Audio-Visual Entrainment Neuromodulation: A Review of Technical and Functional Aspects †
Abstract
1. Introduction
2. AVE Parameters
2.1. Intensity
2.2. Color
2.3. Frequency
2.4. Phase
2.5. The Shape of the Visual Pulse
2.6. The Pitch of the Auditory Stimulus
2.7. The Presentation Parameters
2.7.1. Standardization Rationale and Step-Wise Reporting of Parameters
Step 1—Visual Stimuli
Step 2—Auditory Presentation
Step 3—Intensity Calibration (Link to Section 2.1)
Step 4—Temporal Structure and Dose
Step 5—Synchronization Across Modalities
Step 6—Safety Checks and Exclusions
| Study (Author Year) | Eyes Condition | Frequency (Hz) | Auditory Pulses (Pitch) | AVE Device Type | Phase (L/R Visual Fields) | Intensity (Audio/Visual) | Session Duration | Experiment Duration | Flicker Color |
|---|---|---|---|---|---|---|---|---|---|
| Adrian & Matthews (1934) [64] | Closed | 10 Hz | Not mentioned | Photic stimulation goggles (early device) | Reported (details unclear) | Not mentioned | 40 s | Not mentioned | Not mentioned |
| Brauchli et al. (1995) [5] | Closed | 10 Hz | Not mentioned | Photic stimulation goggles (early device) | Reported (details unclear) | Not mentioned | 40 s | Not mentioned | Not mentioned |
| Hsiung & Hsieh (2024) [6] | Closed | 40 Hz | Not mentioned | LED light bulb and computer screen | Not mentioned | Not mentioned | 3 min per group | 10:00 a.m. to 9:00 p.m. | Not mentioned |
| Mansouri et al. (2022) [7] | Not specified | Not mentioned | Not mentioned | Repetitive light and sound exposure (cartoon sound, colored lights) | Not specified | Not specified | 6 h/day | Behavioral tests | Not specified |
| Oppermann et al. (2023) [8] | Not specified | [7.8, 8.8, 12.8, 13.4, 14.4, 18, 19, 23] Hz | Not mentioned | Consumer-grade auditory-visual stimulation device | Not specified | Not specified | 16 sessions over four weeks | Two lab sessions, rest at home | Not specified |
| Tang et al. (2014) [9] | Closed | Alpha to Delta (8 Hz to 1 Hz) | Not mentioned | Procyon AVS device (light goggles and headphones) | Not specified | Not specified | 30 min nightly for 1 month | One-month intervention | Not specified |
| Làdavas, Tosatto, & Bertini (2022) [31] | Opened | Not mentioned | Not mentioned | Audio-visual stimulation with LEDs and loudspeakers | Not specified | Not specified | 10 sessions (4 h/day) | 2 weeks (Follow-up at 6.5 months) | Not specified |
| Locke et al. (2020) [15] | Opened | 1 Hz to 23 Hz | Binaural beats, visual stimulation | Smartphone app with VR headset and headphones | Not specified | Not specified | 10 min per day (up to 40 min max) | 4 weeks at home | Not specified |
| Teplan et al. (2009) [11] | Closed | 4 Hz, 17 Hz | Not mentioned | LED glasses and headphones | Not specified | Not specified | 20 min (each stimulation interval) | Repeated exposure | Not specified |
| Timmermann et al. (1999) [12] | closed | Dominant alpha and twice dominant alpha | 185 Hz sine wave | Polysync Pro Synetic Systems (headphones and photic glasses) | Not specified | Not specified | 20 min per condition | 2 sessions, each separated by 2 weeks | Red light (LEDs) |
| Roberts et al. (2018) [50] | Not specified | 5.5 Hz | Not mentioned | Audio-visual entrainment (headphones and goggles) | Not specified | Not specified | 36 min (entrainment session) | 2 experiments with different entrainment conditions | Not specified |
| Cantor & Stevens (2009) [65] | Not specified | 14 Hz | Not mentioned | Mind Gear PR-2x auditory-visual stimulation system (LED glasses and binaural beats) | Not specified | Not specified | 30 min daily for 4 weeks | 8 weeks total, including 4 weeks crossover | Green LEDs |
| Pino et al. (2022) [66] | Not specified | Not specified | Not specified | Neuro-Upper audio-visual entrainment system | Not specified | Not specified | 30 min per session | 55 sessions | Not specified |
| Berg & Siever (2009) [67] | Seasonal Affective Disorder (SAD) | 1 Hz, 20 Hz | Not mentioned | DAVID Paradise AVE device (light and tone pulsing) | Not specified | 60–70 dB (adjustable) | 20 min (each session) | 4 weeks (2 weeks placebo, 2 weeks active) | Not specified |
| Klimesch (1999) [68] | Not specified | Not specified | Not specified | EEG oscillations analysis (alpha and theta) | Not specified | Not specified | 5 min per block | 8 sessions, post-test session | Not specified |
| Hanslmayr et al. (2005) [69] | Not specified | Not specified | Not specified | Neurofeedback for upper alpha enhancement | Not specified | Not specified | 5 min per session | 4 weeks | Not specified |
| Pino & Romano (2022) [66] | Opened | Not specified | Not specified | Neuro-Upper audio-visual entrainment system | Not specified | Not specified | 30 min per session | 55 sessions | Not specified |
| Pearson & Wilbiks (2021) [70] | Not specified | 2 Hz to 32 Hz | Not specified | Self-generated audiovisual memory cues | Not specified | Not specified | Not specified | 6 months | Not specified |
| Seger et al. (2023) [71] | Not specified | 5.5 Hz | Not mentioned | Virtual navigation + mental simulation | Not specified | Not specified | 28–33 sessions, 22-min sessions | 7 weeks | Not specified |
