Prediction of Mortality in Geriatric Traumatic Brain Injury Patients Using Machine Learning Algorithms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Data Collection
2.3. Statistical Analysis
3. Results
3.1. Baseline Characteristics of Included TBI Patients
3.2. Performance of Machine Learning Algorithms for Predicting Mortality in Geriatric TBI Patients
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stein, D.M.; Kozar, R.A.; Livingston, D.H.; Luchette, F.; Adams, S.D.; Agrawal, V.; Arbabi, S.; Ballou, J.; Barraco, R.D.; Bernard, A.C.; et al. Geriatric traumatic brain injury-What we know and what we don’t. J. Trauma Acute Care Surg. 2018, 85, 788–798. [Google Scholar] [CrossRef] [PubMed]
- Suehiro, E.; Fujiyama, Y.; Kiyohira, M.; Haji, K.; Ishihara, H.; Nomura, S.; Suzuki, M. Risk of Deterioration of Geriatric Traumatic Brain Injury in Patients Treated with Antithrombotic Drugs. World Neurosurg. 2019, 127, e1221–e1227. [Google Scholar] [CrossRef] [PubMed]
- Eom, K.S. Epidemiology and Outcomes of Traumatic Brain Injury in Elderly Population: A Multicenter Analysis Using Korean Neuro-Trauma Data Bank System 2010–2014. J. Korean Neurosurg. Soc. 2019, 62, 243–255. [Google Scholar] [CrossRef] [PubMed]
- Thompson, H.J.; Weir, S.; Rivara, F.P.; Wang, J.; Sullivan, S.D.; Salkever, D.; MacKenzie, E.J. Utilization and costs of health care after geriatric traumatic brain injury. J. Neurotrauma 2012, 29, 1864–1871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suehiro, E.; Suzuki, M. (4) Pitfalls in the Treatment of Geriatric Traumatic Brain Injury. No Shinkei Geka Neurol. Surg. 2018, 46, 1127–1135. [Google Scholar]
- Thompson, H.J.; McCormick, W.C.; Kagan, S.H. Traumatic brain injury in older adults: Epidemiology, outcomes, and future implications. J. Am. Geriatr. Soc. 2006, 54, 1590–1595. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Traumatic Brain Injury and Concussion. Updated 6 July 2017. Available online: https://www.cdc.gov/traumaticbraininjury/data/dist_death.html (accessed on 21 December 2017).
- Shimoda, K.; Maeda, T.; Tado, M.; Yoshino, A.; Katayama, Y.; Bullock, M.R. Outcome and surgical management for geriatric traumatic brain injury: Analysis of 888 cases registered in the Japan Neurotrauma Data Bank. World Neurosurg. 2014, 82, 1300–1306. [Google Scholar] [CrossRef] [Green Version]
- Mushkudiani, N.A.; Engel, D.C.; Steyerberg, E.W.; Butcher, I.; Lu, J.; Marmarou, A.; Slieker, F.; McHugh, G.S.; Murray, G.D.; Maas, A.I. Prognostic value of demographic characteristics in traumatic brain injury: Results from the IMPACT study. J. Neurotrauma 2007, 24, 259–269. [Google Scholar] [CrossRef]
- Toida, C.; Muguruma, T.; Gakumazawa, M.; Shinohara, M.; Abe, T.; Takeuchi, I.; Morimura, N. Age- and Severity-Related In-Hospital Mortality Trends and Risks of Severe Traumatic Brain Injury in Japan: A Nationwide 10-Year Retrospective Study. J. Clin. Med. 2021, 10, 1072. [Google Scholar] [CrossRef]
