Effects of Virtual Reality on Motor Function and Balance in Incomplete Spinal Cord Injury: A Systematic Review and Meta-Analysis of Controlled Trials
Abstract
1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Information Sources and Search Strategy
2.3. Search Algorithm
2.4. Study Selection
2.5. Data Extraction
- Study characteristics: first author, publication year, country, and study design.
- Participant characteristics: number of participants, age, BMI, sex, and diagnostic criteria for SCI.
- Intervention details: type of VR/augmented reality used, technical characteristics, dosage, form of administration, and duration of intervention.
- Comparator: details of the control group (placebo or standard care).
- Outcomes measured: primary outcomes (e.g., motor function markers, balance parameters), secondary outcomes (e.g., QoL, inflammatory markers), and methods of measurement.
- Results: main findings, statistical significance, and conclusions drawn by the authors.
- Limitations: as reported by the authors.
2.6. Risk-of-Bias Assessment
- Random sequence generation (selection bias)
- Allocation concealment (selection bias)
- Blinding of participants and personnel (performance bias)
- Blinding of outcome assessment (detection bias)
- Incomplete outcome data (attrition bias)
- Selective reporting (reporting bias).
2.7. Data Synthesis
- Balance outcomes (5 studies, n = 125 participants): A meta-analysis was conducted on studies reporting outcomes such as the modified Functional Reach Test (mFRT), Limits of Stability (LOS), and postural sway measurements.
- Locomotor function outcomes: A qualitative synthesis was performed on studies evaluating lower extremity motor recovery (e.g., Lower Extremity Motor Score) and gait. A meta-analysis was not conducted due to the limited number of homogeneous studies (k = 2), which was deemed insufficient for a robust quantitative analysis.
2.8. Ethical Considerations
3. Results
3.1. Studies Identified for the Review
3.2. Characteristics of Included Studies
3.3. Characteristics of Participants and Interventions
3.3.1. Demographic and Clinical Characteristics
3.3.2. Characteristics of VR Interventions
3.4. Risk of Bias and Methodological Quality
3.4.1. Risk of Bias in RCTs
3.4.2. Methodological Quality via Jadad Scale
3.4.3. ROBINS-I Assessment for Non-Randomized Studies
3.5. Qualitative Synthesis of Results
3.5.1. Balance Outcomes
3.5.2. Motor Function Outcomes
3.5.3. Functional Mobility Outcomes
3.5.4. QoL and Secondary Outcomes
3.5.5. Adverse Events and Safety
3.6. Quantitative Synthesis: Meta-Analysis Results
3.6.1. Effects on Balance
3.6.2. Assessment of Publication Bias for Balance Outcomes
4. Discussion
4.1. Main Findings
4.2. Comparison with Previous Literature
4.3. Proposed Mechanisms of Action in SCI Rehabilitation
4.3.1. Mirror Neuron System Activation and Virtual Embodiment
4.3.2. Cortical Reorganization Through Multisensory Stimulation
4.3.3. Error-Based Learning and Real-Time Adaptive Feedback
4.3.4. Reward Mechanisms and Cognitive Engagement
4.3.5. Sensory-Vestibular Integration and Postural Control
4.3.6. Brain-Gut Axis Modulation and Neuroimmunomodulatory Response