| Roberts et al. (2018) [50] | Not specified | 7–9 Hz and 12–22 Hz | Not mentioned | DAVID PAL 36 by Mind Alive Inc. (headphones and visual stimulation) | Independent left and right visual stimulation | Not specified | 20–30 min sessions | 4 weeks | Not specified |
| Joyce & Siever (2000) [72] | Closed | 10 Hz, 18 Hz | Not mentioned | DAVID Paradise XL (field independent eyeglasses) | Left-right field independent | Not specified | 3-min sessions per condition | 3 months | White light with light blue tint |
| Siever (2003) [73] | Closed | 40 Hz | Binaural beats | DAVID Paradise XL, Light-sound stimulation device | Not specified | Not specified | 30 min nightly for 4 weeks | 1-week baseline, 4-week intervention | White light with light blue tint |
| Halpin et al. (2023) [74] | Opened | Delta, 2 Hz | Not specified | Smartphone app (hBET) using light and sound stimulation | Left-right visual stimulation | Not specified | 30 minutes per session | 6 months | Not specified |
| Chan et al. (2022) [75] | Opened | Not specified | Binaural beats | Procyon AVS device (light goggles and headphones) | Not specified | 92% adherence, under user control | 30 min nightly for 1 month | 2 months | White flicker |
| Tang (2021) [76] | Closed | Not specified | Not specified | Polysync Pro Synetic Systems (headphones and photic glasses) | Not specified | Not specified | 20 min per condition | 1 month | White flicker |
| Tang (2015) [77] | Closed | Not specified | Not specified | Not specified | Not specified | Not specified | Not specified | 2 weeks | White flicker |
3. Safety
4. Area of Application
4.1. Depression
4.2. Seasonal Affective Disorder
4.3. Insomnia
4.4. Cognitive Functions
4.4.1. Memory
4.4.2. Attention
4.4.3. Alzheimer’s Disease
Pain
5. Mechanism of Action
EEG
6. The Current State of AVE
Author Contributions
Funding
Conflicts of Interest
Abbreviations
| AVE | Audiovisual Entrainment |
| AVS | Audiovisual Stimulation |
| AD | Alzheimer’s Disease |
| BWE | Brainwave Entrainment |
| DAT | Dynamic Attending Theory |
| LSM | Light and Sound Machines |
| NiBS | Non-invasive Brain Stimulation |
| tDCS | Transcranial Direct Current Stimulation |
| rTMS | Repetitive Transcranial Magnetic Stimulation |
| LGN | Lateral Geniculate Nucleus |
| RVF | Right Visual Field |
| LVF | Left Visual Field |
| BB | Binaural Beats |
| MB | Monaural Beats |
| tACS | Transcranial Alternating Current Stimulation |
| tRNS | Transcranial Random Noise Stimulation |
| EC | Eyes Closed |
| EO | Eyes Open |
| EEG | Electroencephalography |
| iAPF | Individual Alpha Peak Frequency |
| HAMD | Hamilton Rating Scale for Depression |
| SAD | Seasonal Affective Disorder |
| QIP | Performance Intelligence Quotient |
| WAISR | Wechsler Adult Intelligence Scale Revised |
| RPM | Raven’s Progressive Matrices |
| SMR | Sensory Motor Rhythm |
References
- Huang, T.L.; Charyton, C. A Comprehensive Review of the Psychological Effects of Brainwave Entrainment. Altern. Ther. Health Med. 2008, 14, 38–50. [Google Scholar]
- Siever, D.; Collura, T. Chapter 3—Audio–Visual Entrainment: Physiological Mechanisms and Clinical Outcomes. In Rhythmic Stimulation Procedures in Neuromodulation; Evans, J.R., Turner, R.P., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 51–95. ISBN 978-0-12-803726-3. [Google Scholar]
- Johnson, L.; Alekseichuk, I.; Krieg, J.; Doyle, A.; Yu, Y.; Vitek, J.; Johnson, M.; Opitz, A. Dose-Dependent Effects of Transcranial Alternating Current Stimulation on Spike Timing in Awake Nonhuman Primates. Sci. Adv. 2020, 6, eaaz2747. [Google Scholar] [CrossRef]
- Jones, M.R.; Boltz, M. Dynamic Attending and Responses to Time. Psychol. Rev. 1989, 96, 459–491. [Google Scholar] [CrossRef]
- Brauchli, P.; Michel, C.M.; Zeier, H. Electrocortical, Autonomic, and Subjective Responses to Rhythmic Audio-Visual Stimulation. Int. J. Psychophysiol. Off. J. Int. Organ. Psychophysiol. 1995, 19, 53–66. [Google Scholar] [CrossRef]
- Hsiung, P.-C.; Hsieh, P.-J. Forty-Hertz Audiovisual Stimulation Does Not Have a Promoting Effect on Visual Threshold and Visual Spatial Memory. J. Vis. 2024, 24, 8. [Google Scholar] [CrossRef]
- Mansouri, M.; Pouretemad, H.; Bigdeli, M.; Ardalan, M. Excessive Audio–Visual Stimulation Leads to Impaired Social Behaviour with an Effect on Amygdala: Early Life Excessive Exposure to Digital Devices in Male Rats. Eur. J. Neurosci. 2022, 56, 6174–6186. [Google Scholar] [CrossRef]
- Oppermann, H.; Thelen, A.; Haueisen, J. Entrainment and Resonance Effects with a New Mobile Audio-Visual Stimulation Device. In Proceedings of the 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Sydney, Australia, 24–27 July 2023; pp. 1–4. [Google Scholar]
- Tang, H.-Y.; Vitiello, M.V.; Perlis, M.; Mao, J.J.; Riegel, B. A Pilot Study of Audio–Visual Stimulation as a Self-Care Treatment for Insomnia in Adults with Insomnia and Chronic Pain. Appl. Psychophysiol. Biofeedback 2014, 39, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.-Y.J.; Riegel, B.; McCurry, S.M.; Vitiello, M.V. Open-Loop Audio-Visual Stimulation (AVS): A Useful Tool for Management of Insomnia? Appl. Psychophysiol. Biofeedback 2016, 41, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Teplan, M.; Šušmakova, K.; Paluš, M.; Vejmĕlka, M. Phase Synchronization in Human EEG During Audio-Visual Stimulation. Electromagn. Biol. Med. 2009, 28, 80–84. [Google Scholar] [CrossRef]
