Do Individuals with Spinal Cord Injury Benefit from Semi-Immersive Virtual Reality Cognitive Training? Preliminary Results from an Exploratory Study on an Underestimated Problem
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Procedures
2.3. Outcomes Measures
2.4. BTS-Nirvana Tool
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alizadeh, A.; Dyck, S.M.; Karimi-Abdolrezaee, S. Traumatic Spinal Cord Injury: An Overview of Pathophysiology, Models and Acute Injury Mechanisms. Front. Neurol. 2019, 22, 282. [Google Scholar] [CrossRef]
- Bennett, J.M.; Das, J.; Emmady, P.D. Spinal Cord Injuries. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, January 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK560721/ (accessed on 5 March 2023).
- ASIA and ISCoS International Standards Committee. The 2019 revision of the International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI)-What’s new? Spinal Cord. 2019, 57, 815–817. [Google Scholar] [CrossRef]
- Fehlings, M.G.; Vaccaro, A.R.; Boakye, M.; Rossignol, S.; Ditunno, J.F., Jr.; Anthony, S. Burns Essentials of Spinal Cord Injury Basic Research to Clinical Practice; Thieme Medical Publishers Inc.: Denver, CO, USA, 2013. [Google Scholar]
- Nas, K.; Yazmalar, L.; Şah, V.; Aydın, A.; Öneş, K. Rehabilitation of spinal cord injuries. World J. Orthop. 2015, 6, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Duan, R.; Qu, M.; Yuan, Y.; Lin, M.; Liu, T.; Huang, W.; Gao, J.; Zhang, M.; Yu, X. Clinical Benefit of Rehabilitation Training in Spinal Cord Injury: A Systematic Review and Meta-Analysis. Spine 2021, 46, E398–E410. [Google Scholar] [CrossRef] [PubMed]
- Stampacchia, G.; Gazzotti, V.; Olivieri, M.; Andrenelli, E.; Bonaiuti, D.; Calabrò, R.S.; Carmignano, S.M.; Cassio, A.; Fundaro, C.; Companini, I.; et al. Gait robot-assisted rehabilitation in persons with spinal cord injury: A scoping review. NeuroRehabilitation 2022, 51, 609–647. [Google Scholar] [CrossRef] [PubMed]
- Miguel-Rubio, A.; Rubio, M.D.; Salazar, A.; Moral-Munoz, J.A.; Requena, F.; Camacho, R.; Lucena-Anton, D. Is Virtual Reality Effective for Balance Recovery in Patients with Spinal Cord Injury? A Systematic Review and Meta-Analysis. J. Clin. Med. 2020, 9, 2861. [Google Scholar] [CrossRef]
- de Araújo, A.V.L.; Neiva, J.F.O.; Monteiro, C.B.M.; Magalhães, F.H. Efficacy of Virtual Reality Rehabilitation after Spinal Cord Injury: A Systematic Review. BioMed Res. Int. 2019, 2019, 7106951. [Google Scholar] [CrossRef]
- Nightingale, T.E.; Lim, C.A.R.; Sachdeva, R.; Zheng, M.M.Z.; Phillips, A.A.; Krassioukov, A. Reliability of Cognitive Measures in Individuals With a Chronic Spinal Cord Injury. Pm&r 2019, 11, 1278–1286. [Google Scholar] [CrossRef]
- Maresca, G.; Maggio, M.G.; Buda, A.; La Rosa, G.; Manuli, A.; Bramanti, P.; De Luca, R.; Calabrò, R.S. A novel use of virtual reality in the treatment of cognitive and motor deficit in spinal cord injury: A case report. Medicine 2018, 97, e13559. [Google Scholar] [CrossRef]
