 |
CI | D | R | FOP | NSD | DDA | PS | |
---|---|---|---|---|---|---|---|
CI | 1.00 | ||||||
D | 0.32 | 1.00 | |||||
R | 0.14 | 0.25 | 1.00 | ||||
FOP | 0.13 | 0.29 | 0.22 | 1.00 | |||
NSD | 0.09 | 0.14 | 0.21 | 0.12 | 1.00 | ||
DDA | 0.18 | 0.07 | 0.19 | 0.13 | 0.46 | 1.00 | |
PS | 0.11 | 0.18 | 0.17 | 0.17 | 0.37 | 0.23 | 1.00 |
LCF 4–5 | LCF 6 | p | |
---|---|---|---|
Cognitive impairment | 91.7% (73.0–99.0%) | 70.0% (34.7–93.3%) | 0.104 |
Disorientation | 83.3% (62.6–95.3%) | 40.0% (12.1–73.8%) | 0.012 |
Restlessness | 95.8% (78.9–99.9%) | 80.0% (44.4–97.5%) | 0.138 |
Fluctuation of presentation | 83.3% (62.6–95.3%) | 70.0% (34.7–93.3%) | 0.381 |
Night-time sleep disturbance | 45.8% (25.6–67.2%) | 30.0% (6.7–65.2%) | 0.393 |
Daytime decreased arousal | 33.3% (15.6–55.3%) | 0.0% (0.0% 30.8%) | 0.037 |
Psychotic-type symptoms | 37.5% (18.8–59.4%) | 40.0% (12.1–73.8%) | 0.891 |
CAP Score | LCF 4 | LCF 5 | LCF 6 | Total |
---|---|---|---|---|
Not confused | 1 | 3 | 11 | 14 |
Mild | 2 | 36 | 20 | 58 |
Moderate | 5 | 13 | 7 | 25 |
Severe | 16 | 11 | 2 | 29 |
Total | 24 | 63 | 39 | 126 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferri, G.; Carannante, A.; Iannetti, M.; Schiattone, S.; Ciurli, P.; Mogavero, F.; Massimi, V.; Aloisi, M.; Formisano, R.; Giustini, M. Confusion Assessment Protocol: Italian Cross-Cultural Adaptation and Validation. Brain Sci. 2025, 15, 1102. https://doi.org/10.3390/brainsci15101102
Ferri G, Carannante A, Iannetti M, Schiattone S, Ciurli P, Mogavero F, Massimi V, Aloisi M, Formisano R, Giustini M. Confusion Assessment Protocol: Italian Cross-Cultural Adaptation and Validation. Brain Sciences. 2025; 15(10):1102. https://doi.org/10.3390/brainsci15101102
Chicago/Turabian StyleFerri, Giulia, Anna Carannante, Manuela Iannetti, Sara Schiattone, Paola Ciurli, Fabiana Mogavero, Valentina Massimi, Marta Aloisi, Rita Formisano, and Marco Giustini. 2025. "Confusion Assessment Protocol: Italian Cross-Cultural Adaptation and Validation" Brain Sciences 15, no. 10: 1102. https://doi.org/10.3390/brainsci15101102
APA StyleFerri, G., Carannante, A., Iannetti, M., Schiattone, S., Ciurli, P., Mogavero, F., Massimi, V., Aloisi, M., Formisano, R., & Giustini, M. (2025). Confusion Assessment Protocol: Italian Cross-Cultural Adaptation and Validation. Brain Sciences, 15(10), 1102. https://doi.org/10.3390/brainsci15101102