- Timmermann, D.L.; Lubar, J.F.; Rasey, H.W.; Frederick, J.A. Effects of 20-Min Audio-Visual Stimulation (AVS) at Dominant Alpha Frequency and Twice Dominant Alpha Frequency on the Cortical EEG. Int. J. Psychophysiol. Off. J. Int. Organ. Psychophysiol. 1999, 32, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Aftanas, L.; Miroshnikova, P.; Natalya, M.; Serguey, Y.; Olga, G.; Khazankin, G. Audio-Visual-Tactile Brainwave Entrainment Decreases Night Arterial Blood Pressure in Patients with Uncontrolled Essential Hypertension: Placebo Controlled Study. In Proceedings of the SAN2016 Meeting, Corfu, Greece, 6–9 October 2016; Volume 10. [Google Scholar]
- Frohlich, F.; Riddle, J.; Ugen, G.; Lersch, F. Brainwave Entrainment for the Treatment of Chronic Pain: Comment on Br J Pain 2020; 14: 161–70. Br. J. Pain 2021, 15, 369–370. [Google Scholar] [CrossRef]
- Locke, H.N.; Brooks, J.; Arendsen, L.J.; Jacob, N.K.; Casson, A.; Jones, A.K.; Sivan, M. Acceptability and Usability of Smartphone-Based Brainwave Entrainment Technology Used by Individuals with Chronic Pain in a Home Setting. Br. J. Pain 2020, 14, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Hutchison, M. Megabrain: New Tools and Techniques for Brain Growth and Mind Expansion, 1st ed.; Beech Tree Books: New York, NY, USA, 1986; ISBN 978-0-688-04880-8. [Google Scholar]
- Mind Machine. Wikipedia. 2024. Available online: https://en.wikipedia.org/wiki/Mind_machine (accessed on 20 October 2024).
- The Ultimate Guide To Brainwave Entrainment—SHIFT. Available online: https://www.shift.is/ultimate-guide-brainwave-entrainment/ (accessed on 26 September 2024).
- Hutchison, M. Time Flashes: A Short History of Sound and Light Technology. 1990. Available online: https://www.amadeux.net/sublimen/documenti/REF_TimeFlashes.pdf (accessed on 12 November 2024).
- Siggins, D.R. The Effects of a Light and Sound Machine on the Panic of Outpatient Agoraphobics: An Outcome Study of in Vivo Exposure Treatment; University of San Francisco: San Francisco, CA, USA, 1992. [Google Scholar]
- da Silva, V.F.; Ribeiro, A.P.; dos Santos, V.A.; Nardi, A.E.; King, A.L.S.; Calomeni, M.R. Stimulation by Light and Sound: Therapeutics Effects in Humans. Systematic Review. Clin. Pract. Epidemiol. Ment. Health 2015, 11, 150–154. [Google Scholar] [CrossRef] [PubMed]
- Larkin, H. Noninvasive Sensory Stimulation With Light and Sound Tested in Alzheimer Disease. JAMA 2023, 329, 114. [Google Scholar] [CrossRef]
- Budzynski, T.; Jordy, J.; Budzynski, H.K.; Tang, H.-Y.; Claypoole, K. Academic Performance Enhancement with Photic Stimulation and EDR Feedback. J. Neurother. 1999, 3, 11–21. [Google Scholar] [CrossRef]
- Leonard, K.N.; Telch, M.J.; Harrington, P.J. Dissociation in the Laboratory: A Comparison of Strategies. Behav. Res. Ther. 1999, 37, 49–61. [Google Scholar] [CrossRef]
- Sanchez, D.I.; Collins, T.; Stone, R. Effect of 10 and 20 Hz Photic Stimulation on Stress and Temperature of the Fingers. In Proceedings of the 2012 International Symposium on Computer Applications and Industrial Electronics (ISCAIE), Kota Kinabalu, Malaysia, 3–4 December 2012; pp. 142–146. [Google Scholar]
- Brainwave Synchronizer. Wood Library-Museum of Anesthesiology. Available online: https://www.woodlibrarymuseum.org/museum/brainwave-synchronizer/ (accessed on 16 December 2024).
- Morse, D.R. Brain Wave Synchronizers: A Review of Their Stress Reduction Effects and Clinical Studies Assessed by Questionnaire, Galvanic Skin Resistance, Pulse Rate, Saliva, and Electroencephalograph. Stress Med. 1993, 9, 111–126. [Google Scholar] [CrossRef]
- Bouwer, A.; Holland, S.; Dalgleish, M. The Haptic Bracelets: Learning Multi-Limb Rhythm Skills from Haptic Stimuli While Reading. In Music and Human-Computer Interaction; Holland, S., Wilkie, K., Mulholland, P., Seago, A., Eds.; Springer: London, UK, 2013; pp. 101–122. ISBN 978-1-4471-2990-5. [Google Scholar]
- Carver, C.S.; White, T.L. Behavioral Inhibition, Behavioral Activation, and Affective Responses to Impending Reward and Punishment: The BIS/BAS Scales. J. Pers. Soc. Psychol. 1994, 67, 319–333. [Google Scholar] [CrossRef]
- Blanpain, L.T.; Cole, E.R.; Chen, E.; Park, J.K.; Walelign, M.Y.; Gross, R.E.; Cabaniss, B.T.; Willie, J.T.; Singer, A.C. Multisensory Flicker Modulates Widespread Brain Networks and Reduces Interictal Epileptiform Discharges. Nat. Commun. 2024, 15, 3156. [Google Scholar] [CrossRef]
- Làdavas, E.; Tosatto, L.; Bertini, C. Behavioural and Functional Changes in Neglect after Multisensory Stimulation. Neuropsychol. Rehabil. 2022, 32, 662–689. [Google Scholar] [CrossRef]
- Tajadura-Jiménez, A.; Grehl, S.; Tsakiris, M. The Other in Me: Interpersonal Multisensory Stimulation Changes the Mental Representation of the Self. PLoS ONE 2012, 7, e40682. [Google Scholar] [CrossRef]
- Liu, L. The Chinese Neolithic: Trajectories to Early States; Cambridge University Press: Cambridge, UK, 2007; ISBN 978-0-521-01064-1. [Google Scholar]
- Theories of Vision from Al-Kindi to Kepler, Lindberg. Available online: https://press.uchicago.edu/ucp/books/book/chicago/T/bo28119973.html (accessed on 15 October 2024).
