Selective Activation of the Spinal Cord with Epidural Electrical Stimulation
Abstract
:1. Introduction
2. Materials and Methods
I2 = I0 sin (Φ + 120°),
I3 = I0 sin (Φ − 120°).
3. Results
3.1. Conventional Monopolar Epidural Stimulation, CMES
3.2. Bipolar Spatial Selective Epidural Stimulation, SSES
3.3. Orientation Selective Epidural Stimulation, OSES
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shealy, C.N.; Mortimer, J.T.; Reswick, J.B. Electrical Inhibition of Pain by Stimulation of the Dorsal Columns: Preliminary Clinical Report. Anesth. Analg. 1967, 46, 489–491. [Google Scholar] [CrossRef] [PubMed]
- Minassian, K.; Jilge, B.; Rattay, F.; Pinter, M.M.; Binder, H.; Gerstenbrand, F.; Dimitrijevic, M.R. Stepping-like Movements in Humans with Complete Spinal Cord Injury Induced by Epidural Stimulation of the Lumbar Cord: Electromyographic Study of Compound Muscle Action Potentials. Spinal Cord 2004, 42, 401–416. [Google Scholar] [CrossRef] [PubMed]
- Harkema, S.; Gerasimenko, Y.; Hodes, J.; Burdick, J.; Angeli, C.; Chen, Y.; Ferreira, C.; Willhite, A.; Rejc, E.; Grossman, R.G.; et al. Effect of Epidural Stimulation of the Lumbosacral Spinal Cord on Voluntary Movement, Standing, and Assisted Stepping after Motor Complete Paraplegia: A Case Study. Lancet 2011, 377, 1938–1947. [Google Scholar] [CrossRef] [PubMed]
- Angeli, C.A.; Edgerton, V.R.; Gerasimenko, Y.P.; Harkema, S.J. Altering Spinal Cord Excitability Enables Voluntary Movements after Chronic Complete Paralysis in Humans. Brain 2014, 137, 1394–1409. [Google Scholar] [CrossRef] [PubMed]
- Rejc, E.; Angeli, C.A.; Atkinson, D.; Harkema, S.J. Motor Recovery after Activity-Based Training with Spinal Cord Epidural Stimulation in a Chronic Motor Complete Paraplegic. Sci. Rep. 2017, 7, 13476. [Google Scholar] [CrossRef] [PubMed]
- Grahn, P.J.; Lavrov, I.A.; Sayenko, D.G.; Van Straaten, M.G.; Gill, M.L.; Strommen, J.A.; Calvert, J.S.; Drubach, D.I.; Beck, L.A.; Linde, M.B.; et al. Enabling Task-Specific Volitional Motor Functions via Spinal Cord Neuromodulation in a Human With Paraplegia. Mayo Clin. Proc. 2017, 92, 544–554. [Google Scholar] [CrossRef] [PubMed]
- Chalif, J.I.; Chavarro, V.S.; Mensah, E.; Johnston, B.; Fields, D.P.; Chalif, E.J.; Chiang, M.; Sutton, O.; Yong, R.; Trumbower, R.; et al. Epidural Spinal Cord Stimulation for Spinal Cord Injury in Humans: A Systematic Review. J. Clin. Med. 2024, 13, 1090. [Google Scholar] [CrossRef]
- Greiner, N.; Barra, B.; Schiavone, G.; Lorach, H.; James, N.; Conti, S.; Kaeser, M.; Fallegger, F.; Borgognon, S.; Lacour, S.; et al. Recruitment of Upper-Limb Motoneurons with Epidural Electrical Stimulation of the Cervical Spinal Cord. Nat. Commun. 2021, 12, 435. [Google Scholar] [CrossRef]
- Rowald, A.; Komi, S.; Demesmaeker, R.; Baaklini, E.; Hernandez-Charpak, S.D.; Paoles, E.; Montanaro, H.; Cassara, A.; Becce, F.; Lloyd, B.; et al. Activity-Dependent Spinal Cord Neuromodulation Rapidly Restores Trunk and Leg Motor Functions after Complete Paralysis. Nat. Med. 2022, 28, 260–271. [Google Scholar] [CrossRef] [PubMed]
