Investigating Descending Pain Regulation in Fibromyalgia and the Link to Altered Autonomic Regulation by Means of Functional MRI Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Questionnaires and Training Session
2.3. Thermal Stimulation
2.4. FMRI Stimulation Paradigm
2.5. FMRI Data Acquisition
2.6. Analysis Method
2.6.1. FMRI Data
2.6.2. Anatomical Regions and the Network Model
2.6.3. Structural and Physiological Modeling (SAPM)
3. Results
3.1. Demographical Information
3.2. Structural and Physiological Modeling Results
3.3. Correlations between Connectivity Values and Pain Ratings
3.4. ANCOVA (Analyses of Covariance) Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schweinhardt, P.; Kalk, N.; Wartolowska, K.; Chessell, I.; Wordsworth, P.; Tracey, I. Investigation into the neural correlates of emotional augmentation of clinical pain. Neuroimage 2008, 40, 759–766. [Google Scholar] [CrossRef] [PubMed]
- Giorgi, V.; Sirotti, S.; Romano, M.E.; Marotto, D.; Ablin, J.N.; Salaffi, F.; Sarzi-Puttini, P. Fibromyalgia: One year in review 2022. Clin. Exp. Rheumatol. 2022, 40, 1065–1072. [Google Scholar] [CrossRef]
- Staud, R.; Boissoneault, J.; Lai, S.; Mejia, M.S.; Ramanlal, R.; Godfrey, M.M.; Stroman, P.W. Spinal cord neural activity of patients with fibromyalgia and healthy controls during temporal summation of pain: An fMRI study. J. Neurophysiol. 2021, 126, 946–956. [Google Scholar] [CrossRef] [PubMed]
- Boly, M.; Balteau, E.; Schnakers, C.; Degueldre, C.; Moonen, G.; Luxen, A.; Phillips, C.; Peigneux, P.; Maquet, P.; Laureys, S. Baseline brain activity fluctuations predict somatosensory perception in humans. Proc. Natl. Acad. Sci. USA 2007, 104, 12187–12192. [Google Scholar] [CrossRef] [PubMed]
- Stroman, P.W.; Powers, J.M.; Ioachim, G. Proof-of-concept of a novel structural equation modelling approach for the analysis of functional magnetic resonance imaging data applied to investigate individual differences in human pain responses. Hum. Brain Mapp. 2023, 44, 2523–2542. [Google Scholar] [CrossRef] [PubMed]
- Burton, A.R.; Fazalbhoy, A.; Macefield, V.G. Sympathetic Responses to Noxious Stimulation of Muscle and Skin. Front. Neurol. 2016, 7, 109. [Google Scholar] [CrossRef] [PubMed]
- Ioachim, G.; Warren, H.J.M.; Powers, J.M.; Staud, R.; Pukall, C.F.; Stroman, P.W. Altered Pain in the Brainstem and Spinal Cord of Fibromyalgia Patients During the Anticipation and Experience of Experimental Pain. Front. Neurol. 2022, 13, 862976. [Google Scholar] [CrossRef]
- Warren, H.J.; Ioachim, G.; Powers, J.M.; Staud, R.; Pukall, C.; Stroman, P.W. Using Structural Equation Modeling to Investigate the Neural Basis of Altered Pain Processing in Fibromyalgia with Functional Magnetic Resonance Imaging. Med. Res. Arch. 2024, 12. [Google Scholar] [CrossRef]
- Stroman, P.W.; Umraw, M.; Keast, B.; Algitami, H.; Hassanpour, S.; Merletti, J. Structural and Physiological Modeling (SAPM) for the Analysis of Functional MRI Data Applied to a Study of Human Nociceptive Processing. Brain Sci. 2023, 13, 1568. [Google Scholar] [CrossRef]
- Ioachim, G.; Warren, H.J.M.; Powers, J.M.; Staud, R.; Pukall, C.F.; Stroman, P.W. Distinct neural signaling characteristics between fibromyalgia and provoked vestibulodynia revealed by means of functional magnetic resonance imaging in the brainstem and spinal cord. Front. Pain Res. 2023, 4, 1171160. [Google Scholar] [CrossRef]
