Motor Imagery Classification Using Effective Channel Selection of Multichannel EEG
Abstract
:1. Introduction
2. Related Works
3. Data Description
3.1. Dataset 1
3.2. Dataset 2
4. Methodology
- The entropy of each channel of a trial is calculated. The Shannon entropy is used here.
- The obtained entropy score is used to select the adequate number of channels.
- The EEG signals of the selected channels are decomposed into a finite set of sub-bands using the Butterworth bandpass filter.
- Sub-band trial is generated by an accumulated similar sub-band obtained from all of the selected channels. Common spatial pattern (CSP)-based features are extracted from the sub-band trial.
- A feature vector is formulated by combining the features extracted from each sub-band trial.
- The classification is performed by implementing a support vector machine (SVM) along with the feature vector.
4.1. Data Preprocessing
4.2. Effective Channel Selection
4.3. Sub-Band Decomposition
4.4. Feature Extraction
4.5. Classification
5. Experimental Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
fMRI | Functional Magnetic Response Imaging |
MEG | Magnetoencephalogram |
EOG | Electrooculography |
ERD | Event-Related Desynchronization |
ERS | Event-related synchronization |
CSP | Common Spatial Pattern |
SVM | Support Vector Machine |
ANN | Artificial Neural Network |
LDA | Linear Discriminant Analysis |
BSS | Blind Source Separation |
RCSP | Regularized Common Spatial Pattern |
RBF | Radial Basis Function |
FBCSP | Filter-Bank Common Spatial Pattern |
TSGSP | Time Constrained Sparse Group Spatial Pattern |
SCSP | Sparse Common Spatial Pattern |
DCR | Dynamic Channel Relevance |
References
- Wolpaw, J.R.; Birbaumer, N.; Heetderks, W.J.; McFarland, D.J.; Peckham, P.H.; Schalk, G.; Donchin, E.; Quatrano, L.A.; Robinson, C.J.; Vaughan, T.M.; et al. Brain-computer interface technology: A review of the first international meeting. IEEE Trans. Rehabil. Eng. 2000, 8, 164–173. [Google Scholar] [CrossRef] [PubMed]
- Miah, A.S.M.; Islam, M.R.; Molla, M.K.I. Motor imagery classification using subband tangent space mapping. In Proceedings of the 2017 20th International Conference of Computer and Information Technology (ICCIT), Dhaka, Bangladesh, 22–24 December 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–5. [Google Scholar]
- Wolpaw, J.R.; McFarland, D.J.; Neat, G.W.; Forneris, C.A. An EEG-based brain-computer interface for cursor control. Electroencephalogr. Clin. Neurophysiol. 1991, 78, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Gaur, P.; Pachori, R.B.; Wang, H.; Prasad, G. A multi-class EEG-based BCI classification using multivariate empirical mode decomposition based filtering and Riemannian geometry. Expert Syst. Appl. 2018, 95, 201–211. [Google Scholar] [CrossRef]
- Li, D.; Wang, J.; Xu, J.; Fang, X. Densely feature fusion based on convolutional neural networks for motor imagery EEG classification. IEEE Access 2019, 7, 132720–132730. [Google Scholar] [CrossRef]
- Miah, A.S.M.; Islam, M.R.; Molla, M.K.I. EEG classification for MI-BCI using CSP with averaging covariance matrices: An experimental study. In Proceedings of the 2019 International Conference on Computer, Communication, Chemical, Materials and Electronic Engineering (IC4ME2), Rajshahi, Bangladesh, 11–12 July 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–5. [Google Scholar]