4.4. Limitations of the Included Studies
4.5. Limitations of the Review
4.6. Clinical Implications
4.7. Recommendations for Future Research
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SCI | Spinal cord injury |
iSCI | Incomplete spinal cord injury |
VR | Virtual reality |
AR | Augmented reality |
AIS | American Spinal Injury Association Impairment Scale |
ASIA | American Spinal Injury Association |
RCT | Randomized controlled trial |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
PICO | Patient/Population, Intervention, Comparison, Outcome |
MeSH | Medical Subject Headings |
SMD | Standardized mean difference |
CI | Confidence interval |
REML | Restricted maximum-likelihood |
FSA | Force Sensitive Application |
LOS | Limit of Stability |
mFRT | Modified Functional Reach Test |
ASIA-UEMS | American Spinal Injury Association Upper Extremity Motor Score |
WHOQOL-BREF | World Health Organization Quality of Life-Brief |
BBS | Berg Balance Scale |
TUG | Timed Up and Go |
WISCI-II | Walking Index for Spinal Cord Injury-II |
QoL | Quality of life |
LEMS | Lower Extremity Motor Score |
ABC | Activity-specific Balance Confidence |
SCIM | Spinal Cord Independence Measure |
XR | Extended reality |
ROBINS-I | Risk Of Bias In Non-randomized Studies—of Interventions |
RevMan | Review Manager |
References
- Guan, W.; Fang, Z.; Chen, Y.; Li, Y.; Peng, Z.; Sun, L.; Deng, Q.; Gooneratne, R. Cadmium-Chelating Ability of the Siderophore DHBS Secreted by Leclercia adecarboxylata FCH-CR2 and Its Action Mechanism. Sci. Total Environ. 2023, 900, 165850. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Shang, Z.; Zhang, W.; Pang, M.; Hu, X.; Dai, Y.; Shen, R.; Wu, Y.; Liu, C.; Luo, T.; et al. Global Incidence and Characteristics of Spinal Cord Injury since 2000–2021: A Systematic Review and Meta-Analysis. BMC Med. 2024, 22, 285. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, P.; Lude, P.; Taylor, N. Quality of Life, Social Participation, Appraisals and Coping Post Spinal Cord Injury: A Review of Four Community Samples. Spinal Cord 2006, 44, 95–105. [Google Scholar] [CrossRef]
- Kirshblum, S.; Snider, B.; Eren, F.; Guest, J. Characterizing Natural Recovery After Traumatic Spinal Cord Injury. J. Neurotrauma 2021, 38, 1267–1284. [Google Scholar] [CrossRef] [PubMed]
- Blank, A.A.; French, J.A.; Pehlivan, A.U.; O’Malley, M.K. Current Trends in Robot-Assisted Upper-Limb Stroke Rehabilitation: Promoting Patient Engagement in Therapy. Curr. Phys. Med. Rehabil. Rep. 2014, 2, 184–195. [Google Scholar] [CrossRef]
- Wu, H.-C.; Liao, Y.-C.; Cheng, Y.-H.; Shih, P.-C.; Tsai, C.-M.; Lin, C.-Y. The Potential Effect of a Vibrotactile Glove Rehabilitation System on Motor Recovery in Chronic Post-Stroke Hemiparesis. Technol. Health Care 2017, 25, 1183–1187. [Google Scholar] [CrossRef]
- De Araújo, A.V.L.; Neiva, J.F.D.O.; Monteiro, C.B.D.M.; Magalhães, F.H. Efficacy of Virtual Reality Rehabilitation after Spinal Cord Injury: A Systematic Review. BioMed Res. Int. 2019, 2019, 7106951. [Google Scholar] [CrossRef]
- Rodocker, H.I.; Bordbar, A.; Larson, M.J.E.; Biltz, R.G.; Wangler, L.; Fadda, P.; Godbout, J.P.; Tedeschi, A. Breaking Mental Barriers Promotes Recovery After Spinal Cord Injury. Front. Mol. Neurosci. 2022, 15, 868563. [Google Scholar] [CrossRef]