- Pozeg, P.; Palluel, E.; Ronchi, R.; Solca, M.; Al-Khodairy, A.W.; Jordan, X.; Kassouha, A.; Blanke, O. Virtual reality improves embodiment and neuropathic pain caused by spinal cord injury. Neurology 2017, 89, 1894–1903. [Google Scholar] [CrossRef]
- Leemhuis, E.; Esposito, R.M.; De Gennaro, L.; Pazzaglia, M. Go Virtual to Get Real: Virtual Reality as a Resource for Spinal Cord Treatment. Int. J. Env. Res. Public Health 2021, 18, 1819. [Google Scholar] [CrossRef] [PubMed]
- An, C.M.; Park, Y.H. The effects of semi-immersive virtual reality therapy on standing balance and upright mobility function in individuals with chronic incomplete spinal cord injury: A preliminary study. J. Spinal Cord. Med. 2018, 41, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Kirshblum, S.C.; Burns, S.P.; Biering-Sørensen, F.; Donovan, W.; Graves, D.E.; Jha, A.; Johansen, M.; Jones, L.; Krassioukov, A.; Mulcahey, M.J.; et al. International standards for neurological classification of spinal cord injury (Revised 2011). J. Spinal Cord. Med. 2011, 34, 535–546. [Google Scholar] [CrossRef]
- De Luca, R.; Russo, M.; Naro, A.; Tomasello, P.; Leonardi, S.; Santamaria, F.; Desireè, L.; Bramanti, A.; Silvestri, G.; Bramanti, P.; et al. Effects of virtual reality-based training with BTs-Nirvana on functional recovery in stroke patients: Preliminary considerations. Int. J. Neurosci. 2018, 128, 791–796. [Google Scholar] [CrossRef] [PubMed]
- De Luca, R.; Maggio, M.G.; Maresca, G.; Latella, D.; Cannavò, A.; Sciarrone, F.; Lo Voi, E.; Accorinti, M.; Bramanti, P.; Calabrò, R.S. Improving Cognitive Function after Traumatic Brain Injury: A Clinical Trial on the Potential Use of the Semi-Immersive Virtual Reality. Behav. Neurol. 2019, 2019, 9268179. [Google Scholar] [CrossRef] [PubMed]
- Vints, W.A.J.; Levin, O.; Masiulis, N.; Verbunt, J.; van Laake-Geelen, C.C.M. Myokines may target accelerated cognitive aging in people with spinal cord injury: A systematic and topical review. Neurosci. Biobehav. Rev. 2023, 146, 105065. [Google Scholar] [CrossRef] [PubMed]
- Alcántar-Garibay, O.V.; Incontri-Abraham, D.; Ibarra, A. Spinal cord injury-induced cognitive impairment: A narrative review. Neural. Regen. Res. 2022, 17, 2649–2654. [Google Scholar] [CrossRef]
- Leemhuis, E.; Giuffrida, V.; Giannini, A.M.; Pazzaglia, M. A Therapeutic Matrix: Virtual Reality as a Clinical Tool for Spinal Cord Injury-Induced Neuropathic Pain. Brain Sci. 2021, 11, 1201. [Google Scholar] [CrossRef]
- Maggio, M.G.; Stagnitti, M.C.; Rizzo, E.; Andaloro, A.; Manuli, A.; Bruschetta, A.; Naro, A.; Calabrò, R.S. Limb apraxia in individuals with multiple sclerosis: Is there a role of semi-immersive virtual reality in treating the Cinderella of neuropsychology? Mult. Scler. Relat. Disord. 2023, 69, 104405. [Google Scholar] [CrossRef]