- Miah, A.S.M.; Ahmed, S.R.A.; Ahmed, M.R.; Bayat, O.; Duru, A.D.; Molla, M.K.I. Motor-Imagery BCI task classification using riemannian geometry and averaging with mean absolute deviation. In Proceedings of the 2019 Scientific Meeting on Electrical-Electronics & Biomedical Engineering and Computer Science (EBBT), Istanbul, Turkey, 24–26 April 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–7. [Google Scholar]
- Miah, A.S.M.; Rahim, M.A.; Shin, J. Motor-imagery classification using riemannian geometry with median absolute deviation. Electronics 2020, 9, 1584. [Google Scholar] [CrossRef]
- Pfurtscheller, G.; Da Silva, F.L. Event-related EEG/MEG synchronization and desynchronization: Basic principles. Clin. Neurophysiol. 1999, 110, 1842–1857. [Google Scholar] [CrossRef] [PubMed]
- Pfurtscheller, G.; Neuper, C. Motor imagery and direct brain-computer communication. Proc. IEEE 2001, 89, 1123–1134. [Google Scholar] [CrossRef]
- Miah, A.S.M.; Mouly, M.A.; Debnath, C.; Shin, J.; Sadakatul Bari, S. Event-Related Potential Classification based on EEG data using xDWAN with MDM and KNN. In Proceedings of the Computing Science, Communication and Security: Second International Conference, COMS2 2021, Gujarat, India, 6–7 February 2021; Revised Selected Papers. Springer: Berlin/Heidelberg, Germany, 2021; pp. 112–126. [Google Scholar]
- Joy, M.M.H.; Hasan, M.; Miah, A.S.M.; Ahmed, A.; Tohfa, S.A.; Bhuaiyan, M.F.I.; Zannat, A.; Rashid, M.M. Multiclass mi-task classification using logistic regression and filter bank common spatial patterns. In Proceedings of the Computing Science, Communication and Security: First International Conference, COMS2 2020, Gujarat, India, 26–27 March 2020; Revised Selected Papers. Springer: Berlin/Heidelberg, Germany, 2020; pp. 160–170. [Google Scholar]
- Miah, A.S.M.; Shin, J.; Hasan, M.A.M.; Molla, M.K.I.; Okuyama, Y.; Tomioka, Y. Movie Oriented Positive Negative Emotion Classification from EEG Signal using Wavelet transformation and Machine learning Approaches. In Proceedings of the 2022 IEEE 15th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC), Penang, Malaysia, 19–22 December 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 26–31. [Google Scholar]
- Kabir, M.H.; Mahmood, S.; Al Shiam, A.; Musa Miah, A.S.; Shin, J.; Molla, M.K.I. Investigating Feature Selection Techniques to Enhance the Performance of EEG-Based Motor Imagery Tasks Classification. Mathematics 2023, 11, 1921. [Google Scholar] [CrossRef]
- Miah, A.S.M.; Shin, J.; Islam, M.M.; Molla, M.K.I. Natural Human Emotion Recognition Based on Various Mixed Reality (MR) Games and Electroencephalography (EEG) Signals. In Proceedings of the 2022 IEEE 5th Eurasian Conference on Educational Innovation (ECEI), Taipei, Taiwan, 10–12 February 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 408–411. [Google Scholar]
- Zobaed, T.; Ahmed, S.R.A.; Miah, A.S.M.; Binta, S.M.; Ahmed, M.R.A.; Rashid, M. Real time sleep onset detection from single channel EEG signal using block sample entropy. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Thi-Qar, Iraq, 15–16 July 2020; IOP Publishing: Bristol, UK, 2020; Volume 928, p. 032021. [Google Scholar]
- Zhang, X.; Yao, L.; Wang, X.; Monaghan, J.; Mcalpine, D.; Zhang, Y. A survey on deep learning-based non-invasive brain signals: Recent advances and new frontiers. J. Neural Eng. 2021, 18, 031002. [Google Scholar] [CrossRef]
- Arvaneh, M.; Guan, C.; Ang, K.K.; Quek, C. Optimizing the channel selection and classification accuracy in EEG-based BCI. IEEE Trans. Biomed. Eng. 2011, 58, 1865–1873. [Google Scholar] [CrossRef]