- Laver, K.E.; Lange, B.; George, S.; Deutsch, J.E.; Saposnik, G.; Crotty, M. Virtual Reality for Stroke Rehabilitation. Cochrane Database Syst. Rev. 2017, 11, CD008349. [Google Scholar] [CrossRef]
- Berton, A.; Longo, U.G.; Candela, V.; Fioravanti, S.; Giannone, L.; Arcangeli, V.; Alciati, V.; Berton, C.; Facchinetti, G.; Marchetti, A.; et al. Virtual Reality, Augmented Reality, Gamification, and Telerehabilitation: Psychological Impact on Orthopedic Patients’ Rehabilitation. J. Clin. Med. 2020, 9, 2567. [Google Scholar] [CrossRef]
- Van Der Kooij, K.; Van Dijsseldonk, R.; Van Veen, M.; Steenbrink, F.; De Weerd, C.; Overvliet, K.E. Gamification as a Sustainable Source of Enjoyment During Balance and Gait Exercises. Front. Psychol. 2019, 10, 294. [Google Scholar] [CrossRef]
- Cameirão, M.S.; Badia, S.B.I.; Oller, E.D.; Verschure, P.F. Neurorehabilitation Using the Virtual Reality Based Rehabilitation Gaming System: Methodology, Design, Psychometrics, Usability and Validation. J. Neuroeng. Rehabil. 2010, 7, 48. [Google Scholar] [CrossRef] [PubMed]
- Angulo Medina, A.S.; Aguilar Bonilla, M.I.; Rodríguez Giraldo, I.D.; Montenegro Palacios, J.F.; Cáceres Gutiérrez, D.A.; Liscano, Y. Electroencephalography-Based Brain-Computer Interfaces in Rehabilitation: A Bibliometric Analysis (2013–2023). Sensors 2024, 24, 7125. [Google Scholar] [CrossRef]
- Baniña, M.C.; Molad, R.; Solomon, J.S.; Berman, S.; Soroker, N.; Frenkel-Toledo, S.; Liebermann, D.G.; Levin, M.F. Exercise Intensity of the Upper Limb Can Be Enhanced Using a Virtual Rehabilitation System. Disabil. Rehabil. Assist. Technol. 2020, 17, 100–106. [Google Scholar] [CrossRef]
- Xu, S.; Xu, Y.; Wen, R.; Wang, J.; Qiu, Y.; Chan, C.C. Virtual Reality Enhanced Exercise Training in Upper Limb Function of Patients with Stroke: Meta-Analytic Study. J. Med. Internet Res. 2025, 27, e66802. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Salido, M.; Moreno-Castro, C.; Belletti, F.; Yghemonos, S.; Ferrer, J.; Casanova, G. Innovating European Long-Term Care Policies through the Socio-Economic Support of Families: A Lesson from Practices. Sustainability 2022, 14, 4097. [Google Scholar] [CrossRef]
- Verbakel, E.; Glaser, K.; Amzour, Y.; Brandt, M.; Van Groenou, M.B. Indicators of Familialism and Defamilialization in Long-Term Care: A Theoretical Overview and Introduction of Macro-Level Indicators. J. Eur. Soc. Policy 2023, 33, 34–51. [Google Scholar] [CrossRef]
- Haddaway, N.R.; Page, M.J.; Pritchard, C.C.; McGuinness, L.A. PRISMA2020: An R Package and Shiny App for Producing PRISMA 2020-Compliant Flow Diagrams, with Interactivity for Optimised Digital Transparency and Open Synthesis. Campbell Syst. Rev. 2022, 18, e1230. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Altman, D.G.; Gøtzsche, P.C.; Jüni, P.; Moher, D.; Oxman, A.D.; Savovic, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A.C. The Cochrane Collaboration’s Tool for Assessing Risk of Bias in Randomised Trials. BMJ 2011, 343, d5928. [Google Scholar] [CrossRef]