- Wolfe, F.; Clauw, D.J.; Fitzcharles, M.A.; Goldenberg, D.L.; Hauser, W.; Katz, R.L.; Mease, P.J.; Russell, A.S.; Russell, I.J.; Walitt, B. 2016 Revisions to the 2010/2011 fibromyalgia diagnostic criteria. Semin. Arthritis Rheum. 2016, 46, 319–329. [Google Scholar] [CrossRef]
- Wolfe, F.; Smythe, H.A.; Yunus, M.B.; Bennett, R.M.; Bombardier, C.; Goldenberg, D.L.; Tugwell, P.; Campbell, S.M.; Abeles, M.; Clark, P.; et al. The American College of Rheumatology 1990 Criteria for the Classification of Fibromyalgia. Report of the Multicenter Criteria Committee. Arthritis Rheum. 1990, 33, 160–172. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, F.; Clauw, D.J.; Fitzcharles, M.A.; Goldenberg, D.L.; Katz, R.S.; Mease, P.; Russell, A.S.; Russell, I.J.; Winfield, J.B.; Yunus, M.B. The American College of Rheumatology preliminary diagnostic criteria for fibromyalgia and measurement of symptom severity. Arthritis Care Res. 2010, 62, 600–610. [Google Scholar] [CrossRef] [PubMed]
- Beck, A.T.; Ward, C.H.; Mendelson, M.; Mock, J.; Erbaugh, J. An inventory for measuring depression. Arch. Gen. Psychiatry 1961, 4, 561–571. [Google Scholar] [CrossRef]
- Spielberger, C.D. State-trait anxiety inventory. In Corsini Encyclopedia of Psychology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010. [Google Scholar] [CrossRef]
- Crowne, D.P.; Marlowe, D. A new scale of social desirability independent of psychopathology. J. Consult. Psychol. 1960, 24, 349–354. [Google Scholar] [CrossRef]
- Sullivan MJ, L.; Bishop, S.R.; Pivik, J. The Pain Catastrophizing Scale: Development and Validation. Psychol. Assess. 1995, 7, 524. [Google Scholar] [CrossRef]
- Sletten, D.M.; Suarez, G.A.; Low, P.A.; Mandrekar, J.; Singer, W. COMPASS 31: A refined and abbreviated Composite Autonomic Symptom Score. Mayo Clin. Proc. 2012, 87, 1196–1201. [Google Scholar] [CrossRef]
- Bennett, R.M.; Friend, R.; Jones, K.D.; Ward, R.; Han, B.K.; Ross, R.L. The Revised Fibromyalgia Impact Questionnaire (FIQR): Validation and psychometric properties. Arthritis Res. Ther. 2009, 11, R120. [Google Scholar] [CrossRef] [PubMed]
- Dworkin, R.H.; Turk, D.C.; Revicki, D.A.; Harding, G.; Coyne, K.S.; Peirce-Sandner, S.; Bhagwat, D.; Everton, D.; Burke, L.B.; Cowan, P.; et al. Development and initial validation of an expanded and revised version of the Short-form McGill Pain Questionnaire (SF-MPQ-2). Pain 2009, 144, 35–42. [Google Scholar] [CrossRef]
- Vierck, C.J., Jr.; Cannon, R.L.; Fry, G.; Maixner, W.; Whitsel, B.L. Characteristics of temporal summation of second pain sensations elicited by brief contact of glabrous skin by a preheated thermode. J. Neurophysiol. 1997, 78, 992–1002. [Google Scholar] [CrossRef]
- Stroman, P.W.; Bosma, R.L.; Cotoi, A.I.; Leung, R.H.; Kornelsen, J.; Lawrence-Dewar, J.M.; Pukall, C.F.; Staud, R. Continuous Descending Modulation of the Spinal Cord Revealed by Functional MRI. PLoS ONE 2016, 11, e0167317. [Google Scholar] [CrossRef] [PubMed]
- Ioachim, G.; Powers, J.M.; Warren, H.J.M.; Stroman, P.W. Coordinated Human Brainstem and Spinal Cord Networks during the Expectation of Pain Have Elements Unique from Resting-State Effects. Brain Sci. 2020, 10, 568. [Google Scholar] [CrossRef] [PubMed]
- Stroman, P.W.; Ioachim, G.; Powers, J.M.; Staud, R.; Pukall, C. Pain processing in the human brainstem and spinal cord before, during, and after the application of noxious heat stimuli. Pain 2018, 159, 2012–2020. [Google Scholar] [CrossRef] [PubMed]