- Harkema, S.J.; Wang, S.; Angeli, C.A.; Chen, Y.; Boakye, M.; Ugiliweneza, B.; Hirsch, G.A. Normalization of Blood Pressure With Spinal Cord Epidural Stimulation After Severe Spinal Cord Injury. Front. Hum. Neurosci. 2018, 12, 83. [Google Scholar] [CrossRef]
- Aslan, S.C.; Legg Ditterline, B.E.; Park, M.C.; Angeli, C.A.; Rejc, E.; Chen, Y.; Ovechkin, A.V.; Krassioukov, A.; Harkema, S.J. Epidural Spinal Cord Stimulation of Lumbosacral Networks Modulates Arterial Blood Pressure in Individuals With Spinal Cord Injury-Induced Cardiovascular Deficits. Front. Physiol. 2018, 9, 565. [Google Scholar] [CrossRef]
- Herrity, A.N.; Williams, C.S.; Angeli, C.A.; Harkema, S.J.; Hubscher, C.H. Lumbosacral Spinal Cord Epidural Stimulation Improves Voiding Function after Human Spinal Cord Injury. Sci. Rep. 2018, 8, 8688. [Google Scholar] [CrossRef] [PubMed]
- Shah, P.K.; Lavrov, I. Spinal Epidural Stimulation Strategies: Clinical Implications of Locomotor Studies in Spinal Rats. Neuroscientist 2017, 23, 664–680. [Google Scholar] [CrossRef]
- Cuellar, C.A.; Mendez, A.A.; Islam, R.; Calvert, J.S.; Grahn, P.J.; Knudsen, B.; Pham, T.; Lee, K.H.; Lavrov, I.A. The Role of Functional Neuroanatomy of the Lumbar Spinal Cord in Effect of Epidural Stimulation. Front. Neuroanat. 2017, 11, 82. [Google Scholar] [CrossRef] [PubMed]
- Mendez, A.; Islam, R.; Latypov, T.; Basa, P.; Joseph, O.J.; Knudsen, B.; Siddiqui, A.M.; Summer, P.; Staehnke, L.J.; Grahn, P.J.; et al. Segment-Specific Orientation of the Dorsal and Ventral Roots for Precise Therapeutic Targeting of Human Spinal Cord. Mayo Clin. Proc. 2021, 96, 1426–1437. [Google Scholar] [CrossRef] [PubMed]
- Krupa, P.; Siddiqui, A.M.; Grahn, P.J.; Islam, R.; Chen, B.K.; Madigan, N.N.; Windebank, A.J.; Lavrov, I.A. The Translesional Spinal Network and Its Reorganization after Spinal Cord Injury. Neuroscientist 2022, 28, 163–179. [Google Scholar] [CrossRef]
- Malone, I.G.; Nosacka, R.L.; Nash, M.A.; Otto, K.J.; Dale, E.A. Electrical Epidural Stimulation of the Cervical Spinal Cord: Implications for Spinal Respiratory Neuroplasticity after Spinal Cord Injury. J. Neurophysiol. 2021, 126, 607–626. [Google Scholar] [CrossRef]
- Minassian, K.; Persy, I.; Rattay, F.; Dimitrijevic, M.R.; Hofer, C.; Kern, H. Posterior Root–Muscle Reflexes Elicited by Transcutaneous Stimulation of the Human Lumbosacral Cord. Muscle Nerve 2007, 35, 327–336. [Google Scholar] [CrossRef]
- Verma, N.; Romanauski, B.; Lam, D.; Lujan, L.; Blanz, S.; Ludwig, K.; Lempka, S.; Shoffstall, A.; Knudson, B.; Nishiyama, Y.; et al. Characterization and Applications of Evoked Responses during Epidural Electrical Stimulation. Bioelectron. Med. 2023, 9, 5. [Google Scholar] [CrossRef]
- Shah, P.K.; Sureddi, S.; Alam, M.; Zhong, H.; Roy, R.R.; Edgerton, V.R.; Gerasimenko, Y. Unique Spatiotemporal Neuromodulation of the Lumbosacral Circuitry Shapes Locomotor Success after Spinal Cord Injury. J. Neurotrauma 2016, 33, 1709–1723. [Google Scholar] [CrossRef]
- Nandra, M.S.; Lavrov, I.A.; Edgerton, V.R.; Tai, Y.-C. A Parylene-Based Microelectrode Array Implant for Spinal Cord Stimulation in Rats. In Proceedings of the 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems, Cancun, Mexico, 23–27 January 2011; pp. 1007–1010. [Google Scholar] [CrossRef]
