A Holistic Analysis of Individual Brain Activity Revealed the Relationship of Brain Areal Activity with the Entire Brain’s Activity
Abstract
:1. Introduction
2. Materials and Methods
3. Results
The Relationship between the TC r and SC R
4. Discussion and Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ogawa, S.; Lee, T.M.; Kay, A.R.; Tank, D.W. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci. USA 1990, 87, 9868–9872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwong, K.K.; Belliveau, J.W.; Chesler, D.A.; Goldberg, I.E.; Weisskoff, R.M.; Poncelet, B.P.; Kennedy, D.N.; Hoppel, B.E.; Cohen, M.S.; Turner, R. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc. Natl. Acad. Sci. USA 1992, 89, 5675–5679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buxton, R.B.; Wong, E.C.; Frank, L.R. Dynamics of blood flow and oxygenation changes during brain activation: The balloon model. Magn. Reson. Med. 1998, 39, 855–864. [Google Scholar] [CrossRef] [PubMed]
- Logothetis, N.K.; Wandell, B.A. Interpreting the BOLD signal. Annu. Rev. Physiol. 2004, 66, 735–769. [Google Scholar] [CrossRef]
- Viswanathan, A.; Freeman, R.D. Neurometabolic coupling in cerebral cortex reflects synaptic more than spiking activity. Nat. Neurosci. 2007, 10, 1308–1312. [Google Scholar] [CrossRef]
- Logothetis, N.K. What we can do and what we cannot do with fMRI. Nature 2008, 453, 869–878. [Google Scholar] [CrossRef]
- Finn, E.S.; Shen, X.; Scheinost, D.; Rosenberg, M.; Huang, J.; Chun, M.; Papademetris, X.; Constable, R. Functional connectome fingerprinting: Identifying individuals using patterns of brain connectivity. Nat. Neurosci. 2015, 18, 1664–1671. [Google Scholar] [CrossRef]
- Finn, E.S.; Scheinost, D.; Finn, D.M.; Shen, X.; Papademetris, X.; Constable, R.T. Can brain state be manipulated to emphasize individual differences in functional connectivity? Neuroimage 2017, 160, 140–151. [Google Scholar] [CrossRef]
- Gordon, E.M.; Laumann, T.O.; Adeyemo, B.; Gilmore, A.W.; Nelson, S.M.; Dosenbach, N.U.F.; Petersen, S.E. Individual-specific features of brain systems identified with resting state functional correlations. Neuroimage 2017, 146, 918–939. [Google Scholar] [CrossRef] [Green Version]
- Braga, R.M.; Buckner, R.L. Parallel Interdigitated Distributed Networks within the Individual Estimated by Intrinsic Functional Connectivity. Neuron 2017, 95, 457–471.e5. [Google Scholar] [CrossRef]
- Kong, R.; Li, J.; Orban, C.; Sabuncu, M.R.; Liu, H.; Schaefer, A.; Sun, N.; Zuo, X.-N.; Holmes, A.J.; Eickhoff, S.B.; et al. Spatial Topography of Individual-Specific Cortical Networks Predicts Human Cognition, Personality, and Emotion. Cereb. Cortex 2019, 29, 2533–2551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avery, E.W.; Yoo, K.; Rosenberg, M.D.; Greene, A.S.; Gao, S.; Na, D.L.; Scheinost, D.; Constable, T.R.; Chun, M.M. Distributed Patterns of Functional Connectivity Predict Working Memory Performance in Novel Healthy and Memory-impaired Individuals. J. Cogn. Neurosci. 2020, 32, 241–255. [Google Scholar] [CrossRef] [PubMed]
- Salehi, M.; Greene, A.S.; Karbasi, A.; Shen, X.; Scheinost, D.; Constable, R.T. There is no single functional atlas even for a single individual: Functional parcel definitions change with task. Neuroimage 2020, 208, 116366. [Google Scholar] [CrossRef] [PubMed]