- Staud, R.; Robinson, M.E.; Price, D.D. Temporal summation of second pain and its maintenance are useful for characterizing widespread central sensitization of fibromyalgia patients. J. Pain 2007, 8, 893–901. [Google Scholar] [CrossRef] [PubMed]
- Staud, R.; Vierck, C.J.; Cannon, R.L.; Mauderli, A.P.; Price, D.D. Abnormal sensitization and temporal summation of second pain (wind-up) in patients with fibromyalgia syndrome. Pain 2001, 91, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Bosma, R.L.; Ameli Mojarad, E.; Leung, L.; Pukall, C.; Staud, R.; Stroman, P.W. Neural correlates of temporal summation of second pain in the human brainstem and spinal cord. Hum. Brain Mapp. 2015, 36, 5038–5050. [Google Scholar] [CrossRef] [PubMed]
- Warren, H.J.M.; Ioachim, G.; Powers, J.M.; Stroman, P.W. How fMRI Analysis Using Structural Equation Modeling Techniques Can Improve Our Understanding of Pain Processing in Fibromyalgia. J. Pain Res. 2021, 14, 381–398. [Google Scholar] [CrossRef] [PubMed]
- Powers, J.M.; Ioachim, G.; Stroman, P.W. Ten Key Insights into the Use of Spinal Cord fMRI. Brain Sci. 2018, 8, 173. [Google Scholar] [CrossRef] [PubMed]
- Stroman, P.W.; Powers, J.M.; Ioachim, G.; Warren, H.J.M.; McNeil, K. Investigation of the neural basis of expectation-based analgesia in the human brainstem and spinal cord by means of functional magnetic resonance imaging. Neurobiol. Pain 2021, 10, 100068. [Google Scholar] [CrossRef]
- Stroman, P.W.; Warren, H.J.M.; Ioachim, G.; Powers, J.M.; McNeil, K. A comparison of the effectiveness of functional MRI analysis methods for pain research: The new normal. PLoS ONE 2020, 15, e0243723. [Google Scholar] [CrossRef]
- Millan, M.J. Descending control of pain. Prog. Neurobiol. 2002, 66, 355–474. [Google Scholar] [CrossRef] [PubMed]
- Ilne, R.J.; West, A.R. Interactive effects of noradrenergic and serotonergic antidepressants on locus coeruleus neuronal activity. Brain Res. 2001. [Google Scholar] [CrossRef]
- Szabadi, E. Modulation of physiological reflexes by pain: Role of the Locus Coeruleus. Front. Integr. Neurosci. 2012, 6, 94. [Google Scholar] [CrossRef]
- Samuels, E.R.; Szabadi, E. Functional neuroanatomy of the noradrenergic locus coeruleus: Its roles in the regulation of arousal and autonomic function part II: Physiological and pharmacological manipulations and pathological alterations of locus coeruleus activity in humans. Curr. Neuropharmacol. 2008, 6, 254–285. [Google Scholar] [CrossRef] [PubMed]
- Walch, J.M.; Rabin, B.S.; Day, R.; Williams, J.N.; Choi, K.; Kang, J.D. The effect of sunlight on postoperative analgesic medication use: A prospective study of patients undergoing spinal surgery. Psychosom. Med. 2005, 67, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Geenen, R.; Jacobs, J.W.; Bijlsma, J.W. Evaluation and management of endocrine dysfunction in fibromyalgia. Rheum. Dis. Clin. N. Am. 2002, 28, 389–404. [Google Scholar] [CrossRef] [PubMed]
- Demori, I.; Giordano, G.; Mucci, V.; Losacco, S.; Marinelli, L.; Massobrio, P.; Blanchini, F.; Burlando, B. Thalamocortical bistable switch as a theoretical model of fibromyalgia pathogenesis inferred from a literature survey. J. Comput. Neurosci. 2022, 50, 471–484. [Google Scholar] [CrossRef]