- Hosomi, S.; Kitamura, T.; Sobue, T.; Ogura, H.; Shimazu, T. Sex and age differences in isolated traumatic brain injury: A retrospective observational study. BMC Neurol. 2021, 21, 261. [Google Scholar] [CrossRef]
- Benedetto, N.; Gambacciani, C.; Montemurro, N.; Morganti, R.; Perrini, P. Surgical management of acute subdural haematomas in elderly: Report of a single center experience. Br. J. Neurosurg. 2017, 31, 244–248. [Google Scholar] [CrossRef]
- Won, S.Y.; Dubinski, D.; Brawanski, N.; Strzelczyk, A.; Seifert, V.; Freiman, T.M.; Konczalla, J. Significant increase in acute subdural hematoma in octo- and nonagenarians: Surgical treatment, functional outcome, and predictors in this patient cohort. Neurosurg. Focus 2017, 43, E10. [Google Scholar] [CrossRef] [Green Version]
- Fu, W.W.; Fu, T.S.; Jing, R.; McFaull, S.R.; Cusimano, M.D. Predictors of falls and mortality among elderly adults with traumatic brain injury: A nationwide, population-based study. PLoS ONE 2017, 12, e0175868. [Google Scholar] [CrossRef]
- Hosomi, S.; Sobue, T.; Kitamura, T.; Ogura, H.; Shimazu, T. Nationwide improvements in geriatric mortality due to traumatic brain injury in Japan. BMC Emerg. Med. 2022, 22, 24. [Google Scholar] [CrossRef]
- Eapen, B.C.; Allred, D.B.; O’Rourke, J.; Cifu, D.X. Rehabilitation of moderate-to-severe traumatic brain injury. Semin. Neurol. 2015, 35, e1–e3. [Google Scholar]
- Gu, D.; Ou, S.; Liu, G. Traumatic Brain Injury and Risk of Dementia and Alzheimer’s Disease: A Systematic Review and Meta-Analysis. Neuroepidemiology 2022, 56, 4–16. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, Z.H.; Liu, X.; Zhang, Z.; Gu, X.; Yu, S.P.; Keene, C.D.; Cheng, L.; Ye, K. Traumatic brain injury triggers APP and Tau cleavage by delta-secretase, mediating Alzheimer’s disease pathology. Prog. Neurobiol. 2020, 185, 101730. [Google Scholar] [CrossRef]
- Howlett, J.R.; Nelson, L.D.; Stein, M.B. Mental Health Consequences of Traumatic Brain Injury. Biol. Psychiatry 2022, 91, 413–420. [Google Scholar] [CrossRef]
- Faul, M.; Wald, M.M.; Rutland-Brown, W.; Sullivent, E.E.; Sattin, R.W. Using a cost-benefit analysis to estimate outcomes of a clinical treatment guideline: Testing the Brain Trauma Foundation guidelines for the treatment of severe traumatic brain injury. J. Trauma 2007, 63, 1271–1278. [Google Scholar] [CrossRef] [Green Version]
- Prang, K.H.; Ruseckaite, R.; Collie, A. Healthcare and disability service utilization in the 5-year period following transport-related traumatic brain injury. Brain Inj. 2012, 26, 1611–1620. [Google Scholar] [CrossRef]