- Bobon, D.P.; Lecoq, A.; Von Frenckell, R.; Mormont, I.; Lavergne, G.; Lottin, T. Critical Flicker Fusion Frequency in Psychopathology and Psychopharmacology. Review of the Literature. Acta Psychiatr. Belg. 1982, 82, 7–112. [Google Scholar] [PubMed]
- Harner, M.J. The Way of the Shaman, 10th ed.; 1st Harper & Row pbk. ed.; Harper & Row: San Francisco, CA, USA, 1990; ISBN 978-0-06-250382-4. [Google Scholar]
- Sreeraj, V.; Arumugham, S.; Venkatasubramanian, G. Clinical Practice Guidelines for the Use of Transcranial Direct Current Stimulation in Psychiatry. Indian J. Psychiatry 2023, 65, 289. [Google Scholar] [CrossRef] [PubMed]
- Rosenfeld, J.P.; Reinhart, A.M.; Srivastava, S. The Effects of Alpha (10-Hz) and Beta (22-Hz) “Entrainment” Stimulation on the Alpha and Beta EEG Bands: Individual Differences Are Critical to Prediction of Effects. Appl. Psychophysiol. Biofeedback 1997, 22, 3–20. [Google Scholar] [CrossRef] [PubMed]
- Fregni, F.; El-Hagrassy, M.M.; Pacheco-Barrios, K.; Carvalho, S.; Leite, J.; Simis, M.; Brunelin, J.; Nakamura-Palacios, E.M.; Marangolo, P.; Venkatasubramanian, G.; et al. Evidence-Based Guidelines and Secondary Meta-Analysis for the Use of Transcranial Direct Current Stimulation in Neurological and Psychiatric Disorders. Int. J. Neuropsychopharmacol. 2021, 24, 256–313. [Google Scholar] [CrossRef]
- Kekic, M.; Boysen, E.; Campbell, I.C.; Schmidt, U. A Systematic Review of the Clinical Efficacy of Transcranial Direct Current Stimulation (tDCS) in Psychiatric Disorders. J. Psychiatr. Res. 2016, 74, 70–86. [Google Scholar] [CrossRef]
- Kuo, M.-F.; Chen, P.-S.; Nitsche, M.A. The Application of tDCS for the Treatment of Psychiatric Diseases. Int. Rev. Psychiatry 2017, 29, 146–167. [Google Scholar] [CrossRef]
- Unsworth, N.; Robison, M.K.; Miller, A.L. Individual Differences in Baseline Oculometrics: Examining Variation in Baseline Pupil Diameter, Spontaneous Eye Blink Rate, and Fixation Stability. Cogn. Affect. Behav. Neurosci. 2019, 19, 1074–1093. [Google Scholar] [CrossRef]
- Kidd, G.R.; Watson, C.S.; Gygi, B. Individual Differences in Auditory Abilities. J. Acoust. Soc. Am. 2007, 122, 418–435. [Google Scholar] [CrossRef]
- Babin, B.J.; Hardesty, D.M.; Suter, T.A. Color and Shopping Intentions. J. Bus. Res. 2003, 56, 541–551. [Google Scholar] [CrossRef]
- Kurt, S.; Osueke, K.K. The Effects of Color on the Moods of College Students. SAGE Open 2014, 4, 215824401452542. [Google Scholar] [CrossRef]
- Kwallek, N.; Lewis, C.M.; Robbins, A.S. Effects of Office Interior Color on Workers’ Mood and Productivity. Percept. Mot. Skills 1988, 66, 123–128. [Google Scholar] [CrossRef]
- Gerschlager, W.; Siebner, H.R.; Rothwell, J.C. Decreased Corticospinal Excitability after Subthreshold 1 Hz rTMS over Lateral Premotor Cortex. Neurology 2001, 57, 449–455. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, P.; Fountain, S.; Daskalakis, Z. A Comprehensive Review of the Effects of rTMS on Motor Cortical Excitability and Inhibition. Clin. Neurophysiol. 2006, 117, 2584–2596. [Google Scholar] [CrossRef] [PubMed]
- Addante, R.J.; Yousif, M.; Valencia, R.; Greenwood, C.; Marino, R. Boosting Brain Waves Improves Memory. Front. Young Minds 2021, 9, 605677. [Google Scholar] [CrossRef]
- Roberts, B.M.; Clarke, A.; Addante, R.J.; Ranganath, C. Entrainment Enhances Theta Oscillations and Improves Episodic Memory. Cogn. Neurosci. 2018, 9, 181–193. [Google Scholar] [CrossRef]
- Hadjipapas, A.; Charalambous, C.C.; Roberts, M.J. Editorial: Why the Exact Frequencies in Our Brains Matter: Perspectives from Electrophysiology and Brain Stimulation. Front. Syst. Neurosci. 2023, 16, 1121438. [Google Scholar] [CrossRef]
- Jeffery, G. Architecture of the Optic Chiasm and the Mechanisms That Sculpt Its Development. Physiol. Rev. 2001, 81, 1393–1414. [Google Scholar] [CrossRef]
- Henriksson, L.; Karvonen, J.; Salminen-Vaparanta, N.; Railo, H.; Vanni, S. Retinotopic Maps, Spatial Tuning, and Locations of Human Visual Areas in Surface Coordinates Characterized with Multifocal and Blocked fMRI Designs. PLoS ONE 2012, 7, e36859. [Google Scholar] [CrossRef]
- Liang, L.; Bin, G.; Chen, X.; Wang, Y.; Gao, S.; Gao, X. Optimizing a Left and Right Visual Field Biphasic Stimulation Paradigm for SSVEP-Based BCIs with Hairless Region behind the Ear. J. Neural Eng. 2021, 18, 066040. [Google Scholar] [CrossRef]
- Vanegas, M.I.; Blangero, A.; Kelly, S.P. Exploiting Individual Primary Visual Cortex Geometry to Boost Steady State Visual Evoked Potentials. J. Neural Eng. 2013, 10, 036003. [Google Scholar] [CrossRef]
- Teng, F.; Chen, Y.; Choong, A.M.; Gustafson, S.; Reichley, C.; Lawhead, P.; Waddell, D. Square or Sine: Finding a Waveform with High Success Rate of Eliciting SSVEP. Comput. Intell. Neurosci. 2011, 2011, 364385. [Google Scholar] [CrossRef]