- Jadad, A.R.; Moore, R.A.; Carroll, D.; Jenkinson, C.; Reynolds, D.J.; Gavaghan, D.J.; McQuay, H.J. Assessing the Quality of Reports of Randomized Clinical Trials: Is Blinding Necessary? Control. Clin. Trials 1996, 17, 1–12. [Google Scholar] [CrossRef]
- Martinez Guevara, D.; Vidal Cañas, S.; Palacios, I.; Gómez, A.; Estrada, M.; Gallego, J.; Liscano, Y. Effectiveness of Probiotics, Prebiotics, and Synbiotics in Managing Insulin Resistance and Hormonal Imbalance in Women with Polycystic Ovary Syndrome (PCOS): A Systematic Review of Randomized Clinical Trials. Nutrients 2024, 16, 3916. [Google Scholar] [CrossRef] [PubMed]
- Sterne, J.A.; Hernán, M.A.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; et al. ROBINS-I: A Tool for Assessing Risk of Bias in Non-Randomised Studies of Interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.-J.; Lee, S.-M. The Effect of Virtual Reality Exercise Program on Sitting Balance Ability of Spinal Cord Injury Patients. Healthcare 2021, 9, 183. [Google Scholar] [CrossRef]
- Zwijgers, E.; Van Dijsseldonk, R.B.; Vos-van Der Hulst, M.; Hijmans, J.M.; Geurts, A.C.H.; Keijsers, N.L.W. Efficacy of Walking Adaptability Training on Walking Capacity in Ambulatory People with Motor Incomplete Spinal Cord Injury: A Multicenter Pragmatic Randomized Controlled Trial. Neurorehabil. Neural Repair. 2024, 38, 413–424. [Google Scholar] [CrossRef]
- Lee, S. Game-Based Virtual Reality Training Improves Sitting Balance after Spinal Cord Injury: A Single-Blinded, Randomized Controlled Trial. Med. Sci. Technol. 2015, 56, 53–59. [Google Scholar] [CrossRef]
- Villiger, M.; Liviero, J.; Awai, L.; Stoop, R.; Pyk, P.; Clijsen, R.; Curt, A.; Eng, K.; Bolliger, M. Home-Based Virtual Reality-Augmented Training Improves Lower Limb Muscle Strength, Balance, and Functional Mobility Following Chronic Incomplete Spinal Cord Injury. Front. Neurol. 2017, 8, 635. [Google Scholar] [CrossRef]
- Wall, T.; Feinn, R.; Chui, K.; Cheng, M.S. The Effects of the NintendoTM Wii Fit on Gait, Balance, and Quality of Life in Individuals with Incomplete Spinal Cord Injury. J. Spinal Cord Med. 2015, 38, 777–783. [Google Scholar] [CrossRef]
- An, C.-M.; Park, Y.-H. The Effects of Semi-Immersive Virtual Reality Therapy on Standing Balance and Upright Mobility Function in Individuals with Chronic Incomplete Spinal Cord Injury: A Preliminary Study. J. Spinal Cord Med. 2018, 41, 223–229. [Google Scholar] [CrossRef]
- Goel, K.; Shah, P.; Jones, B.M.; Korngold, E.; Bhardwaj, A.; Kar, B.; Barker, C.; Szerlip, M.; Smalling, R.; Dhoble, A. Outcomes of Transcatheter Aortic Valve Replacement in Patients with Cardiogenic Shock. Eur. Heart J. 2023, 44, 3181–3195. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, H.; Ai, H.; Liu, Y. Effects of Virtual Reality Rehabilitation after Spinal Cord Injury: A Systematic Review and Meta-Analysis. J. Neuroeng. Rehabil. 2024, 21, 191. [Google Scholar] [CrossRef] [PubMed]
- Scalise, M.; Bora, T.S.; Zancanella, C.; Safa, A.; Stefini, R.; Cannizzaro, D. Virtual Reality as a Therapeutic Tool in Spinal Cord Injury Rehabilitation: A Comprehensive Evaluation and Systematic Review. J. Clin. Med. 2024, 13, 5429. [Google Scholar] [CrossRef]