- Okazaki, T.; Hifumi, T.; Kawakita, K.; Nakashima, R.; Matsumoto, A.; Shishido, H.; Ogawa, D.; Okauchi, M.; Shindo, A.; Kawanishi, M.; et al. Association Between Comorbidities, Nutritional Status, and Anticlotting Drugs and Neurologic Outcomes in Geriatric Patients with Traumatic Brain Injury. World Neurosurg. 2016, 93, 336–340. [Google Scholar] [CrossRef] [PubMed]
- Yokobori, S.; Yamaguchi, M.; Igarashi, Y.; Hironaka, K.; Onda, H.; Kuwamoto, K.; Araki, T.; Fuse, A.; Yokota, H. Outcome and Refractory Factor of Intensive Treatment for Geriatric Traumatic Brain Injury: Analysis of 1165 Cases Registered in the Japan Neurotrauma Data Bank. World Neurosurg. 2016, 86, 127–133.e121. [Google Scholar] [CrossRef] [PubMed]
- Utomo, W.K.; Gabbe, B.J.; Simpson, P.M.; Cameron, P.A. Predictors of in-hospital mortality and 6-month functional outcomes in older adults after moderate to severe traumatic brain injury. Injury 2009, 40, 973–977. [Google Scholar] [CrossRef] [PubMed]
- Baker, S.P.; O’Neill, B.; Haddon, W., Jr.; Long, W.B. The injury severity score: A method for describing patients with multiple injuries and evaluating emergency care. J. Trauma 1974, 14, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Civil, I.D.; Schwab, C.W. The Abbreviated Injury Scale, 1985 revision: A condensed chart for clinical use. J. Trauma 1988, 28, 87–90. [Google Scholar] [CrossRef]
- Hukkelhoven, C.W.; Steyerberg, E.W.; Rampen, A.J.; Farace, E.; Habbema, J.D.; Marshall, L.F.; Murray, G.D.; Maas, A.I. Patient age and outcome following severe traumatic brain injury: An analysis of 5600 patients. J. Neurosurg. 2003, 99, 666–673. [Google Scholar] [CrossRef]
- Mosenthal, A.C.; Lavery, R.F.; Addis, M.; Kaul, S.; Ross, S.; Marburger, R.; Deitch, E.A.; Livingston, D.H. Isolated traumatic brain injury: Age is an independent predictor of mortality and early outcome. J. Trauma 2002, 52, 907–911. [Google Scholar] [CrossRef]
- Tokutomi, T.; Miyagi, T.; Ogawa, T.; Ono, J.; Kawamata, T.; Sakamoto, T.; Shigemori, M.; Nakamura, N. Age-associated increases in poor outcomes after traumatic brain injury: A report from the Japan Neurotrauma Data Bank. J. Neurotrauma 2008, 25, 1407–1414. [Google Scholar] [CrossRef]
- Marmarou, A.; Lu, J.; Butcher, I.; McHugh, G.S.; Murray, G.D.; Steyerberg, E.W.; Mushkudiani, N.A.; Choi, S.; Maas, A.I. Prognostic value of the Glasgow Coma Scale and pupil reactivity in traumatic brain injury assessed pre-hospital and on enrollment: An IMPACT analysis. J. Neurotrauma 2007, 24, 270–280. [Google Scholar] [CrossRef]
- Hoffmann, M.; Lefering, R.; Rueger, J.M.; Kolb, J.P.; Izbicki, J.R.; Ruecker, A.H.; Rupprecht, M.; Lehmann, W. Pupil evaluation in addition to Glasgow Coma Scale components in prediction of traumatic brain injury and mortality. Br. J. Surg. 2012, 99 (Suppl. 1), 122–130. [Google Scholar] [CrossRef]