- Robitaille, N.; Jackson, P.L.; Hébert, L.J.; Mercier, C.; Bouyer, L.J.; Fecteau, S.; Richards, C.L.; McFadyen, B.J. A Virtual Reality avatar interaction (VRai) platform to assess residual executive dysfunction in active military personnel with previous mild traumatic brain injury: Proof of concept. Disable. Rehabil. Assist. Technol. 2017, 12, 758–764. [Google Scholar] [CrossRef]
- Maggio, M.G.; Naro, A.; De Luca, R.; Latella, D.; Balletta, T.; Caccamo, L.; Pioggia, G.; Bruschetta, D.; Calabrò, R.S. Body Representation in Patients with Severe Spinal Cord Injury: A Pilot Study on the Promising Role of Powered Exoskeleton for Gait Training. J. Pers. Med. 2022, 12, 619. [Google Scholar] [CrossRef] [PubMed]
- Maggio, M.G.; Naro, A.; Manuli, A.; Maresca, G.; Balletta, T.; Latella, D.; De Luca, R.; Calabrò, R.S. Effects of Robotic Neurorehabilitation on Body Representation in Individuals with Stroke: A Preliminary Study Focusing on an EEG-Based Approach. Brain Topogr. 2021, 34, 348–362. [Google Scholar] [CrossRef] [PubMed]
- Cook, A.W.; Druckemiller, W.H. Phantom limb in paraplegic patients; report of two cases and an analysis of its mechanism. J. Neurosurg. 1952, 9, 508–516. [Google Scholar] [CrossRef] [PubMed]
- Enander, J.M.D.; Jones, A.M.; Kirkland, M.; Hurless, J.C.; Jorntell, H.; Loeb, G.E. A Model for Self-Organization of Sensorimotor Function: The Spinal Monosynaptic Loop. J. Neurophysiol. 2022, 127, 1460–1477. [Google Scholar] [CrossRef]
- Donoghue, J.P. Plasticity of adult sensorimotor representations. Curr. Opin. Neurobiol. 1995, 5, 749–754. [Google Scholar] [CrossRef]
- Leonardi, S.; Maggio, M.G.; Russo, M.; Bramanti, A.; Arcadi, F.A.; Naro, A.; Calabrò, R.S.; De Luca, R. Cognitive recovery in people with relapsing/remitting multiple sclerosis: A randomized clinical trial on virtual reality-based neurorehabilitation. Clin Neurol Neurosurg. 2021, 208, 106828. [Google Scholar] [CrossRef]
- Bonanno, M.; De Luca, R.; De Nunzio, A.M.; Quartarone, A.; Calabrò, R.S. Innovative Technologies in the Neurorehabilitation of Traumatic Brain Injury: A Systematic Review. Brain Sci. 2022, 12, 1678. [Google Scholar] [CrossRef]
- Scandola, M.; Aglioti, S.M.; Lazzeri, G.; Avesani, R.; Ionta, R.; Moro, V. Visuo-motor and interoceptive influences on peripersonal space representation following spinal cord injury. Sci. Rep. 2020, 10, 5162. [Google Scholar] [CrossRef]
- Veerbeek, J.M.; van Wegen, E.; van Peppen, R.; van der Wees, P.J.; Hendriks, E.; Rietberg, M.; Kwakkel, G. What is the evidence for physical therapy poststroke? A systematic review and metaanalysis. PLoS ONE 2014, 9, e8798. [Google Scholar] [CrossRef]
- Jingili, N.; Oyelere, S.S.; Ojwang, F.; Agbo, F.J.; Nyström, M.B.T. Virtual Reality for Addressing Depression and Anxiety: A Bibliometric Analysis. Int. J. Environ. Res. Public Health 2023, 20, 5621. [Google Scholar] [CrossRef]