- Rosiak, O.; Gawronska, A.; Janc, M.; Marciniak, P.; Kotas, R.; Zamyslowska-Szmytke, E.; Jozefowicz-Korczynska, M. Utility of the Novel Medipost Mobile Posturography Device in the Assessment of Patients with a Unilateral Vestibular Disorder. Sensors 2022, 22, 2208. [Google Scholar] [CrossRef]
- Fan, H.; Luo, Z. Functional Integration of Mirror Neuron System and Sensorimotor Cortex under Virtual Self-Actions Visual Perception. Behav. Brain Res. 2022, 423, 113784. [Google Scholar] [CrossRef]
- Hsu, H.-Y.; Kuo, L.-C.; Lin, Y.-C.; Su, F.C.; Yang, T.-H.; Lin, C.-W. Effects of a Virtual Reality–Based Mirror Therapy Program on Improving Sensorimotor Function of Hands in Chronic Stroke Patients: A Randomized Controlled Trial. Neurorehabil. Neural Repair 2022, 36, 335–345. [Google Scholar] [CrossRef]
- Mekbib, D.B.; Zhao, Z.; Wang, J.; Xu, B.; Zhang, L.; Cheng, R.; Fang, S.; Shao, Y.; Yang, W.; Han, J.; et al. Proactive Motor Functional Recovery Following Immersive Virtual Reality–Based Limb Mirroring Therapy in Patients with Subacute Stroke. Neurotherapeutics 2020, 17, 1919–1930. [Google Scholar] [CrossRef] [PubMed]
- Embarek-Hernández, M.; Güeita-Rodriguez, J.; Molina-Rueda, F. Multisensory Stimulation to Promote Feeding and Psychomotor Development in Preterm Infants: A Systematic Review. Pediatr. Neonatol. 2022, 63, 452–461. [Google Scholar] [CrossRef] [PubMed]
- Levin, M.F.; Demers, M. Motor Learning in Neurological Rehabilitation. Disabil. Rehabil. 2020, 43, 3445–3453. [Google Scholar] [CrossRef]
- Chatterjee, K.; Buchanan, A.; Cottrell, K.; Hughes, S.; Day, T.W.; John, N.W. Immersive Virtual Reality for the Cognitive Rehabilitation of Stroke Survivors. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 30, 719–728. [Google Scholar] [CrossRef]
- Quan, W.; Liu, S.; Cao, M.; Zhao, J. A Comprehensive Review of Virtual Reality Technology for Cognitive Rehabilitation in Patients with Neurological Conditions. Appl. Sci. 2024, 14, 6285. [Google Scholar] [CrossRef]
- Liscano, Y.; Sanchez-Palacio, N. A Critical Look at Omega-3 Supplementation: A Thematic Review. Healthcare 2023, 11, 3065. [Google Scholar] [CrossRef] [PubMed]
- Mosquera, F.E.C.; Guevara-Montoya, M.C.; Serna-Ramirez, V.; Liscano, Y. Neuroinflammation and Schizophrenia: New Therapeutic Strategies through Psychobiotics, Nanotechnology, and Artificial Intelligence (AI). J. Pers. Med. 2024, 14, 391. [Google Scholar] [CrossRef]
- Mosquera, F.E.C.; Lizcano Martinez, S.; Liscano, Y. Effectiveness of Psychobiotics in the Treatment of Psychiatric and Cognitive Disorders: A Systematic Review of Randomized Clinical Trials. Nutrients 2024, 16, 1352. [Google Scholar] [CrossRef]
- Williamson, S.D.; Aaby, A.O.; Ravn, S.L. Psychological Outcomes of Extended Reality Interventions in Spinal Cord Injury Rehabilitation: A Systematic Scoping Review. Spinal Cord 2025, 63, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Chung, O.S.; Robinson, T.; Johnson, A.M.; Dowling, N.L.; Ng, C.H.; Yücel, M.; Segrave, R.A. Implementation of Therapeutic Virtual Reality into Psychiatric Care: Clinicians’ and Service Managers’ Perspectives. Front. Psychiatry 2022, 12, 791123. [Google Scholar] [CrossRef]