- Chatrian, G.E.; Petersen, M.C.; Lazarte, J.A. Responses to Clicks from the Human Brain: Some Depth Electrographic Observations. Electroencephalogr. Clin. Neurophysiol. 1960, 12, 479–489. [Google Scholar] [CrossRef]
- Oster, G. Auditory Beats in the Brain. Sci. Am. 1973, 229, 94–102. [Google Scholar] [CrossRef]
- Engelbregt, H.; Barmentlo, M.; Keeser, D.; Pogarell, O.; Deijen, J.B. Effects of Binaural and Monaural Beat Stimulation on Attention and EEG. Exp. Brain Res. 2021, 239, 2781–2791. [Google Scholar] [CrossRef]
- Han, J.; Zhou, L.; Wu, H.; Huang, Y.; Qiu, M.; Huang, L.; Lee, C.; Lane, T.J.; Qin, P. Eyes-Open and Eyes-Closed Resting State Network Connectivity Differences. Brain Sci. 2023, 13, 122. [Google Scholar] [CrossRef] [PubMed]
- Bourne, V.J. The Divided Visual Field Paradigm: Methodological Considerations. Laterality 2006, 11, 373–393. [Google Scholar] [CrossRef] [PubMed]
- Kuo, H.-H. White Noise Distribution Theory, 1st ed.; CRC Press: Boca Raton, FL, USA, 2018; ISBN 978-0-203-73381-3. [Google Scholar]
- Mozes, G.; Gabay, S. Experimental Evidence for Involvement of Monocular Channels in Mental Rotation. Psychon. Bull. Rev. 2023, 30, 575–584. [Google Scholar] [CrossRef] [PubMed]
- Adrian, E.D.; Matthews, B.H.C. The Berger Rhythm: Potential Changes from the Occipital Lobes in Man. Brain 1934, 57, 355–385. [Google Scholar] [CrossRef]
- Cantor, D.S.; Stevens, E. QEEG Correlates of Auditory-Visual Entrainment Treatment Efficacy of Refractory Depression. J. Neurother. 2009, 13, 100–108. [Google Scholar] [CrossRef]
- Pino, O.; Romano, G. Engagement and Arousal Effects in Predicting the Increase of Cognitive Functioning Following a Neuromodulation Program. Acta Biomed. Atenei Parm. 2022, 93, e2022248. [Google Scholar] [CrossRef]
- Berg, K.; Siever, D. A Controlled Comparison of Audio-Visual Entrainment for Treating Seasonal Affective Disorder. J. Neurother. 2009, 13, 166–175. [Google Scholar] [CrossRef]
- Klimesch, W. EEG Alpha and Theta Oscillations Reflect Cognitive and Memory Performance: A Review and Analysis. Brain Res. Brain Res. Rev. 1999, 29, 169–195. [Google Scholar] [CrossRef]
- Hanslmayr, S.; Sauseng, P.; Doppelmayr, M.; Schabus, M.; Klimesch, W. Increasing Individual Upper Alpha Power by Neurofeedback Improves Cognitive Performance in Human Subjects. Appl. Psychophysiol. Biofeedback 2005, 30, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Pearson, H.C.; Wilbiks, J.M.P. Effects of Audiovisual Memory Cues on Working Memory Recall. Vision 2021, 5, 14. [Google Scholar] [CrossRef]
- Seger, S.E.; Kriegel, J.L.S.; Lega, B.C.; Ekstrom, A.D. Memory-Related Processing Is the Primary Driver of Human Hippocampal Theta Oscillations. Neuron 2023, 111, 3119–3130.e4. [Google Scholar] [CrossRef] [PubMed]
- Joyce, M.; Siever, D. Audio-Visual Entrainment Program as a Treatment for Behavior Disorders in a School Setting. J. Neurother. 2000, 4, 9–25. [Google Scholar] [CrossRef]
- Siever, D. Audio-Visual Entrainment: History and Physiological Mechanisms. Biofeedback 2003, 31, 21–27. [Google Scholar]
- Halpin, S.J.; Casson, A.J.; Tang, N.K.Y.; Jones, A.K.P.; O’Connor, R.J.; Sivan, M. A Feasibility Study of Pre-Sleep Audio and Visual Alpha Brain Entrainment for People with Chronic Pain and Sleep Disturbance. Front. Pain Res. 2023, 4, 1096084. [Google Scholar] [CrossRef]
- Chan, D.; Suk, H.-J.; Jackson, B.L.; Milman, N.P.; Stark, D.; Klerman, E.B.; Kitchener, E.; Avalos, V.S.F.; de Weck, G.; Banerjee, A.; et al. Gamma Frequency Sensory Stimulation in Mild Probable Alzheimer’s Dementia Patients: Results of Feasibility and Pilot Studies. PLoS ONE 2022, 17, e0278412. [Google Scholar] [CrossRef]
- Tang, H.-Y.; McCurry, S.M.; Pike, K.C.; Riegel, B.; Vitiello, M.V. Open-Loop Audio-Visual Stimulation for Sleep Promotion in Older Adults with Comorbid Insomnia and Osteoarthritis Pain: Results of a Pilot Randomized Controlled Trial. Sleep Med. 2021, 82, 37–42. [Google Scholar] [CrossRef]
- Tang, H.-Y.; Vitiello, M.V.; Perlis, M.; Riegel, B. Open-Loop Neurofeedback Audiovisual Stimulation: A Pilot Study of Its Potential for Sleep Induction in Older Adults. Appl. Psychophysiol. Biofeedback 2015, 40, 183–188. [Google Scholar] [CrossRef]
- Martins da Silva, A.; Leal, B. Photosensitivity and Epilepsy: Current Concepts and Perspectives—A Narrative Review. Seizure 2017, 50, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, A.J. Visual Stimuli, Light and Lighting Are Common Triggers of Migraine and Headache. J. Light Vis. Environ. 2010, 34, 94–100. [Google Scholar] [CrossRef]
- Stramaglia, S.; Marinazzo, D.; Pellicoro, M.; de Tommaso, M. Abnormal Effective Connectivity in Migraine with Aura under Photic Stimulation. arXiv 2011, arXiv:1104.2532. [Google Scholar] [CrossRef]
- Depressive Disorder (Depression). Available online: https://www.who.int/news-room/fact-sheets/detail/depression (accessed on 10 July 2025).