- Gad, P.; Choe, J.; Nandra, M.S.; Zhong, H.; Roy, R.R.; Tai, Y.-C.; Edgerton, V.R. Development of a Multi-Electrode Array for Spinal Cord Epidural Stimulation to Facilitate Stepping and Standing after a Complete Spinal Cord Injury in Adult Rats. J. Neuroeng. Rehabil. 2013, 10, 2. [Google Scholar] [CrossRef]
- Rodger, D.; Fong, A.; Li, W.; Ameri, H.; Ahuja, A.; Gutierrez, C.; Lavrov, I.; Zhong, H.; Menon, P.; Meng, E. Flexible Parylene-Based Multielectrode Array Technology for High-Density Neural Stimulation and Recording. Sens. Actuators B Chem. 2008, 132, 449–460. [Google Scholar] [CrossRef]
- Dombovy-Johnson, M.L.; D’Souza, R.S.; Ha, C.T.; Hagedorn, J.M. Incidence and Risk Factors for Spinal Cord Stimulator Lead Migration With or Without Loss of Efficacy: A Retrospective Review of 91 Consecutive Thoracic Lead Implants. Neuromodul. Technol. Neural Interface 2022, 25, 731–737. [Google Scholar] [CrossRef]
- Minassian, K.; Hofstoetter, U.; Tansey, K.; Mayr, W. Neuromodulation of Lower Limb Motor Control in Restorative Neurology. Clin. Neurol. Neurosurg. 2012, 114, 489–497. [Google Scholar] [CrossRef]
- Lehto, L.J.; Slopsema, J.P.; Johnson, M.D.; Shatillo, A.; Teplitzky, B.A.; Utecht, L.; Adriany, G.; Mangia, S.; Sierra, A.; Low, W.C.; et al. Orientation Selective Deep Brain Stimulation. J. Neural Eng. 2017, 14, 016016. [Google Scholar] [CrossRef]
- Gureviciene, I.; Laakso, H.; Narvaez, O.; Paasonen, E.; Lehto, L.; Gurevicius, K.; Mangia, S.; Michaeli, S.; Gröhn, O.; Sierra, A.; et al. Orientation Selective Stimulation with Tetrahedral Electrodes of the Rat Infralimbic Cortex to Indirectly Target the Amygdala. Front. Neurosci. 2023, 17, 1147547. [Google Scholar] [CrossRef]
- Wu, L.; Canna, A.; Narvaez, O.; Ma, J.; Sang, S.; Lehto, L.J.; Sierra, A.; Tanila, H.; Zhang, Y.; Gröhn, O.; et al. Orientation Selective DBS of Entorhinal Cortex and Medial Septal Nucleus Modulates Activity of Rat Brain Areas Involved in Memory and Cognition. Sci. Rep. 2022, 12, 8565. [Google Scholar] [CrossRef]
- Canna, A.; Lehto, L.J.; Wu, L.; Sang, S.; Laakso, H.; Ma, J.; Filip, P.; Zhang, Y.; Gröhn, O.; Esposito, F.; et al. Brain fMRI during Orientation Selective Epidural Spinal Cord Stimulation. Sci. Rep. 2021, 11, 5504. [Google Scholar] [CrossRef]
- Slopsema, J.P.; Peña, E.; Patriat, R.; Lehto, L.J.; Gröhn, O.; Mangia, S.; Harel, N.; Michaeli, S.; Johnson, M.D. Clinical Deep Brain Stimulation Strategies for Orientation-Selective Pathway Activation. J. Neural Eng. 2018, 15, 056029. [Google Scholar] [CrossRef]
- Gerasimenko, Y.P.; Lavrov, I.A.; Courtine, G.; Ichiyama, R.M.; Dy, C.J.; Zhong, H.; Roy, R.R.; Edgerton, V.R. Spinal Cord Reflexes Induced by Epidural Spinal Cord Stimulation in Normal Awake Rats. J. Neurosci. Methods 2006, 157, 253–263. [Google Scholar] [CrossRef]
- Lavrov, I.; Gerasimenko, Y.P.; Ichiyama, R.M.; Courtine, G.; Zhong, H.; Roy, R.R.; Edgerton, V.R. Plasticity of Spinal Cord Reflexes After a Complete Transection in Adult Rats: Relationship to Stepping Ability. J. Neurophysiol. 2006, 96, 1699–1710. [Google Scholar] [CrossRef]