- Freitag, F.; Brucki, S.M.D.; Barbosa, A.F.; Chen, J.; Souza, C.O.; Valente, D.F.; Chien, H.F.; Bedeschi, C.; Voos, M.C. Is virtual reality beneficial for dual-task gait training in patients with Parkinson’s disease? A systematic review. Dement. Neuropsychol. 2019, 13, 259–267. [Google Scholar] [CrossRef] [PubMed]
Experimental Group | Control Group | All | p-Value | |
---|---|---|---|---|
Patients | 21 | 21 | 42 | |
Age (years) | 58.6 ± 15.0 | 58.6 ± 9.0 | 58.6 ± 12.6 | 0.99 |
Gender | 0.99 | |||
Female | 10 (40.0%) | 10 (40.0%) | 20 (40.0%) | |
Male | 11 (60.0%) | 11 (60.0%) | 22 (60.0%) | |
Education | 0.23 | |||
Elementary school | - | - | - | |
Middle school | 5 (23.8%) | 3 (14.3%) | 8 (19.0%) | |
High school | 14 (66.7%) | 12 (57.1%) | 26 (62.0%) | |
University | 2 (9.5%) | 6 (28.6%) | 8 (19.0%) | |
Spinal Injury Disability (ASIA) | 0.99 | |||
ASIA—A patients | 10 (47.6%) | 10 (47.6%) | 20 (47.6%) | |
ASIA—B patients | 11 (52.3%) | 11 (52.3%) | 22 (52.3%) | |
Time Post—Injury | 0.93 | |||
AIS—A patients | 7 ± 1 | 6 ± 2 | 7 ± 2 | |
AIS—B patients | 6 ± 2 | 7 ± 2 | 7 ± 2 |
Clinical Scale | Mean (DS) | p-Value | |
---|---|---|---|
MOCA | CG-A T0/EG-A T0 | 21.4 (4.3)–22.2 (2.3) | 0.60 |
CG-B T0/EG-B T0 | 21.3 (4.1)–23.4 (2.2) | 0.15 | |
CG-A T1/EG-A T1 | 22.7 (4.3)–25.8 (1.9) | 0.05 | |
CG-B T1/EG-B T1 | 21.6 (3.5)–26.1 (1.9) | <0.001 | |
CG-A T0/CG-A T1 | 21.4 (4.3)–22.7 (4.3) | 0.006 | |
CG-B T0/CG-B T1 | 21.3 (4.1)–21.6 (3.5) | 0.50 | |
EG-A T0/EG-A T1 | 22.2 (2.3)–25.8 (1.9) | <0.001 | |
EG B T0-EG B T1 | 23.4 (2.2)–26.1 (1.9) | <0.001 | |
CG A T0-CG B T0 | 21.4 (4.3)–21.3 (4.1) | 0.94 | |
CG A T1-CG B T1 | 22.7 (4.3)–22.6 (3.5) | 0.54 | |
EG A T0-EG B T0 | 22.2 (2.3)–23.4 (2.2) | 0.25 | |
EG A T1-EG B T1 | 25.8 (1.9)–26.1 (1.9) | 0.74 | |
CG A T0-EG A T1 | 21.4 (4.3)–25.8 (1.9) | 0.008 | |
EG B T0-CG B T1 | 23.4 (2.2)–21.6 (3.5) | 0.18 | |
EG B T1-CG B T0 | 26.1 (1.9)–21.3 (4.1) | <0.001 | |
BDI | CG-A T0/EG-A T0 | 17.5 (6.3)–12.5 (7.3) | 0.12 |
CG-B T0/EG-B T0 | 14.5 (6.1)–107 (7.6) | 0.21 | |
CG-A T1/EG-A T1 | 16.6 (4.3)–5.6 (6.3) | <0.001 | |
CG-B T1/EG-B T1 | 12.5 (6.2)–5.2 (4.8) | 0.009 | |
CG-A T0/CG-A T1 | 17.5 (6.3)–16.6 (14.3) | 0.43 | |
CG-B T0/CG-B T1 | 14.5 (6.1)–12.5 (6.2) | <0.001 | |
EG-A T0/EG-A T1 | 12.5 (7.3)–5.6 (6.3) | <0.001 | |
EG B T0-EG B T1 | 10.7 (7.6)–5.2 (4.8) | 0.14 | |
CG A T0-CG B T0 | 17.5 (6.3)–14.5 (6.1) | 0.29 | |
CG A T1-CG B T1 | 16.6 (4.3)–12.5 (6.2) | 0.09 | |
EG A T0-EG B T0 | 15.5 (7.3)–10.7 (7.6) | 0.59 | |
EG A T1-EG B T1 | 5.6 (6.3)–5.2 (4.8) | 0.87 | |
CG A T0-EG A T1 | 17.50 (6.3)–12.5 (7.3) | <0.001 | |
EG B T0-CG B T1 | 10.7 (7.6)–12.5 (6.2) | 0.54 | |
EG B T1-CG B T0 | 5.2 (4.8)–14.5 (6.1) | <0.001 | |
SF-12 TOTAL | CG-A T0/EG-A T0 | 27.8 (8.1)–21.1 (5.7) | 0.39 |
CG-B T0/EG-B T0 | 24.5 (8.2)–26.9 (6.2) | 0.45 | |
CG-A T1/EG-A T1 | 30.3 (10.2)–35 (4.5) | 0.19 | |