- Qi, F.; Wu, W.; Yu, Z.L.; Gu, Z.; Wen, Z.; Yu, T.; Li, Y. Spatiotemporal-filtering-based channel selection for single-trial EEG classification. IEEE Trans. Cybern. 2020, 51, 558–567. [Google Scholar] [CrossRef] [PubMed]
- Alotaiby, T.; El-Samie, F.E.A.; Alshebeili, S.A.; Ahmad, I. A review of channel selection algorithms for EEG signal processing. EURASIP J. Adv. Signal Process. 2015, 2015, 66. [Google Scholar] [CrossRef]
- Cai, S.; Li, H.; Wu, Q.; Liu, J.; Zhang, Y. Motor imagery decoding in the presence of distraction using graph sequence neural networks. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 30, 1716–1726. [Google Scholar] [CrossRef] [PubMed]
- Sannelli, C.; Dickhaus, T.; Halder, S.; Hammer, E.M.; Müller, K.R.; Blankertz, B. On optimal channel configurations for SMR-based brain–computer interfaces. Brain Topogr. 2010, 23, 186–193. [Google Scholar] [CrossRef]
- Jin, J.; Miao, Y.; Daly, I.; Zuo, C.; Hu, D.; Cichocki, A. Correlation-based channel selection and regularized feature optimization for MI-based BCI. Neural Netw. 2019, 118, 262–270. [Google Scholar] [CrossRef] [PubMed]
- Ghaemi, A.; Rashedi, E.; Pourrahimi, A.M.; Kamandar, M.; Rahdari, F. Automatic channel selection in EEG signals for classification of left or right hand movement in Brain Computer Interfaces using improved binary gravitation search algorithm. Biomed. Signal Process. Control 2017, 33, 109–118. [Google Scholar] [CrossRef]
- Park, Y.; Chung, W. Optimal channel selection using correlation coefficient for CSP based EEG classification. IEEE Access 2020, 8, 111514–111521. [Google Scholar] [CrossRef]
- Zhang, Y.; Nam, C.S.; Zhou, G.; Jin, J.; Wang, X.; Cichocki, A. Temporally constrained sparse group spatial patterns for motor imagery BCI. IEEE Trans. Cybern. 2018, 49, 3322–3332. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Yu, Z.L. Cross-correlation based discriminant criterion for channel selection in motor imagery BCI systems. J. Neural Eng. 2021, 18, 046083. [Google Scholar] [CrossRef]
- Baig, M.Z.; Aslam, N.; Shum, H.P. Filtering techniques for channel selection in motor imagery EEG applications: A survey. Artif. Intell. Rev. 2020, 53, 1207–1232. [Google Scholar] [CrossRef]
- Feng, J.K.; Jin, J.; Daly, I.; Zhou, J.; Niu, Y.; Wang, X.; Cichocki, A. An optimized channel selection method based on multifrequency CSP-rank for motor imagery-based BCI system. Comput. Intell. Neurosci. 2019, 2019, 8068357. [Google Scholar] [CrossRef]
- Tiwari, A.; Chaturvedi, A. A novel channel selection method for BCI classification using dynamic channel relevance. IEEE Access 2021, 9, 126698–126716. [Google Scholar] [CrossRef]
- Park, Y.; Chung, W. Frequency-optimized local region common spatial pattern approach for motor imagery classification. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 1378–1388. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Zhao, Y.; Sun, H.; Chen, J.; Ke, A.; Xu, G.; Zhang, H.; Zhou, J.; Wang, C. A fast, open EEG classification framework based on feature compression and channel ranking. Front. Neurosci. 2018, 12, 217. [Google Scholar] [CrossRef] [PubMed]
- Dornhege, G.; Blankertz, B.; Curio, G.; Muller, K.R. Boosting bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass paradigms. IEEE Trans. Biomed. Eng. 2004, 51, 993–1002. [Google Scholar] [CrossRef] [PubMed]
- BBCI Competition IV—Motor Imagery Data Set. Available online: https://www.bbci.de/competition/iv/ (accessed on 17 April 2024).