- Lavrov, I.; Courtine, G.; Dy, C.J.; Van Den Brand, R.; Fong, A.J.; Gerasimenko, Y.; Zhong, H.; Roy, R.R.; Edgerton, V.R. Facilitation of Stepping with Epidural Stimulation in Spinal Rats: Role of Sensory Input. J. Neurosci. 2008, 28, 7774–7780. [Google Scholar] [CrossRef]
- Coburn, B.; Sin, W.K. A Theoretical Study of Epidural Electrical Stimulation of the Spinal Cord Part I: Finite Element Analysis of Stimulus Fields. IEEE Trans. Biomed. Eng. 1985, BME–32, 971–977. [Google Scholar] [CrossRef]
- Struijk, J.J.; Holsheimer, J.; Boom, H.B.K. Excitation of Dorsal Root Fibers in Spinal Cord Stimulation: A Theoretical Study. IEEE Trans. Biomed. Eng. 1993, 40, 632–639. [Google Scholar] [CrossRef]
- Holsheimer, J.; Struijk, J.J. How Do Geometrie Factors Influence Epidural Spinal Cord Stimulation? Stereotact. Funct. Neurosurg. 1991, 56, 234–249. [Google Scholar] [CrossRef]
- Barolat, G. Epidural Spinal Cord Stimulation: Anatomical and Electrical Properties of the Intraspinal Structures Relevant to Spinal Cord Stimulation and Clinical Correlations. Neuromodul. Technol. Neural Interface 1998, 1, 63–71. [Google Scholar] [CrossRef]
- Holsheimer, J. Which Neuronal Elements Are Activated Directly by Spinal Cord Stimulation. Neuromodul. Technol. Neural Interface 2002, 5, 25–31. [Google Scholar] [CrossRef]
- Ladenbauer, J.; Minassian, K.; Hofstoetter, U.S.; Dimitrijevic, M.R.; Rattay, F. Stimulation of the Human Lumbar Spinal Cord With Implanted and Surface Electrodes: A Computer Simulation Study. IEEE Trans. Neural Syst. Rehabil. Eng. 2010, 18, 637–645. [Google Scholar] [CrossRef]
- Holsheimer, J. Concepts and Methods in Neuromodulation and Functional Electrical Stimulation: An Introduction. Neuromodul. Technol. Neural Interface 1998, 1, 57–61. [Google Scholar] [CrossRef]
- Rattay, F. The Basic Mechanism for the Electrical Stimulation of the Nervous System. Neuroscience 1999, 89, 335–346. [Google Scholar] [CrossRef]
- Rattay, F.; Minassian, K.; Dimitrijevic, M. Epidural Electrical Stimulation of Posterior Structures of the Human Lumbosacral Cord: 2. Quantitative Analysis by Computer Modeling. Spinal Cord 2000, 38, 473–489. [Google Scholar] [CrossRef]
- Capogrosso, M.; Wenger, N.; Raspopovic, S.; Musienko, P.; Beauparlant, J.; Bassi Luciani, L.; Courtine, G.; Micera, S. A Computational Model for Epidural Electrical Stimulation of Spinal Sensorimotor Circuits. J. Neurosci. 2013, 33, 19326–19340. [Google Scholar] [CrossRef]
- Moraud, E.M.; Capogrosso, M.; Formento, E.; Wenger, N.; DiGiovanna, J.; Courtine, G.; Micera, S. Mechanisms Underlying the Neuromodulation of Spinal Circuits for Correcting Gait and Balance Deficits after Spinal Cord Injury. Neuron 2016, 89, 814–828. [Google Scholar] [CrossRef]
- Lehto, L.J.; Filip, P.; Laakso, H.; Sierra, A.; Slopsema, J.P.; Johnson, M.D.; Eberly, L.E.; Low, W.C.; Gröhn, O.; Tanila, H.; et al. Tuning Neuromodulation Effects by Orientation Selective Deep Brain Stimulation in the Rat Medial Frontal Cortex. Front. Neurosci. 2018, 12, 899. [Google Scholar] [CrossRef]