CG-B T1/EG-B T1 | 26.1 (7.5)–35.7 (6.4) | <0.001 | |
CG-A T0/CG-A T1 | 27.8 (8.1)–30.3 (10.2) | 0.19 | |
CG-B T0/CG-B T1 | 24.5 (8.2)–26.1 (7.5) | 0.03 | |
EG-A T0/EG-A T1 | 21.1 (5.7)–35 (4.5) | <0.001 | |
EG B T0-EG B T1 | 26.9 (6.2)–35.7 (6.4) | <0.001 | |
CG A T0-CG B T0 | 27.8 (8.1)–24.5 (8.2) | 0.37 | |
CG A T1-CG B T1 | 30.3 (10.2)–26.1 (7.5) | 0.29 | |
EG A T0-EG B T0 | 21.1 (5.7)–26.9 (6.2) | 0.49 | |
EG A T1-EG B T1 | 35 (4.5)–35.7 (6.4) | 0.77 | |
CG A T0-EG A T1 | 27.8 (8.1)–35 (4.5) | 0.02 | |
EG B T0-CG B T1 | 26.9 (6.2)–26.1 (7.5) | 0.78 | |
EG B T1-CG B T0 | 35.7 (6.4)–24.5 (8.2) | <0.001 | |
SF-12 PHYSICAL | CG-A T0/EG-A T0 | 15.4 (5.3)–12.2 (2.4) | 0.01 |
CG-B T0/EG-B T0 | 13.3 (3.6)–11.9 (3.5) | 0.38 | |
CG-A T1/EG-A T1 | 15.2 (4.7)–16.8 (2.6) | 0.36 | |
CG-B T1/EG-B T1 | 15 (3.7)–16.5 (2.4) | 0.29 | |
CG-A T0/CG-A T1 | 15.4 (5.3)–15.2 (4.7) | 0.90 | |
CG-B T0/CG-B T1 | 13.3 (3.6)–15 (3.7) | 0.07 | |
EG-A T0/EG-A T1 | 12.2 (2.4)–16.8 (2.6) | <0.001 | |
EG B T0-EG B T1 | 11.9 (3.5)–16.5 (2.4) | <0.001 | |
CG A T0-CG B T0 | 15.4 (5.3)–13.3 (3.6) | 0.29 | |
CG A T1-CG B T1 | 15.2 (4.7)–15 (3.7) | 0.91 | |
EG A T0-EG B T0 | 12.2 (2.4)–11.9 (3.5) | 0.83 | |
EG A T1-EG B T1 | 16.8 (2.6)–16.5 (2.4) | 0.75 | |
CG A T0-EG A T1 | 15.4 (5.3)–16.8 (2.6) | 0.46 | |
EG B T0-CG B T1 | 11.9 (3.5)–15 (3.7) | 0.06 | |
EG B T1-CG B T0 | 16.5 (2.4)–13.3 (3.6) | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maggio, M.G.; Bonanno, M.; Manuli, A.; Onesta, M.P.; De Luca, R.; Quartarone, A.; Calabrò, R.S. Do Individuals with Spinal Cord Injury Benefit from Semi-Immersive Virtual Reality Cognitive Training? Preliminary Results from an Exploratory Study on an Underestimated Problem. Brain Sci. 2023, 13, 945. https://doi.org/10.3390/brainsci13060945
Maggio MG, Bonanno M, Manuli A, Onesta MP, De Luca R, Quartarone A, Calabrò RS. Do Individuals with Spinal Cord Injury Benefit from Semi-Immersive Virtual Reality Cognitive Training? Preliminary Results from an Exploratory Study on an Underestimated Problem. Brain Sciences. 2023; 13(6):945. https://doi.org/10.3390/brainsci13060945
Chicago/Turabian StyleMaggio, Maria Grazia, Mirjam Bonanno, Alfredo Manuli, Maria Pia Onesta, Rosaria De Luca, Angelo Quartarone, and Rocco Salvatore Calabrò. 2023. "Do Individuals with Spinal Cord Injury Benefit from Semi-Immersive Virtual Reality Cognitive Training? Preliminary Results from an Exploratory Study on an Underestimated Problem" Brain Sciences 13, no. 6: 945. https://doi.org/10.3390/brainsci13060945
APA StyleMaggio, M. G., Bonanno, M., Manuli, A., Onesta, M. P., De Luca, R., Quartarone, A., & Calabrò, R. S. (2023). Do Individuals with Spinal Cord Injury Benefit from Semi-Immersive Virtual Reality Cognitive Training? Preliminary Results from an Exploratory Study on an Underestimated Problem. Brain Sciences, 13(6), 945. https://doi.org/10.3390/brainsci13060945