- Emami, P.; Czorlich, P.; Fritzsche, F.S.; Westphal, M.; Rueger, J.M.; Lefering, R.; Hoffmann, M. Impact of Glasgow Coma Scale score and pupil parameters on mortality rate and outcome in pediatric and adult severe traumatic brain injury: A retrospective, multicenter cohort study. J. Neurosurg. 2017, 126, 760–767. [Google Scholar] [CrossRef]
- Staples, J.A.; Wang, J.; Zaros, M.C.; Jurkovich, G.J.; Rivara, F.P. The application of IMPACT prognostic models to elderly adults with traumatic brain injury: A population-based observational cohort study. Brain Inj. 2016, 30, 899–907. [Google Scholar] [CrossRef]
- Saxena, M.K.; Taylor, C.; Hammond, N.; Young, P.; Mysore, J.; Billot, L.; Myburgh, A.; Myburgh, J. A multicentre audit of temperature patterns after traumatic brain injury. Crit. Care Resusc. J. Australas. Acad. Crit. Care Med. 2015, 17, 129–134. [Google Scholar]
- Gaither, J.B.; Chikani, V.; Stolz, U.; Viscusi, C.; Denninghoff, K.; Barnhart, B.; Mullins, T.; Rice, A.D.; Mhayamaguru, M.; Smith, J.J.; et al. Body Temperature after EMS Transport: Association with Traumatic Brain Injury Outcomes. Prehosp. Emerg. Care 2017, 21, 575–582. [Google Scholar] [CrossRef]
- Wettervik, T.S.; Howells, T.; Lewén, A.; Enblad, P. Blood Pressure Variability and Optimal Cerebral Perfusion Pressure-New Therapeutic Targets in Traumatic Brain Injury. Neurosurgery 2020, 86, E300–E309. [Google Scholar] [CrossRef]
- Gao, C.; Wang, H.; Wang, T.; Luo, C.; Wang, Z.; Zhang, M.; Chen, X.; Tao, L. Platelet regulates neuroinflammation and restores blood-brain barrier integrity in a mouse model of traumatic brain injury. J. Neurochem. 2020, 154, 190–204. [Google Scholar] [CrossRef]
- Riojas, C.M.; Ekaney, M.L.; Ross, S.W.; Cunningham, K.W.; Furay, E.J.; Brown, C.V.R.; Evans, S.L. Platelet Dysfunction after Traumatic Brain Injury: A Review. J. Neurotrauma 2021, 38, 819–829. [Google Scholar] [CrossRef]
- Guillotte, A.R.; Herbert, J.P.; Madsen, R.; Hammer, R.D.; Litofsky, N.S. Effects of platelet dysfunction and platelet transfusion on outcomes in traumatic brain injury patients. Brain Inj. 2018, 32, 1849–1857. [Google Scholar] [CrossRef]
- Ge, X.; Zhu, L.; Li, W.; Sun, J.; Chen, F.; Li, Y.; Lei, P.; Zhang, J. Red Cell Distribution Width to Platelet Count Ratio: A Promising Routinely Available Indicator of Mortality for Acute Traumatic Brain Injury. J. Neurotrauma 2021, 39, 159–171. [Google Scholar] [CrossRef]
- Wang, R.; He, M.; Zhang, J.; Wang, S.; Xu, J. A Prognostic Model Incorporating Red Cell Distribution Width to Platelet Ratio for Patients with Traumatic Brain Injury. Ther. Clin. Risk Manag. 2021, 17, 1239–1248. [Google Scholar] [CrossRef]
- Wan, X.; Zhao, K.; Wang, S.; Zhang, H.; Zeng, L.; Wang, Y.; Han, L.; Beejadhursing, R.; Shu, K.; Lei, T. Is It Reliable to Predict the Outcome of Elderly Patients with Severe Traumatic Brain Injury Using the IMPACT Prognostic Calculator? World Neurosurg. 2017, 103, 584–590. [Google Scholar] [CrossRef] [PubMed]