- Jantz, M.K.; Gopinath, C.; Kumar, R.; Chin, C.; Wong, L.; Ogren, J.I.; Fisher, L.E.; McLaughlin, B.L.; Gaunt, R.A. High-Density Spinal Cord Stimulation Selectively Activates Lower Urinary Tract Nerves. J. Neural Eng. 2022, 19, 066014. [Google Scholar] [CrossRef]
EES Paradigm | Characteristics | Pulses |
---|---|---|
CMES | 4 electrodes array, electrical stimulation performed each electrode at a time, 4 configuration, monopolar stimulation. | 10 pulses for each stimulation current Range: 0.2–1.2 mA Increments: 0.1 mA |
SSES | 4 electrodes array, 8 different configurations, bipolar stimulation. | |
OSES | Electrical stimulation delivered every 45° in a clockwise rotation using 3 electrodes, 9 different orientations. |
Muscle | Configuration 1 | Configuration 2 | p Value |
---|---|---|---|
LGAS | 59.09 ± 23.40% | 21.83 ± 17.92% | p > 0.05 |
LTA | 82.04 ± 13.48% | 19.76 ± 19.23% | p > 0.05 |
RGAS | 100 ± 2.98% | 7.81 ± 2.65% | p < 0.001 |
RTA | 100 ± 9.67% | 11.36 ± 5.45% | p < 0.001 |
Configuration 3 | Configuration 4 | ||
LGAS | 47.85 ± 20.98% | 11.23 ± 3.54% | p > 0.05 |
LTA | 69.91 ± 15.78% | 20.06 ± 9.94% | p > 0.05 |
RGAS | 33.23 ± 17.60% | 5.93 ± 3.97% | p > 0.05 |
RTA | 82.62 ± 7.85% | 22.95 ± 22.40% | p > 0.05 |
Configuration 5 | Configuration 6 | ||
LGAS | 21.81 ± 1.37% | 23.28 ± 5.71% | p > 0.05 |
LTA | 13.25 ± 5.09% | 23.57 ± 10.26% | p > 0.05 |
RGAS | 10.75 ± 10.75% | 16.51 ± 13.09% | p > 0.05 |
RTA | 38.04 ±11.74% | 39.21 ± 20.29% | p > 0.05 |
Configuration 7 | Configuration 8 | ||
LGAS | 57.57 ± 23.98% | 39.90 ± 30.58% | p > 0.05 |
LTA | 52.34 ± 27.37% | 88.34 ± 6.12% | p > 0.05 |
RGAS | 28.80 ± 16.42% | 66.06 ± 21.40% | p > 0.05 |
RTA | 54.77 ± 9.23% | 93.16 ± 4.48% | p < 0.05 |
OSES (Degrees) | MR Amplitude Normalized (Mean ± SD%) | |
---|---|---|
Left/Right TA | Left/Right GAS | |
0 (360) | 2.15 ± 5.69 * | 1.70 ± 4.82 #§ |
45 | 28.33 ± 30.11 | 37.59 ± 31.47 |
90 | 30.32 ± 34.90 | 39.32 ± 31.05 |
135 | 67.18 ± 32.68 * | 79.59 ± 24.60 #¥ |
180 | 59.90 ± 36.68 | 78.91 ± 24.60 §£ |
225 | 53.97 ± 43.25 | 40.43 ± 33.50 |
270 | 19.24 ± 30.64 | 23.61 ± 32.64 ¥£ |
315 | 42.80 ± 36.86 | 38.69 ± 40.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cuellar, C.; Lehto, L.; Islam, R.; Mangia, S.; Michaeli, S.; Lavrov, I. Selective Activation of the Spinal Cord with Epidural Electrical Stimulation. Brain Sci. 2024, 14, 650. https://doi.org/10.3390/brainsci14070650
Cuellar C, Lehto L, Islam R, Mangia S, Michaeli S, Lavrov I. Selective Activation of the Spinal Cord with Epidural Electrical Stimulation. Brain Sciences. 2024; 14(7):650. https://doi.org/10.3390/brainsci14070650
Chicago/Turabian StyleCuellar, Carlos, Lauri Lehto, Riaz Islam, Silvia Mangia, Shalom Michaeli, and Igor Lavrov. 2024. "Selective Activation of the Spinal Cord with Epidural Electrical Stimulation" Brain Sciences 14, no. 7: 650. https://doi.org/10.3390/brainsci14070650
APA StyleCuellar, C., Lehto, L., Islam, R., Mangia, S., Michaeli, S., & Lavrov, I. (2024). Selective Activation of the Spinal Cord with Epidural Electrical Stimulation. Brain Sciences, 14(7), 650. https://doi.org/10.3390/brainsci14070650