- Lam, R.W.; Kennedy, S.H.; McIntyre, R.S.; Khullar, A. Cognitive Dysfunction in Major Depressive Disorder: Effects on Psychosocial Functioning and Implications for Treatment. Can. J. Psychiatry 2014, 59, 649–654. [Google Scholar] [CrossRef]
- Vieta, E.; Alonso, J.; Pérez-Sola, V.; Roca, M.; Hernando, T.; Sicras-Mainar, A.; Sicras-Navarro, A.; Herrera, B.; Gabilondo, A. Epidemiology and Costs of Depressive Disorder in Spain: The EPICO Study. Eur. Neuropsychopharmacol. 2021, 50, 93–103. [Google Scholar] [CrossRef]
- Salvador-Carulla, L.; Bendeck, M.; Fernández, A.; Alberti, C.; Sabes-Figuera, R.; Molina, C.; Knapp, M. Costs of Depression in Catalonia (Spain). J. Affect. Disord. 2011, 132, 130–138. [Google Scholar] [CrossRef]
- Mekonen, T.; Chan, G.C.K.; Connor, J.P.; Hides, L.; Leung, J. Estimating the Global Treatment Rates for Depression: A Systematic Review and Meta-Analysis. J. Affect. Disord. 2021, 295, 1234–1242. [Google Scholar] [CrossRef]
- Pino, O. Neuro-Upper, a Novel Technology for Audio-Visual Entrainment. A Randomized Controlled Trial on Individuals with Anxiety and Depressive Disorders. BAOJ Med. Nurs. 2017, 3, 1–11. [Google Scholar] [CrossRef]
- Pino, O. A Randomized Controlled Trial (RCT) to Explore the Effect of Audio-Visual Entrainment among Psychological Disorders.: Neuro-Upper. Acta Biomed. Atenei Parm. 2021, 92, e2021408. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders; Text Revision; American Psychiatric Association: Washington, DC, USA, 2000. [Google Scholar]
- Melrose, S. Seasonal Affective Disorder: An Overview of Assessment and Treatment Approaches. Depress. Res. Treat. 2015, 2015, 178564. [Google Scholar] [CrossRef]
- Ellis, J.; Ferini-Strambi, L.; García-Borreguero, D.; Heidbreder, A.; O’Regan, D.; Parrino, L.; Selsick, H.; Penzel, T. Chronic Insomnia Disorder across Europe: Expert Opinion on Challenges and Opportunities to Improve Care. Healthcare 2023, 11, 716. [Google Scholar] [CrossRef]
- Perlis, M.L.; Smith, M.T.; Andrews, P.J.; Orff, H.; Giles, D.E. Beta/Gamma EEG Activity in Patients with Primary and Secondary Insomnia and Good Sleeper Controls. Sleep 2001, 24, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.M.; Pietrone, R.; Cashmere, J.D.; Begley, A.; Miewald, J.M.; Germain, A.; Buysse, D.J. EEG Power During Waking and NREM Sleep in Primary Insomnia. J. Clin. Sleep Med. 2013, 09, 1031–1037. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.M.; Cho, S.-E.; Moon, J.Y.; Kim, S.I.; Kim, J.W.; Kang, S.-G. Difference in Spectral Power Density of Sleep Electroencephalography between Individuals without Insomnia and Frequent Hypnotic Users with Insomnia Complaints. Sci. Rep. 2022, 12, 2117. [Google Scholar] [CrossRef] [PubMed]
- Medic, G.; Wille, M.; Hemels, M. Short- and Long-Term Health Consequences of Sleep Disruption. Nat. Sci. Sleep 2017, 9, 151–161. [Google Scholar] [CrossRef]
- Kiely, K.M. Cognitive Function. In Encyclopedia of Quality of Life and Well-Being Research; Michalos, A.C., Ed.; Springer: Dordrecht, The Netherlands, 2014; pp. 974–978. ISBN 978-94-007-0752-8. [Google Scholar]
- Berka, C.; Levendowski, D.J.; Lumicao, M.N.; Yau, A.; Davis, G.; Zivkovic, V.T.; Olmstead, R.E.; Tremoulet, P.D.; Craven, P.L. EEG Correlates of Task Engagement and Mental Workload in Vigilance, Learning, and Memory Tasks. Aviat. Space Environ. Med. 2007, 78, B231–B244. [Google Scholar]
- Hutchison, I.C.; Rathore, S. The Role of REM Sleep Theta Activity in Emotional Memory. Front. Psychol. 2015, 6, 1439. [Google Scholar] [CrossRef]
- Nyhus, E.; Engel, W.A.; Pitfield, T.D.; Vakkur, I.M.W. Increases in Theta Oscillatory Activity During Episodic Memory Retrieval Following Mindfulness Meditation Training. Front. Hum. Neurosci. 2019, 13, 311. [Google Scholar] [CrossRef]
- Ayano, G.; Demelash, S.; Gizachew, Y.; Tsegay, L.; Alati, R. The Global Prevalence of Attention Deficit Hyperactivity Disorder in Children and Adolescents: An Umbrella Review of Meta-Analyses. J. Affect. Disord. 2023, 339, 860–866. [Google Scholar] [CrossRef]
- Ayano, G.; Tsegay, L.; Gizachew, Y.; Necho, M.; Yohannes, K.; Abraha, M.; Demelash, S.; Anbesaw, T.; Alati, R. Prevalence of Attention Deficit Hyperactivity Disorder in Adults: Umbrella Review of Evidence Generated across the Globe. Psychiatry Res. 2023, 328, 115449. [Google Scholar] [CrossRef] [PubMed]