- Moorthy, D.G.S.R.K.; Rajesh, K.; Priya, S.M.; Abhinov, T.; Prasad, K.J.D. Prediction of Outcome Based on Trauma and Injury Severity Score, IMPACT and CRASH Prognostic Models in Moderate-to-Severe Traumatic Brain Injury in the Elderly. Asian J. Neurosurg. 2021, 16, 500–506. [Google Scholar] [CrossRef] [PubMed]
- Staples, J.A.; Wang, J.; Mills, B.; Temkin, N.; Zaros, M.C.; Jurkovich, G.J.; Rivara, F.P. The Application of the CRASH-CT Prognostic Model for Older Adults with Traumatic Brain Injury: A Population-Based Observational Cohort Study. J. Head Trauma Rehabil. 2016, 31, E8–E14. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; He, Z. Characterizing Risk of In-Hospital Mortality Following Subarachnoid Hemorrhage Using Machine Learning: A Retrospective Study. Front. Surg. 2022, 9, 891984. [Google Scholar] [CrossRef] [PubMed]
- Maldaner, N.; Zeitlberger, A.M.; Sosnova, M.; Goldberg, J.; Fung, C.; Bervini, D.; May, A.; Bijlenga, P.; Schaller, K.; Roethlisberger, M.; et al. Development of a Complication- and Treatment-Aware Prediction Model for Favorable Functional Outcome in Aneurysmal Subarachnoid Hemorrhage Based on Machine Learning. Neurosurgery 2021, 88, E150–E157. [Google Scholar] [CrossRef]
- Trevisi, G.; Caccavella, V.M.; Scerrati, A.; Signorelli, F.; Salamone, G.G.; Orsini, K.; Fasciani, C.; D’Arrigo, S.; Auricchio, A.M.; D’Onofrio, G.; et al. Machine learning model prediction of 6-month functional outcome in elderly patients with intracerebral hemorrhage. Neurosurg. Rev. 2022, 45, 2857–2867. [Google Scholar] [CrossRef]
- Hale, A.T.; Stonko, D.P.; Brown, A.; Lim, J.; Voce, D.J.; Gannon, S.R.; Le, T.M.; Shannon, C.N. Machine-learning analysis outperforms conventional statistical models and CT classification systems in predicting 6-month outcomes in pediatric patients sustaining traumatic brain injury. Neurosurg. Focus 2018, 45, E2. [Google Scholar] [CrossRef]
- Daley, M.; Cameron, S.; Ganesan, S.L.; Patel, M.A.; Stewart, T.C.; Miller, M.R.; Alharfi, I.; Fraser, D.D. Pediatric severe traumatic brain injury mortality prediction determined with machine learning-based modeling. Injury 2022, 53, 992–998. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Denil, M.; Matheson, D.; Freitas, N.D. Narrowing the Gap: Random Forests in Theory and in Practice. In Proceedings of the 31st International Conference on Machine Learning, Beijing, China, 21–26 June 2014; pp. 665–673. [Google Scholar]
- Shakeel, P.M.; Tolba, A.; Al-Makhadmeh, Z.; Jaber, M.M. Automatic detection of lung cancer from biomedical data set using discrete AdaBoost optimized ensemble learning generalized neural networks. Neural Comput. Appl. 2019, 33, 777–790. [Google Scholar] [CrossRef]