- Kouijzer, M.M.T.E.; Kip, H.; Bouman, Y.H.A.; Kelders, S.M. Implementation of Virtual Reality in Healthcare: A Scoping Review on the Implementation Process of Virtual Reality in Various Healthcare Settings. Implement Sci. Commun. 2023, 4, 67. [Google Scholar] [CrossRef] [PubMed]
- Kenea, C.D.; Abessa, T.G.; Lamba, D.; Bonnechère, B. Immersive Virtual Reality in Stroke Rehabilitation: A Systematic Review and Meta-Analysis of Its Efficacy in Upper Limb Recovery. J. Clin. Med. 2025, 14, 1783. [Google Scholar] [CrossRef] [PubMed]
- García, E.G.; Baeza, P.S.-H.; Gómez, A.C. Effectiveness of the Virtual Reality in the Rehabilitation of the Upper Limb in the Spinal Cord Injury. A Systematic Review. Rev. Neurol. 2019, 69, 135–144. [Google Scholar]
- Yeo, E.; Chau, B.; Chi, B.; Ruckle, D.E.; Ta, P.A. Virtual Reality Neurorehabilitation for Mobility in Spinal Cord Injury: A Structured Review. Innov. Clin. Neurosci. 2019, 16, 13–20. [Google Scholar]
Criteria | Inclusion | Exclusion |
---|---|---|
Study Design |
|
|
Participants |
|
|
Interventions |
|
|
Duration |
|
|
Outcomes |
|
|
Language |
|
|
Author, Year | Country | Study Design | Population | Number of Patients | Outcomes Evaluated | Duration (Weeks) |
---|---|---|---|---|---|---|
Lee and Lee, 2021 [23] | South Korea | RCT | AIS C, D | 20 | Balance (FSA, LOS) | 8 |
Zwijgers et al., 2024 [24] | Netherlands | RCT | AIS C, D | 41 | Motor function, balance, functional mobility | 6 |
Lee, 2015 [25] | South Korea | RCT | AIS A, B | 26 | Balance (postural sway, mFRT, T-shirt test) | 6 |
Villiger et al., 2017 [26] | Switzerland | Controlled study | AIS C, D | 12 | Motor function, balance, functional mobility | 4 |
Wall et al., 2015 [27] | United States | RCT | AIS D | 5 | Balance, gait, functional mobility | 7 |
An and Park, 2018 [28] | South Korea | Controlled study | AIS C, D | 10 | Balance (LOS, BBS), functional mobility | 6 |
Goel et al., 2023 [29] | India | RCT | Incomplete paraplegia | 28 | Balance (sitting balance control) | 4 |
Study | Mean Age (Years) | Sex (M/F) | Lesion Level | AIS | Time Post-Injury |
---|---|---|---|---|---|
Lee 2015 [25] | VR: 49.5 ± 8.3, C: 43.1 ± 11.2 | VR: 10/3, C: 10/3 | VR: 4C/9T, C: 5C/8T | VR: 10A/3B, C: 10A/3B | VR: 21.7 ± 8.7 m, C: 22.4 ± 9.4 m |
Zwijgers et al., 2024 [24] | VR: 62 (56–71), C: 67 (60–72) | VR: 10/7, C: 9/9 | Mixed (Cervical, Thoracic, Lumbar) | C, D | VR: 47 (20–120) m, C: 66 (20–135) m |
Wall et al., 2015 [27] | 58.6 (range 50–64) | 5/0 | Mixed (C4, C5, C6, L1) | D | >1 year (chronic) |
An and Park, 2018 [28] | 44.2 ± 8.7 | 6/4 | Mixed (8 Cervical/2 Thoracic) | C, D | 19.2 ± 3.9 months |
Goel et al., 2023 [29] | VR: 41.9 ± 5.8, C: 39.1 ± 9.1 | VR: 7/2, C: 8/1 | Not specified (Paraplegia) | B, C, D | VR: 7.6 ± 1.2 m, C: 6.9 ± 1.1 m |
Lee and Lee, 2021 [23] | VR: 55.1 ± 10.4, C: 53.7 ± 6.6 | VR: 9/1, C: 4/6 | Thoracic/Lumbar | C, D | VR: 16.5 ± 4.7 m, C: 17.4 ± 5.1 m |
Villiger et al., 2017 [26] | 60 ± 10.2 | 10/2 | Mixed (C4-L3) | C, D | >1 year (chronic) |
Study | VR Technology | Immersion Type | Duration/ Session | Frequency | Total Sessions | Activities/Games |
---|---|---|---|---|---|---|
Lee 2015 [25] | Nintendo Wii | Non-immersive | 30 min | 3×/week | 18 | Tennis, table tennis, boxing, golf, bowling, frisbee, canoe, swordplay |