- Salehi, M.; Karbasi, A.; Barron, D.S.; Scheinost, D.; Constable, R. Individualized functional networks reconfigure with cognitive state. Neuroimage 2020, 206, 116233. [Google Scholar] [CrossRef]
- Gordon, E.M.; Laumann, T.O.; Marek, S.; Raut, R.V.; Gratton, C.; Newbold, D.J.; Greene, D.J.; Coalson, R.S.; Snyder, A.Z.; Schlaggar, B.L.; et al. Default-mode network streams for coupling to language and control systems. Proc. Natl. Acad. Sci. USA 2020, 117, 17308–17319. [Google Scholar] [CrossRef] [PubMed]
- Michon, K.J.; Khammash, D.; Simmonite, M.; Hamlin, A.M.; Polk, T.A. Person-specific and precision neuroimaging: Current methods and future directions. Neuroimage 2022, 263, 119589. [Google Scholar] [CrossRef]
- Liu, J.; Liao, X.; Xia, M.; He, Y. Chronnectome fingerprinting: Identifying individuals and predicting higher cognitive functions using dynamic brain connectivity patterns. Hum. Brain Mapp. 2018, 39, 902–915. [Google Scholar] [CrossRef] [Green Version]
- Miranda-Dominguez, O.; Feczko, E.; Grayson, D.S.; Walum, H.; Nigg, J.T.; Fair, D.A. Heritability of the human connectome: A connectotyping study. Netw. Neurosci. 2018, 2, 175–199. [Google Scholar] [CrossRef]
- Wang, X.; Li, Q.; Zhao, Y.; He, Y.; Ma, B.; Fu, Z.; Li, S. Decomposition of individual-specific and individual-shared components from resting-state functional connectivity using a multi-task machine learning method. Neuroimage 2021, 238, 118252. [Google Scholar] [CrossRef]
- Domhof, J.W.M.; Eickhoff, S.B.; Popovych, O.V. Reliability and subject specificity of personalized whole-brain dynamical models. Neuroimage 2022, 257, 119321. [Google Scholar] [CrossRef]
- Ooi, L.Q.R.; Chen, J.; Zhang, S.; Kong, R.; Tam, A.; Li, J.; Dhamala, E.; Zhou, J.H.; Holmes, A.J.; Yeo, B.T.T. Comparison of individualized behavioral predictions across anatomical, diffusion and functional connectivity MRI. Neuroimage 2022, 263, 119636. [Google Scholar] [CrossRef] [PubMed]
- Huang, J. Human brain functional areas of unitary pooled activity discovered with fMRI. Sci. Rep. 2018, 8, 2388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, J. Greater brain activity during the resting state and the control of activation during the performance of tasks. Sci. Rep. 2019, 9, 5027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, J. Dynamic activity of human brain task-specific networks. Sci. Rep. 2020, 10, 7851. [Google Scholar] [CrossRef]
- Cox, R.W. AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Comput. Biomed. Res. 1996, 29, 162–173. [Google Scholar] [CrossRef] [PubMed]
- Huang, J. Method and System for Determining Brain-State Dependent Functional Areas of Unitary Pooled Activity and Associated Dynamic Networks with Functional Magnetic Resonance Imaging. U.S. Patent 20200069237, 5 March 2020. [Google Scholar]
- Amunts, K.; Zilles, K. Architectonic Mapping of the Human Brain beyond Brodmann. Neuron 2015, 88, 1086–1107. [Google Scholar] [CrossRef] [Green Version]
- Malikovic, A.; Amunts, K.; Schleicher, A.; Mohlberg, H.; Eickhoff, S.B.; Wilms, M.; Palomero-Gallagher, N.; Armstrong, E.; Zilles, K. Cytoarchitectonic analysis of the human extrastriate cortex in the region of V5/MT+: A probabilistic, stereotaxic map of area hOc5. Cereb. Cortex 2007, 17, 562–574. [Google Scholar] [CrossRef] [Green Version]