- Martucci, K.T.; Weber, K.A., II; Mackey, S.C. Altered Cervical Spinal Cord Resting-State Activity in Fibromyalgia. Arthritis Rheumatol. 2019, 71, 441–450. [Google Scholar] [CrossRef]
- Martinez-Lavin, M.; Vidal, M.; Barbosa, R.E.; Pineda, C.; Casanova, J.M.; Nava, A. Norepinephrine-evoked pain in fibromyalgia. A randomized pilot study [ISRCTN70707830]. BMC Musculoskelet. Disord. 2002, 3, 2. [Google Scholar] [CrossRef]
- Bazzichi, L.; Giannaccini, G.; Betti, L.; Mascia, G.; Fabbrini, L.; Italiani, P.; De Feo, F.; Giuliano, T.; Giacomelli, C.; Rossi, A.; et al. Alteration of serotonin transporter density and activity in fibromyalgia. Arthritis Res. Ther. 2006, 8, R99. [Google Scholar] [CrossRef]
Demographic Measures | HC (Mean ± SD) | FM (Mean ± SD) |
---|---|---|
Age | 39.2 ± 10.3 | 46.7 ± 13.5 |
BMI | 27.6 ± 3.8 | 25.8 ± 5.1 |
Normalized Pain Score | 0.72 ± 0.2 | 1.01 ± 0.2 |
First Pain Score | 24.6 ± 14.4 | 41.6 ± 14.2 |
Last Pain Score | 36.8 ± 14.2 | 46.1 ± 14.9 |
Fibromyalgia | Healthy Controls | |||||||
---|---|---|---|---|---|---|---|---|
Pain | No-Pain | Pain | No-Pain | |||||
Connections | DB | T | DB | T | DB | T | DB | T |
PBN→Thal | 0.166 ± 0.040 | 4.38 | 0.185 ± 0.087 | 2.21 | 0.282 ± 0.078 | 3.70 | 0.305 ± 0.078 | 4.02 |
LC→Hypo | 0.319 ± 0.107 | 3.58 | 0.436 ± 0.137 | 3.66 | 0.376 ± 0.137 | 3.22 | 0.255 ± 0.150 | 2.13 |
PBN→Hypo | 0.165 ± 0.063 | 2.90 | 0.254 ± 0.048 | 5.69 | 0.103 ± 0.050 | 2.40 | 0.266 ± 0.089 | 3.20 |
Hypo→LC | 0.227 ± 0.110 | 2.81 | 0.311 ± 0.110 | 3.58 | 0.088 ± 0.161 | 1.05 | 0.128 ± 0.172 | 1.22 |
LC→Thal | 0.286 ± 0.107 | 2.74 | 0.286 ± 0.108 | 2.72 | 0.528 ± 0.097 | 5.54 | 0.379 ± 0.098 | 3.93 |
LC→DRt | −0.074 ± 0.127 | −0.25 | −0.438 ± 0.103 | −3.82 | −0.326 ± 0.119 | −2.38 | −0.268 ± 0.125 | −1.81 |
LC→PBN | 0.119 ± 0.113 | 1.29 | 0.324 ± 0.160 | 2.19 | 0.439 ± 0.123 | 3.78 | 0.274 ± 0.105 | 2.86 |
Connection | Effect | FM (Connectivity Values, DB) | HC (Connectivity Values, DB) | p-Value | P-Threshold |
---|---|---|---|---|---|
C6RD-Thalamus | Interaction | −0.113 ± 0.200 | −0.012 ± 0.147 | 0.0082 | 0.05 |
PAG-NTS | Interaction | 0.084 ± 0.094 | 0.120 ± 0.086 | 0.0234 | 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassanpour, S.; Algitami, H.; Umraw, M.; Merletti, J.; Keast, B.; Stroman, P.W. Investigating Descending Pain Regulation in Fibromyalgia and the Link to Altered Autonomic Regulation by Means of Functional MRI Data. Brain Sci. 2024, 14, 450. https://doi.org/10.3390/brainsci14050450
Hassanpour S, Algitami H, Umraw M, Merletti J, Keast B, Stroman PW. Investigating Descending Pain Regulation in Fibromyalgia and the Link to Altered Autonomic Regulation by Means of Functional MRI Data. Brain Sciences. 2024; 14(5):450. https://doi.org/10.3390/brainsci14050450
Chicago/Turabian StyleHassanpour, Shima, Hannan Algitami, Maya Umraw, Jessica Merletti, Brieana Keast, and Patrick W. Stroman. 2024. "Investigating Descending Pain Regulation in Fibromyalgia and the Link to Altered Autonomic Regulation by Means of Functional MRI Data" Brain Sciences 14, no. 5: 450. https://doi.org/10.3390/brainsci14050450
APA StyleHassanpour, S., Algitami, H., Umraw, M., Merletti, J., Keast, B., & Stroman, P. W. (2024). Investigating Descending Pain Regulation in Fibromyalgia and the Link to Altered Autonomic Regulation by Means of Functional MRI Data. Brain Sciences, 14(5), 450. https://doi.org/10.3390/brainsci14050450