Zwijgers et al., 2024 [24] | GRAIL (Motek Medical B.V.) | Immersive (VR environment) | 60 min (20 min active) | ~2×/week | 11 | Gait adaptability tasks: precision stepping, obstacle avoidance, reacting to perturbations |
Wall et al., 2015 [27] | Nintendo Wii Fit | Non-immersive | 60 min | 2×/week | 14 | Games to promote weight shifting and balance (Penguin plunge, Segway, Island bike, etc.) |
An and Park, 2018 [28] | IREX (GestureTek) | Semi-immersive | 30 min | 3×/week | 18 | Soccer, conveyor, volleyball, formula racer, airborne, snowboard |
Goel et al., 2023 [29] | Ocular grand VR spectacles | Immersive | 45 min | 5×/week | 20 | Roller Coaster VR, In Mind VR, VR Tunnel Race |
Lee and Lee, 2021 [23] | Bio Rescue (RM Ingenierie) | Semi-immersive | 30 min | 3×/week (implied) | 24 (implied) | Rally driving, air balloon, downhill ski |
Villiger et al., 2017 [26] | YouKicker (YouRehab AG) | Immersive (1st person view) | 30–45 min | 4–5×/week | 16–20 | Hamster Splash, Footbag, Get to the Game, Star Kick, Planet Drive |
Study | Randomized (0–1) | Double-Blind (0–1) | Withdrawals Described (0–1) | Randomization Adequate (0–1) | Blinding Adequate (0–1) | Total Score (0–5) | Quality Level |
---|---|---|---|---|---|---|---|
Lee and Lee, 2021 [23] | 1 | 0 | 1 | 1 | 0 | 3 | Moderate |
Zwijgers et al., 2024 [24] | 1 | 0 | 1 | 1 | 1 | 4 | Good |
Lee, 2015 [25] | 1 | 0 | 1 | 0 | 1 | 3 | Moderate |
Goel et al., 2023 [29] | 1 | 0 | 1 | 1 | 1 | 4 | Good |
Wall et al., 2015 [27] | 1 | 0 | 0 | 1 | 0 | 2 | Poor |
Study | Bias Due to Confounding | Bias in Selection of Participants | Bias in Classification of Interventions | Bias Due to Deviations | Bias Due to Missing Data | Bias in Measurement of Outcomes | Bias in Selection of Reported Results | Overall Risk |
---|---|---|---|---|---|---|---|---|
Villiger et al., 2017 [26] | Low | Low | Low | Low | Low | Low | Low | Low |
An and Park, 2018 [28] | Low | Low | Low | Low | Low | Low | Low | Low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liscano, Y.; Arias Coronel, F.; Martínez, D. Effects of Virtual Reality on Motor Function and Balance in Incomplete Spinal Cord Injury: A Systematic Review and Meta-Analysis of Controlled Trials. Brain Sci. 2025, 15, 1071. https://doi.org/10.3390/brainsci15101071
Liscano Y, Arias Coronel F, Martínez D. Effects of Virtual Reality on Motor Function and Balance in Incomplete Spinal Cord Injury: A Systematic Review and Meta-Analysis of Controlled Trials. Brain Sciences. 2025; 15(10):1071. https://doi.org/10.3390/brainsci15101071
Chicago/Turabian StyleLiscano, Yamil, Florencio Arias Coronel, and Darly Martínez. 2025. "Effects of Virtual Reality on Motor Function and Balance in Incomplete Spinal Cord Injury: A Systematic Review and Meta-Analysis of Controlled Trials" Brain Sciences 15, no. 10: 1071. https://doi.org/10.3390/brainsci15101071
APA StyleLiscano, Y., Arias Coronel, F., & Martínez, D. (2025). Effects of Virtual Reality on Motor Function and Balance in Incomplete Spinal Cord Injury: A Systematic Review and Meta-Analysis of Controlled Trials. Brain Sciences, 15(10), 1071. https://doi.org/10.3390/brainsci15101071