- Frost, M.A.; Goebel, R. Measuring structural-functional correspondence: Spatial variability of specialised brain regions after macro-anatomical alignment. Neuroimage 2012, 59, 1369–1381. [Google Scholar] [CrossRef]
- Datta, R.; Detre, J.A.; Aguirre, G.; Cucchiara, B. Absence of changes in cortical thickness in patients with migraine. Cephalalgia 2011, 31, 1452–1458. [Google Scholar] [CrossRef]
- Ozkan, E.; Gursoy-Ozdemir, Y. Occipital bending in migraine with visual aura. Headache 2021, 61, 1562–1567. [Google Scholar] [CrossRef]
- Fox, M.D.; Snyder, A.Z.; Vincent, J.L.; Corbetta, M.; Van Essen, D.C.; Raichle, M.E. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. USA 2005, 102, 9673–9678. [Google Scholar] [CrossRef] [PubMed]
Subject | A | Mean r | ||
---|---|---|---|---|
rs | Task | rs | Task | |
1 | 2.16 | 1.65 | 0.28 | 0.17 |
2 | 2.08 | 1.96 | 0.19 | 0.09 |
3 | 1.72 | 1.56 | 0.07 | 0.16 |
4 | 1.65 | 1.54 | 0.13 | 0.08 |
5 | 1.74 | 1.47 | 0.21 | 0.08 |
6 | 2.14 | 1.57 | 0.25 | 0.19 |
7 | 1.68 | 1.87 | 0.22 | 0.29 |
8 | 1.53 | 1.69 | 0.09 | 0.13 |
9 | 1.88 | 1.53 | 0.26 | 0.13 |
Mean ± SD | 1.84 ± 0.23 | 1.65 ± 0.17 | 0.19 ± 0.08 | 0.15 ± 0.07 |
t-test | p = 0.06 | p = 0.23 |
Subject | Resting State | Task | ||||
---|---|---|---|---|---|---|
Mean SD ± SD | Mean Δ ± SD | p (t-Test) | Mean SD ± SD | Mean Δ ± SD | p (t-Test) | |
1 | 0.088 ± 0.073 | 0.029 ± 0.022 | 6.3 × 10−24 | 0.082 ± 0.041 | 0.022 ± 0.019 | 3.0 × 10−56 |
2 | 0.093 ± 0.067 | 0.035 ± 0.022 | 7.1 × 10−26 | 0.108 ± 0.075 | 0.062 ± 0.041 | 3.6 × 10−13 |
3 | 0.093 ± 0.048 | 0.053 ± 0.032 | 4.6 × 10−20 | 0.095 ± 0.058 | 0.046 ± 0.035 | 6.9 × 10−21 |
4 | 0.073 ± 0.037 | 0.022 ± 0.012 | 1.5 × 10−57 | 0.081 ± 0.031 | 0.025 ± 0.012 | 3.5 × 10−72 |
5 | 0.083 ± 0.041 | 0.021 ± 0.023 | 1.4 × 10−56 | 0.081 ± 0.035 | 0.036 ± 0.026 | 9.8 × 10−37 |
6 | 0.078 ± 0.066 | 0.037 ± 0.028 | 8.1 × 10−15 | 0.073 ± 0.033 | 0.015 ± 0.010 | 1.0 × 10−71 |
7 | 0.086 ± 0.049 | 0.011 ± 0.006 | 6.5 × 10−67 | 0.077 ± 0.055 | 0.018 ± 0.011 | 1.1 × 10−39 |
8 | 0.081 ± 0.036 | 0.036 ± 0.024 | 2.6 × 10−37 | 0.050 ± 0.042 | 0.021 ± 0.012 | 5.4 × 10−56 |
9 | 0.097 ± 0.055 | 0.049 ± 0.034 | 3.6 × 10−21 | 0.077 ± 0.038 | 0.035 ± 0.027 | 6.3 × 10−30 |
Group Mean | 0.046 ± 0.019 | 0.025 ± 0.012 | 1.3 × 10−33 | 0.041 ± 0.017 | 0.022 ± 0.015 | 1.0 × 10−26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J. A Holistic Analysis of Individual Brain Activity Revealed the Relationship of Brain Areal Activity with the Entire Brain’s Activity. Brain Sci. 2023, 13, 6. https://doi.org/10.3390/brainsci13010006
Huang J. A Holistic Analysis of Individual Brain Activity Revealed the Relationship of Brain Areal Activity with the Entire Brain’s Activity. Brain Sciences. 2023; 13(1):6. https://doi.org/10.3390/brainsci13010006
Chicago/Turabian StyleHuang, Jie. 2023. "A Holistic Analysis of Individual Brain Activity Revealed the Relationship of Brain Areal Activity with the Entire Brain’s Activity" Brain Sciences 13, no. 1: 6. https://doi.org/10.3390/brainsci13010006
APA StyleHuang, J. (2023). A Holistic Analysis of Individual Brain Activity Revealed the Relationship of Brain Areal Activity with the Entire Brain’s Activity. Brain Sciences, 13(1), 6. https://doi.org/10.3390/brainsci13010006