- Zarei, A.; Asl, B.M. Automatic seizure detection using orthogonal matching pursuit, discrete wavelet transform, and entropy based features of EEG signals. Comput. Biol. Med. 2021, 131, 104250. [Google Scholar] [CrossRef] [PubMed]
- Roy, G.; Bhoi, A.; Bhaumik, S. A comparative approach for MI-based EEG signals classification using energy, power and entropy. IRBM 2022, 43, 434–446. [Google Scholar] [CrossRef]
- Catherine Joy, R.; Thomas George, S.; Albert Rajan, A.; Subathra, M. Detection of ADHD from EEG signals using different entropy measures and ANN. Clin. EEG Neurosci. 2022, 53, 12–23. [Google Scholar] [CrossRef] [PubMed]
- Ra, J.S.; Li, T.; Li, Y. A novel permutation entropy-based EEG channel selection for improving epileptic seizure prediction. Sensors 2021, 21, 7972. [Google Scholar] [CrossRef]
- Acharya, U.R.; Fujita, H.; Sudarshan, V.K.; Bhat, S.; Koh, J.E. Application of entropies for automated diagnosis of epilepsy using EEG signals: A review. Knowl.-Based Syst. 2015, 88, 85–96. [Google Scholar] [CrossRef]
- Tibrewal, N.; Leeuwis, N.; Alimardani, M. Classification of motor imagery EEG using deep learning increases performance in inefficient BCI users. PLoS ONE 2022, 17, e0268880. [Google Scholar] [CrossRef] [PubMed]
- Molla, M.K.I.; Al Shiam, A.; Islam, M.R.; Tanaka, T. Discriminative feature selection-based motor imagery classification using EEG signal. IEEE Access 2020, 8, 98255–98265. [Google Scholar] [CrossRef]
- Molla, M.K.I.; Morikawa, N.; Islam, M.R.; Tanaka, T. Data-adaptive spatiotemporal ERP cleaning for single-trial BCI implementation. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 1334–1344. [Google Scholar] [CrossRef] [PubMed]
- Gaur, P.; Gupta, H.; Chowdhury, A.; McCreadie, K.; Pachori, R.B.; Wang, H. A sliding window common spatial pattern for enhancing motor imagery classification in EEG-BCI. IEEE Trans. Instrum. Meas. 2021, 70, 1–9. [Google Scholar] [CrossRef]
- Gu, J.; Wei, M.; Guo, Y.; Wang, H. Common spatial pattern with L21-norm. Neural Process. Lett. 2021, 53, 3619–3638. [Google Scholar] [CrossRef]
- Al Shiam, A.; Islam, M.R.; Tanaka, T.; Molla, M.K.I. Electroencephalography based motor imagery classification using unsupervised feature selection. In Proceedings of the 2019 International Conference on Cyberworlds (CW), Kyoto, Japan, 2–4 October 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 239–246. [Google Scholar]
- Vapnik, V. The Nature of Statistical Learning Theory; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Ye, J.; Li, Q. A two-stage linear discriminant analysis via QR-decomposition. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 929–941. [Google Scholar] [PubMed]
- Haykin, S. Neural Networks: A Comprehensive Foundation; Prentice Hall PTR: Hoboken, NJ, USA, 1998. [Google Scholar]
- Tam, W.K.; Tong, K.y.; Meng, F.; Gao, S. A minimal set of electrodes for motor imagery BCI to control an assistive device in chronic stroke subjects: A multi-session study. IEEE Trans. Neural Syst. Rehabil. Eng. 2011, 19, 617–627. [Google Scholar] [CrossRef] [PubMed]
- Sreeja, S.; Rabha, J.; Samanta, D.; Mitra, P.; Sarma, M. Classification of motor imagery based EEG signals using sparsity approach. In Proceedings of the Intelligent Human Computer Interaction: 9th International Conference, IHCI 2017, Evry, France, 11–13 December 2017; Proceedings 9. Springer International Publishing: Berlin/Heidelberg, Germany, 2017; pp. 47–59. [Google Scholar]