Variables | Overall Patients (n = 1123) | Survivors (n = 845, 75.2%) | Non-Survivors (n = 278, 24.8%) | p |
---|---|---|---|---|
Age (year) | 81.0 (74.6–86.6) | 80.7 (74.0–85.9) | 82.2 (76.5–87.9) | 0.010 |
Male gender (%) | 571 (50.8%) | 426 (50.4%) | 145 (52.2%) | 0.663 |
Diabetes (%) | 258 (23.0%) | 185 (21.9%) | 73 (26.3%) | 0.156 |
Hypertension (%) | 630 (56.1%) | 494 (58.5%) | 136 (48.9%) | 0.007 |
Systolic blood pressure (mmHg) | 137 (121–152) | 138 (123–153) | 135 (114–150) | 0.014 |
Diastolic blood pressure (mmHg) | 65 (53–76) | 65 (54–76) | 63 (52–75) | 0.099 |
Heart rate (s−1) | 80 (70–91) | 80 (70–91) | 81 (70–93) | 0.171 |
Respiratory rate (s−1) | 18 (15–20) | 18 (15–20) | 18 (15–21) | 0.400 |
Body temperature (℉) | 97.9 (96.9–99.0) | 98.0 (97.1–99.0) | 97.6 (96.4–98.7) | <0.001 |
SpO2 (%) | 98 (96–100) | 98 (96–100) | 99 (97–100) | <0.001 |
Pupillary nonreactivity (size, %) | <0.001 | |||
None | 969 (86.3%) | 773 (91.5%) | 196 (70.5%) | |
One size | 64 (5.7%) | 42 (5.0%) | 22 (7.9%) | |
Two size | 90 (8.0%) | 30 (3.6%) | 60 (21.6%) | |
GCS | 14 (7–15) | 14 (10–15) | 7 (5–13) | <0.001 |
AIS face | 0 | 0 | 0 | 0.315 |
AIS head | 4 (3–4) | 4 (3–4) | 4 (4–5) | <0.001 |
AIS chest | 0 | 0 | 0 | 0.029 |
AIS abdomen | 0 | 0 | 0 | 0.870 |
AIS surface | 0 | 0 | 0 | 0.158 |
AIS limb | 0 | 0 | 0 | 0.728 |
ISS | 16 (16–20) | 16 (16–17) | 16 (16–25) | <0.001 |
Epidural hematoma (%) | 165 (14.7%) | 106 (12.5%) | 59 (21.2%) | 0.001 |
Subdural hematoma (%) | 696 (62.0%) | 533 (63.1%) | 163 (58.6%) | 0.210 |
Subarachnoid hemorrhage (%) | 403 (35.9%) | 289 (34.2%) | 114 (41.0%) | 0.048 |
Intracerebral hemorrhage (%) | 185 (16.5%) | 135 (16.0%) | 50 (18.0%) | 0.490 |
White blood cell (109/L) | 10.80 (8.10–14.10) | 10.30 (7.70–13.40) | 12.65 (9.53–16.43) | <0.001 |
Platelet (109/L) | 216 (173–267) | 220 (176–269) | 206 (165–260) | 0.030 |
Red blood cell (109/L) | 3.96 (3.58–4.36) | 3.97 (3.59–4.37) | 3.90 (3.42–4.34) | 0.100 |
Red cell distribution width (%) | 13.9 (13.2–14.9) | 13.8 (13.2–14.7) | 14.1 (13.4–15.3) | <0.001 |
Hemoglobin (g/dL) | 12.2 (10.9–13.4) | 12.3 (11.1–13.5) | 12.0 (10.5–13.2) | 0.010 |
Glucose (mg/dL) | 137 (113–173) | 132 (110–163) | 160 (128–192) | <0.001 |
Blood urea nitrogen (mg/dL) | 21 (16–28) | 21 (16–27) | 23 (17–32) | <0.001 |
Serum creatinine (mg/dL) | 1.00 (0.80–1.30) | 1.00 (0.80–1.20) | 1.10 (0.90–1.40) | <0.001 |
Sodium (mmol/L) | 139 (137–141) | 139 (137–141) | 139 (137–142) | 0.384 |
Potassium (mmol/L) | 4.00 (3.70–4.50) | 4.00 (3.70–4.40) | 4.00 (3.60–4.50) | 0.548 |
Phosphorus (mmol/L) | 3.20 (2.70–3.70) | 3.20 (2.80–3.70) | 3.20 (2.70–3.80) | 0.853 |
Calcium (mmol/L) | 8.50 (7.35–9.00) | 8.50 (7.70–9.10) | 8.30 (1.18–9.00) | 0.002 |
Magnesium (mmol/L) | 1.90 (1.70–2.10) | 1.90 (1.70–2.10) | 1.90 (1.60–2.10) | 0.519 |
Chloride (mmol/L) | 103 (100–106) | 103 (100–106) | 103 (100–107) | 0.093 |