- Oberauer, K. Working Memory and Attention—A Conceptual Analysis and Review. J. Cogn. 2019, 2, 36. [Google Scholar] [CrossRef] [PubMed]
- Barry, R.J.; Clarke, A.R.; Johnstone, S.J. A Review of Electrophysiology in Attention-Deficit/Hyperactivity Disorder: I. Qualitative and Quantitative Electroencephalography. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2003, 114, 171–183. [Google Scholar] [CrossRef] [PubMed]
- Kamida, A.; Shimabayashi, K.; Oguri, M.; Takamori, T.; Ueda, N.; Koyanagi, Y.; Sannomiya, N.; Nagira, H.; Ikunishi, S.; Hattori, Y.; et al. EEG Power Spectrum Analysis in Children with ADHD. Yonago Acta Med. 2016, 59, 169–173. [Google Scholar]
- Siever, D. Audio-Visual Entrainment: Applying Audio-Visual Entrainment Technology for Attention and Learning. Biofeedback Mag. 2008, 31, 1–15. [Google Scholar]
- Driver, J.; Mattingley, J.B. Parietal Neglect and Visual Awareness. Nat. Neurosci. 1998, 1, 17–22. [Google Scholar] [CrossRef]
- McKhann, G.M.; Knopman, D.S.; Chertkow, H.; Hyman, B.T.; Jack, C.R.; Kawas, C.H.; Klunk, W.E.; Koroshetz, W.J.; Manly, J.J.; Mayeux, R.; et al. The Diagnosis of Dementia Due to Alzheimer’s Disease: Recommendations from the National Institute on Aging-Alzheimer’s Association Workgroups on Diagnostic Guidelines for Alzheimer’s Disease. Alzheimers Dement. J. Alzheimers Assoc. 2011, 7, 263–269. [Google Scholar] [CrossRef]
- Javaid, S.F.; Giebel, C.; Khan, M.A.; Hashim, M.J. Epidemiology of Alzheimer’s Disease and Other Dementias: Rising Global Burden and Forecasted Trends. F1000Research 2021, 10, 425. [Google Scholar] [CrossRef]
- Rababa, M.; Aldrawsheh, A.; Hayajneh, A.A.; Da’seh, A. Environmental and Caregivers-Related Factors Influencing the Psychosocial Well-Being of Older Adults with Dementia: A Systematic Review. Ageing Int. 2023, 48, 999–1010. [Google Scholar] [CrossRef]
- Baert, V.; Cornelis, E.; DeVriendt, P. Dementia-Friendly Communities and Challenges from Built Environment Design: The Belgian Case. In Urban Design and Planning for Age-Friendly Environments Across Europe: North and South: Developing Healthy and Therapeutic Living Spaces for Local Contexts; Pozo Menéndez, E., Higueras García, E., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 311–334. ISBN 978-3-030-93875-8. [Google Scholar]
- Lue, L.-F.; Guerra, A.; Walker, D.G. Amyloid Beta and Tau as Alzheimer’s Disease Blood Biomarkers: Promise From New Technologies. Neurol. Ther. 2017, 6, 25–36. [Google Scholar] [CrossRef]
- Jiao, B.; Li, R.; Zhou, H.; Qing, K.; Liu, H.; Pan, H.; Lei, Y.; Fu, W.; Wang, X.; Xiao, X.; et al. Neural Biomarker Diagnosis and Prediction to Mild Cognitive Impairment and Alzheimer’s Disease Using EEG Technology. Alzheimers Res. Ther. 2023, 15, 32. [Google Scholar] [CrossRef]
- Manippa, V.; Palmisano, A.; Filardi, M.; Vilella, D.; Nitsche, M.A.; Rivolta, D.; Logroscino, G. An Update on the Use of Gamma (Multi)Sensory Stimulation for Alzheimer’s Disease Treatment. Front. Aging Neurosci. 2022, 14, 1095081. [Google Scholar] [CrossRef] [PubMed]
- Martorell, A.J.; Paulson, A.L.; Suk, H.-J.; Abdurrob, F.; Drummond, G.; Guan, W.; Young, J.Z.; Kim, D.N.-W.; Kritskiy, O.; Barker, S.; et al. Multi-Sensory Gamma Stimulation Ameliorates Alzheimer’s-Associated Pathology and Improves Cognition. Cell 2019, 177, 256–271.e22. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Ying, Y.; Deng, Q.; Zhang, W.; Zhu, H.; Lin, Z.; Zhang, S.; Ma, J.; Zhao, Y. Non-Invasive 40-Hz Light Flicker Ameliorates Alzheimer’s-Associated Rhythm Disorder via Regulating Central Circadian Clock in Mice. Front. Physiol. 2020, 11, 294. [Google Scholar] [CrossRef] [PubMed]
- Zimmer, Z.; Fraser, K.; Grol-Prokopczyk, H.; Zajacova, A. A Global Study of Pain Prevalence across 52 Countries: Examining the Role of Country-Level Contextual Factors. Pain 2022, 163, 1740–1750. [Google Scholar] [CrossRef]
- Boersma, F.J.; Gagnon, C. The Use of Repetitive Audiovisual Entrainment in the Management of Chronic Pain. Med. Hypnoanal. J. 1992, 7, 80–97. [Google Scholar]