- Mahamune, R.; Laskar, S.H. An automatic channel selection method based on the standard deviation of wavelet coefficients for motor imagery based brain–computer interfacing. Int. J. Imaging Syst. Technol. 2023, 33, 714–728. [Google Scholar] [CrossRef]
- Qiu, Z.; Jin, J.; Lam, H.K.; Zhang, Y.; Wang, X.; Cichocki, A. Improved SFFS method for channel selection in motor imagery based BCI. Neurocomputing 2016, 207, 519–527. [Google Scholar] [CrossRef]
- Radman, M.; Chaibakhsh, A.; Nariman-zadeh, N.; He, H. Generalized sequential forward selection method for channel selection in EEG signals for classification of left or right hand movement in BCI. In Proceedings of the 2019 9th International Conference on Computer and Knowledge Engineering (ICCKE), Mashhad, Iran, 24–25 October 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 137–142. [Google Scholar]
- Tiwari, A.; Chaturvedi, A. Automatic EEG channel selection for multiclass brain-computer interface classification using multiobjective improved firefly algorithm. Multimed. Tools Appl. 2023, 82, 5405–5433. [Google Scholar] [CrossRef]
Dataset Name | BCI Competition III IVA |
---|---|
Subjects | aa, al, aw, av, ay |
Number of Subjects | 5 |
Channels | 118 |
Sample Frequency | 100 Hz |
Classes | Left Hand, Right Hand, Foot |
Tasks | Each subject completed any two of the classes |
Visual Cues Duration | 3.5 s |
Total Trials | 280 per subject (140 trials for each of the two classes) |
Samples per Trial | 350 (3.5 s × 100 Hz) |
Dataset Name | BCI Competition IV Dataset I |
---|---|
Subjects | a, b, c, d, e, f, g |
Number of Subjects | 7 |
Channels | 59 |
Sample Frequency | 100 Hz |
Classes | Left Hand, Right Hand, Foot |
Tasks | Each subject completed any two of the classes |
Visual Cues Duration | 4 s |
Total Trials | 200 per subject (100 trials for each of the two classes) |
Samples per Trial | 400 (4 s × 100 Hz) |
Subjects | No. of Channels | Classifier | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SVM | ANN | LDA | |||||||||||
Acc. | Prec. | Rec. | F1 | Acc. | Prec. | Rec. | F1 | Acc. | Prec. | Rec. | F1 | ||
aa | 30 | 86.43 | 84.96 | 87.14 | 86.04 | 83.75 | 84.38 | 82.16 | 83.26 | 81.43 | 80.73 | 82.29 | 81.50 |
al | 62 | 97.86 | 97.24 | 98.56 | 97.90 | 98.14 | 97.56 | 97.67 | 97.61 | 98.21 | 97.29 | 99.29 | 98.28 |
av | 67 | 78.93 | 78.64 | 77.96 | 78.30 | 71.21 | 73.12 | 65.04 | 68.84 | 68.57 | 68.12 | 72.57 | 70.27 |
aw | 63 | 97.86 | 96.67 | 97.88 | 97.27 | 96.43 | 95.33 | 97.19 | 96.25 | 96.07 | 96.55 | 97.86 | 97.20 |
ay | 59 | 95.72 | 93.98 | 95.36 | 94.67 | 94.07 | 94.16 | 95.56 | 94.85 | 96.07 | 95.60 | 95.00 | 95.30 |
Mean | 91.36 | 90.30 | 91.38 | 90.83 | 91.08 | 88.91 | 87.52 | 88.16 | 88.07 | 87.66 | 89.40 | 88.51 |
Subjects | No. of Channels | Classifier | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SVM | ANN | LDA | |||||||||||
Acc. | Prec. | Rec. | F1 | Acc. | Prec. | Rec. | F1 | Acc. | Prec. | Rec. | F1 | ||
a | 23 | 80.00 | 78.30 | 78.78 | 78.54 | 79.00 | 73.08 | 78.89 | 75.87 | 78.50 | 79.41 | 76.43 | 77.89 |
b | 31 | 67.00 | 67.00 | 67.00 | 67.00 | 61.80 | 62.44 | 61.00 | 61.71 | 59.50 | 58.88 | 62.00 | 60.40 |
c | 41 | 80.00 | 79.45 | 81.00 | 80.22 | 73.90 | 74.44 | 74.20 | 74.32 | 72.00 | 71.43 | 74.00 | 72.69 |