Anion gap (mmol/L) | 15 (13–17) | 15 (13–17) | 15 (14–17) | 0.002 |
Prothrombin time (s) | 13.10 (12.40–15.00) | 13.00 (12.30–14.70) | 13.40 (12.62–15.85) | <0.001 |
International normalized ratio | 1.10 (1.00–1.40) | 1.10 (1.00–1.30) | 1.20 (1.10–1.50) | <0.001 |
Mechanical ventilation (%) | 407 (36.2%) | 219 (25.9%) | 188 (67.6%) | <0.001 |
Neurosurgical operation (%) | 269 (24.0%) | 205 (24.3%) | 64 (23.0%) | 0.735 |
30-day mortality (%) | 278 (24.8%) | 0 (0.0%) | 278 (100.0%) | <0.001 |
Length of hospital stay (day) | 7 (4–12) | 7 (4–12) | 6 (3–10) | <0.001 |
Training Set | AUC | 95% CI | Sensitivity | Specificity | Accuracy | F Score |
---|---|---|---|---|---|---|
Decision tree | 0.825 | 0.789–0.861 | 0.686 | 0.840 | 0.803 | 0.628 |
Random Forest | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
SVM | 0.985 | 0.979–0.991 | 0.974 | 0.928 | 0.938 | 0.884 |
Naïve Bayes | 0.684 | 0.647–0.721 | 0.455 | 0.913 | 0.802 | 0.527 |
Logistic | 0.859 | 0.828–0.890 | 0.77 | 0.802 | 0.793 | 0.643 |
Adaboost | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
XGboost | 1.000 | 1.000 | 1.000 | 0.998 | 1.000 | 1.000 |
Testing set | AUC | 95% CI | Sensitivity | Specificity | Accuracy | F score |
Decision Tree | 0.712 | 0.647–0.777 | 0.425 | 0.908 | 0.783 | 0.503 |
Random Forest | 0.795 | 0.739–0.851 | 0.609 | 0.868 | 0.801 | 0.613 |
SVM | 0.785 | 0.730–0.840 | 0.713 | 0.712 | 0.712 | 0.561 |
Naïve Bayes | 0.658 | 0.602–0.715 | 0.437 | 0.880 | 0.766 | 0.490 |
Logistic | 0.792 | 0.736–0.848 | 0.644 | 0.784 | 0.745 | 0.561 |
Adaboost | 0.799 | 0.746–0.853 | 0.701 | 0.792 | 0.769 | 0.610 |
XGboost | 0.766 | 0.709–0.823 | 0.724 | 0.680 | 0.691 | 0.548 |
Variables | Univariate Logistic Regression Analysis | Multivariate Logistic Regression Analysis | ||||
---|---|---|---|---|---|---|
OR | 95% Cl | p | OR | 95% Cl | p | |
Age | 1.031 | 1.009–1.054 | 0.006 | 1.054 | 1.023–1.087 | 0.001 |
Male gender | 1.044 | 0.753–1.447 | 0.796 | |||
Diabetes | 1.370 | 0.940–1.996 | 0.101 | |||
Hypertension | 0.774 | 0.558–1.074 | 0.125 | |||
Systolic blood pressure | 0.992 | 0.985–0.998 | 0.013 | 1.002 | 0.994–1.010 | 0.667 |
Diastolic blood pressure | 0.991 | 0.982–1.001 | 0.077 | |||
Heart rate | 1.007 | 0.997–1.016 | 0.171 | |||
Respiratory rate | 0.991 | 0.960–1.024 | 0.595 | |||
Body temperature | 0.783 | 0.709–0.866 | <0.001 | 0.825 | 0.728–0.934 | 0.002 |
SpO2 | 1.052 | 0.993–1.115 | 0.084 | |||
Pupillary nonreactivity | <0.001 | 0.001 | ||||
None | 1.000 | [Reference] | 1.000 | [Reference] | ||
One size | 1.930 | 0.995–3.743 | 0.052 | 1.509 | 0.668–3.410 | 0.322 |
Two size | 9.797 | 5.546–17.305 | <0.001 | 3.745 | 1.818–7.716 | <0.001 |
GCS | 0.786 | 0.754–0.820 | <0.001 | 0.888 | 0.831–0.948 | <0.001 |
AIS face | 0.899 | 0.700–1.154 | 0.403 | |||