- Vincent, A.; Lahr, B.D.; Wolfe, F.; Clauw, D.J.; Whipple, M.O.; Oh, T.H.; Barton, D.L.; St. Sauver, J. Prevalence of Fibromyalgia: A Population-Based Study in Olmsted County, Minnesota, Utilizing the Rochester Epidemiology Project. Arthritis Care Res. 2013, 65, 786–792. [Google Scholar] [CrossRef]
- Berg, K. Outcome of Medical Methods, Audio-Visual Entrainment (AVE) and Nutritional Supplementation for the Treatment of Fibromyalgia Syndrome. Clin. Physiol. Funct. Imaging 2006, 26, 140–149. [Google Scholar]
- Baars, B.; Gage, N.M. Fundamentals of Cognitive Neuroscience: A Beginner’s Guide; Academic Press: Cambridge, MA, USA, 2012; ISBN 0-12-415805-6. [Google Scholar]
- Johnson, M.A.; Simonian, N.; Reggente, N. Lightening the Mind with Audiovisual Stimulation as an Accessible Alternative to Breath-Focused Meditation for Mood and Cognitive Enhancement. Sci. Rep. 2024, 14, 25553. [Google Scholar] [CrossRef]
- Canette, L.-H.; Fiveash, A.; Krzonowski, J.; Corneyllie, A.; Lalitte, P.; Thompson, D.; Trainor, L.; Bedoin, N.; Tillmann, B. Regular Rhythmic Primes Boost P600 in Grammatical Error Processing in Dyslexic Adults and Matched Controls. Neuropsychologia 2020, 138, 107324. [Google Scholar] [CrossRef] [PubMed]
- Bedoin, N.; Brisseau, L.; Molinier, P.; Roch, D.; Tillmann, B. Temporally Regular Musical Primes Facilitate Subsequent Syntax Processing in Children with Specific Language Impairment. Front. Neurosci. 2016, 10, 245. [Google Scholar] [CrossRef]
- Przybylski, L.; Bedoin, N.; Krifi-Papoz, S.; Herbillon, V.; Roch, D.; Léculier, L.; Kotz, S.A.; Tillmann, B. Rhythmic Auditory Stimulation Influences Syntactic Processing in Children with Developmental Language Disorders. Neuropsychology 2013, 27, 121–131. [Google Scholar] [CrossRef]
- Fiveash, A.; Bedoin, N.; Lalitte, P.; Tillmann, B. Rhythmic Priming of Grammaticality Judgments in Children: Duration Matters. J. Exp. Child Psychol. 2020, 197, 104885. [Google Scholar] [CrossRef]
- Fiveash, A.; Bedoin, N.; Gordon, R.L.; Tillmann, B. Processing Rhythm in Speech and Music: Shared Mechanisms and Implications for Developmental Speech and Language Disorders. Neuropsychology 2021, 35, 771–791. [Google Scholar] [CrossRef]
- György, D.; Saddy, D.; Kotz, S.A.; Franck, J. Rhythmic Priming of Syntactic Processing in Jabberwocky: A Short-Lived Effect. Lang. Cogn. Neurosci. 2024, 39, 939–958. [Google Scholar] [CrossRef]
- György, D.; Saddy, D.; Kotz, S.A.; Franck, J. Not Primed to Agree? Short or No Effect of Rhythmic Priming on Typical Adults Processing Number Agreement. Front. Psychol. 2025, 16, 1512267. [Google Scholar] [CrossRef]



| Visual Condition | Monocular/ Binocular | Visual Field | Frequency | Phase | Presentation Mode | Color | |
|---|---|---|---|---|---|---|---|
| Visual Stimuli | EC | Binocu lar Visual Exposure | RVF | X | 0–1 | Static Frequency | X |
| EO | Unilateral Visual Exposure | LVF | VLF = X RVF = Y | Ramp Up/Down | X for RVF Y for LVF | ||
| RVF/LVF | Random Frequency Range | X for Left Eye Y for Right Eye | |||||
| Predefined Frequency Range | |||||||
| Experimental Condition | Binaural | Binaural/ Monaural Beats | Frequency | Presentation Mode | |||
| Auditory Stimuli | Binaural | Spontaneous Bilateral | Auditory Pitch Difference | X | Static Frequency | ||
| or Altering Unilateral | X for Left Y for Right | Ramp Up/Down | |||||
| Random Frequency Range | |||||||
| Predefined Frequency Range | |||||||
| Monaural |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahmani, M.; Romero Lauro, L.J.; Pisoni, A. Audio-Visual Entrainment Neuromodulation: A Review of Technical and Functional Aspects. Brain Sci. 2025, 15, 1070. https://doi.org/10.3390/brainsci15101070
Rahmani M, Romero Lauro LJ, Pisoni A. Audio-Visual Entrainment Neuromodulation: A Review of Technical and Functional Aspects. Brain Sciences. 2025; 15(10):1070. https://doi.org/10.3390/brainsci15101070
Chicago/Turabian StyleRahmani, Masoud, Leonor Josefina Romero Lauro, and Alberto Pisoni. 2025. "Audio-Visual Entrainment Neuromodulation: A Review of Technical and Functional Aspects" Brain Sciences 15, no. 10: 1070. https://doi.org/10.3390/brainsci15101070
APA StyleRahmani, M., Romero Lauro, L. J., & Pisoni, A. (2025). Audio-Visual Entrainment Neuromodulation: A Review of Technical and Functional Aspects. Brain Sciences, 15(10), 1070. https://doi.org/10.3390/brainsci15101070