d | 46 | 91.00 | 90.41 | 91.00 | 90.7 | 88.20 | 87.79 | 89.10 | 88.44 | 89.50 | 87.38 | 93.00 | 90.10 |
e | 39 | 90.00 | 90.68 | 90.00 | 90.34 | 91.00 | 91.88 | 90.00 | 90.93 | 91.00 | 90.04 | 92.60 | 91.29 |
f | 31 | 91.00 | 90.15 | 90.00 | 90.07 | 85.95 | 88.69 | 83.00 | 85.75 | 86.50 | 84.75 | 89.00 | 86.82 |
g | 17 | 80.50 | 79.25 | 82.00 | 80.6 | 79.50 | 79.39 | 80.40 | 79.89 | 79.50 | 83.27 | 77.00 | 80.01 |
Mean | 82.79 | 82.18 | 82.83 | 82.50 | 79.91 | 79.67 | 79.51 | 79.56 | 79.50 | 79.31 | 80.58 | 79.89 |
Methods | Subjects Accuracy (Number of Selected Channels) | Mean ± STD | ||||
---|---|---|---|---|---|---|
aa | al | av | aw | ay | ||
stdWC [51] | 84.50 (16) | 98.10 (19) | 72.80 (12) | 95.10 (13) | 92.50 (20) | 88.80 ± 9.10 |
DCRCC [30] | 93.60 (24) | 79.2 (33) | 94.6 (11) | 85.54 (26) | 84.94 (31) | 87.58 ± 6.46 |
CSCC [25] | 89.29 (10) | 98.21 (7) | 73.47 (12) | 92.86 (9) | 89.29 (7) | 88.62 ± 9.22 |
CSP-R-MF [29] | 82.14 (12) | 96.42 (12) | 72.14 (12) | 84.38 (12) | 94.28 (12) | 85.87 ± 9.83 |
LRFCSP [31] | 83.93 (22) | 96.42 (7) | 74.49 (6) | 88.84 (7) | 89.29 (11) | 86.59 ± 8.10 |
CCS-RCSP [23] | 83.03 (42) | 96.42 (33) | 70.91 (52) | 92.41 (14) | 92.46 (67) | 87.05 ± 10.28 |
FCCR [32] | 78.57 (10) | 98.21 (10) | 72.45 (5) | 87.05 (15) | 93.25 (9) | 85.90 ± 10.51 |
Proposed Method | 86.36 (60) | 97.51 (60) | 76.20 (60) | 95.81 (60) | 95.38 (60) | 90.25 ± 8.98 |
Methods | Subjects Accuracy (Number of Selected Channels) | Mean ± STD | ||||||
---|---|---|---|---|---|---|---|---|
a | b | c | d | e | f | g | ||
Improved SFFS [52] | 69.00 (6) | 63.00 (15) | 87.00 (26) | 94.00 (29) | 96.00 (19) | 65.00 (8) | 72.00 (22) | 78.00 ± 14.00 |
FCCR [32] | 77.00 (14) | 71.00 (9) | 76.50 (9) | 77.00 (18) | 75.36 ± 2.53 | |||
GSFS [53] | 75.00 (6) | 72.00 (13) | 89.00 (11) | 78.00 (9) | 84.00 (14) | 78.00 (15) | 83.00 (12) | 79.80 ± 5.38 |
CSP-R-MF [41] | 81.50 (24) | 63.00 (24) | 79.00 (24) | 87.50 (24) | 77.75 ± 9.06 | |||
CSRI [54] | 72.80 (8) | 66.18 (12) | 83.72 (26) | 96.10 (13) | 83.50 (15) | 76.33 (14) | 87.33 (17) | 80.85 ± 9.18 |
Proposed Method | 80.00 (23) | 67.00 (31) | 80.00 (41) | 91.00 (46) | 90.00 (39) | 91.00 (31) | 80.00 (17) | 82.79 ± 8.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shiam, A.A.; Hassan, K.M.; Islam, M.R.; Almassri, A.M.M.; Wagatsuma, H.; Molla, M.K.I. Motor Imagery Classification Using Effective Channel Selection of Multichannel EEG. Brain Sci. 2024, 14, 462. https://doi.org/10.3390/brainsci14050462
Shiam AA, Hassan KM, Islam MR, Almassri AMM, Wagatsuma H, Molla MKI. Motor Imagery Classification Using Effective Channel Selection of Multichannel EEG. Brain Sciences. 2024; 14(5):462. https://doi.org/10.3390/brainsci14050462
Chicago/Turabian StyleShiam, Abdullah Al, Kazi Mahmudul Hassan, Md. Rabiul Islam, Ahmed M. M. Almassri, Hiroaki Wagatsuma, and Md. Khademul Islam Molla. 2024. "Motor Imagery Classification Using Effective Channel Selection of Multichannel EEG" Brain Sciences 14, no. 5: 462. https://doi.org/10.3390/brainsci14050462
APA StyleShiam, A. A., Hassan, K. M., Islam, M. R., Almassri, A. M. M., Wagatsuma, H., & Molla, M. K. I. (2024). Motor Imagery Classification Using Effective Channel Selection of Multichannel EEG. Brain Sciences, 14(5), 462. https://doi.org/10.3390/brainsci14050462