AIS head | 2.767 | 1.993–3.841 | <0.001 | 2.383 | 1.309–4.339 | 0.004 |
AIS chest | 1.202 | 1.044–1.384 | 0.010 | 1.071 | 0.776–1.477 | 0.678 |
AIS abdomen | 1.041 | 0.767–1.414 | 0.796 | |||
AIS surface | 0.669 | 0.291–1.542 | 0.346 | |||
AIS limb | 1.057 | 0.869–1.287 | 0.579 | |||
ISS | 1.069 | 1.045–1.094 | <0.001 | 0.980 | 0.919–1.044 | 0.530 |
Epidural hematoma | 1.776 | 1.154–2.734 | 0.009 | 1.419 | 0.788–2.556 | 0.244 |
Subdural hematoma | 0.791 | 0.567–1.103 | 0.166 | |||
Subarachnoid hemorrhage | 1.204 | 0.859–1.687 | 0.282 | |||
Intracerebral hemorrhage | 1.317 | 0.871–1.992 | 0.192 | |||
White blood cell | 1.097 | 1.063–1.133 | <0.001 | 1.077 | 1.039–1.117 | <0.001 |
Platelet | 1.000 | 0.998–1.002 | 0.897 | |||
Red blood cell | 0.843 | 0.658–1.080 | 0.176 | |||
Red cell distribution width | 1.121 | 1.022–1.230 | 0.015 | 1.118 | 0.981–1.273 | 0.093 |
Hemoglobin | 0.903 | 0.832–0.981 | 0.015 | 0.916 | 0.816–1.029 | 0.139 |
Glucose | 1.006 | 1.003–1.008 | <0.001 | 1.002 | 0.999–1.005 | 0.239 |
Blood urea nitrogen | 1.013 | 1.002–1.024 | 0.026 | 1.002 | 0.986–1.018 | 0.831 |
Serum creatinine | 1.183 | 0.979–1.429 | 0.081 | |||
Sodium | 1.020 | 0.983–1.059 | 0.302 | |||
Potassium | 0.955 | 0.751–1.215 | 0.710 | |||
Phosphorus | 1.011 | 0.833–1.228 | 0.909 | |||
Calcium | 0.946 | 0.902–0.993 | 0.025 | 1.113 | 1.038–1.193 | 0.003 |
Magnesium | 0.916 | 0.541–1.553 | 0.745 | |||
Chloride | 1.048 | 1.016–1.082 | 0.003 | 1.025 | 0.983–1.067 | 0.245 |
Anion gap | 1.054 | 1.002–1.109 | 0.041 | 1.048 | 0.975–1.125 | 0.201 |
Prothrombin time | 1.018 | 0.997–1.038 | 0.089 | |||
International normalized ratio | 1.185 | 1.000–1.404 | 0.050 | |||
Mechanical ventilation | 5.768 | 4.053–8.208 | <0.001 | 3.542 | 2.012–6.238 | <0.001 |
Neurosurgical operation | 0.992 | 0.676–1.457 | 0.969 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Zeng, X.; Long, Y.; Zhang, J.; Bo, H.; He, M.; Xu, J. Prediction of Mortality in Geriatric Traumatic Brain Injury Patients Using Machine Learning Algorithms. Brain Sci. 2023, 13, 94. https://doi.org/10.3390/brainsci13010094
Wang R, Zeng X, Long Y, Zhang J, Bo H, He M, Xu J. Prediction of Mortality in Geriatric Traumatic Brain Injury Patients Using Machine Learning Algorithms. Brain Sciences. 2023; 13(1):94. https://doi.org/10.3390/brainsci13010094
Chicago/Turabian StyleWang, Ruoran, Xihang Zeng, Yujuan Long, Jing Zhang, Hong Bo, Min He, and Jianguo Xu. 2023. "Prediction of Mortality in Geriatric Traumatic Brain Injury Patients Using Machine Learning Algorithms" Brain Sciences 13, no. 1: 94. https://doi.org/10.3390/brainsci13010094
APA StyleWang, R., Zeng, X., Long, Y., Zhang, J., Bo, H., He, M., & Xu, J. (2023). Prediction of Mortality in Geriatric Traumatic Brain Injury Patients Using Machine Learning Algorithms. Brain Sciences, 13(1), 94. https://doi.org/10.3390/brainsci13010094