A Holistic Analysis of Individual Brain Activity Revealed the Relationship of Brain Areal Activity with the Entire Brain’s Activity
Abstract
1. Introduction
2. Materials and Methods
3. Results
The Relationship between the TC r and SC R
4. Discussion and Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ogawa, S.; Lee, T.M.; Kay, A.R.; Tank, D.W. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci. USA 1990, 87, 9868–9872. [Google Scholar] [CrossRef] [PubMed]
- Kwong, K.K.; Belliveau, J.W.; Chesler, D.A.; Goldberg, I.E.; Weisskoff, R.M.; Poncelet, B.P.; Kennedy, D.N.; Hoppel, B.E.; Cohen, M.S.; Turner, R. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc. Natl. Acad. Sci. USA 1992, 89, 5675–5679. [Google Scholar] [CrossRef] [PubMed]
- Buxton, R.B.; Wong, E.C.; Frank, L.R. Dynamics of blood flow and oxygenation changes during brain activation: The balloon model. Magn. Reson. Med. 1998, 39, 855–864. [Google Scholar] [CrossRef] [PubMed]
- Logothetis, N.K.; Wandell, B.A. Interpreting the BOLD signal. Annu. Rev. Physiol. 2004, 66, 735–769. [Google Scholar] [CrossRef]
- Viswanathan, A.; Freeman, R.D. Neurometabolic coupling in cerebral cortex reflects synaptic more than spiking activity. Nat. Neurosci. 2007, 10, 1308–1312. [Google Scholar] [CrossRef]
- Logothetis, N.K. What we can do and what we cannot do with fMRI. Nature 2008, 453, 869–878. [Google Scholar] [CrossRef]
- Finn, E.S.; Shen, X.; Scheinost, D.; Rosenberg, M.; Huang, J.; Chun, M.; Papademetris, X.; Constable, R. Functional connectome fingerprinting: Identifying individuals using patterns of brain connectivity. Nat. Neurosci. 2015, 18, 1664–1671. [Google Scholar] [CrossRef]
- Finn, E.S.; Scheinost, D.; Finn, D.M.; Shen, X.; Papademetris, X.; Constable, R.T. Can brain state be manipulated to emphasize individual differences in functional connectivity? Neuroimage 2017, 160, 140–151. [Google Scholar] [CrossRef]
- Gordon, E.M.; Laumann, T.O.; Adeyemo, B.; Gilmore, A.W.; Nelson, S.M.; Dosenbach, N.U.F.; Petersen, S.E. Individual-specific features of brain systems identified with resting state functional correlations. Neuroimage 2017, 146, 918–939. [Google Scholar] [CrossRef]
- Braga, R.M.; Buckner, R.L. Parallel Interdigitated Distributed Networks within the Individual Estimated by Intrinsic Functional Connectivity. Neuron 2017, 95, 457–471.e5. [Google Scholar] [CrossRef]
- Kong, R.; Li, J.; Orban, C.; Sabuncu, M.R.; Liu, H.; Schaefer, A.; Sun, N.; Zuo, X.-N.; Holmes, A.J.; Eickhoff, S.B.; et al. Spatial Topography of Individual-Specific Cortical Networks Predicts Human Cognition, Personality, and Emotion. Cereb. Cortex 2019, 29, 2533–2551. [Google Scholar] [CrossRef] [PubMed]
- Avery, E.W.; Yoo, K.; Rosenberg, M.D.; Greene, A.S.; Gao, S.; Na, D.L.; Scheinost, D.; Constable, T.R.; Chun, M.M. Distributed Patterns of Functional Connectivity Predict Working Memory Performance in Novel Healthy and Memory-impaired Individuals. J. Cogn. Neurosci. 2020, 32, 241–255. [Google Scholar] [CrossRef] [PubMed]
- Salehi, M.; Greene, A.S.; Karbasi, A.; Shen, X.; Scheinost, D.; Constable, R.T. There is no single functional atlas even for a single individual: Functional parcel definitions change with task. Neuroimage 2020, 208, 116366. [Google Scholar] [CrossRef] [PubMed]
- Salehi, M.; Karbasi, A.; Barron, D.S.; Scheinost, D.; Constable, R. Individualized functional networks reconfigure with cognitive state. Neuroimage 2020, 206, 116233. [Google Scholar] [CrossRef]
- Gordon, E.M.; Laumann, T.O.; Marek, S.; Raut, R.V.; Gratton, C.; Newbold, D.J.; Greene, D.J.; Coalson, R.S.; Snyder, A.Z.; Schlaggar, B.L.; et al. Default-mode network streams for coupling to language and control systems. Proc. Natl. Acad. Sci. USA 2020, 117, 17308–17319. [Google Scholar] [CrossRef] [PubMed]
- Michon, K.J.; Khammash, D.; Simmonite, M.; Hamlin, A.M.; Polk, T.A. Person-specific and precision neuroimaging: Current methods and future directions. Neuroimage 2022, 263, 119589. [Google Scholar] [CrossRef]
- Liu, J.; Liao, X.; Xia, M.; He, Y. Chronnectome fingerprinting: Identifying individuals and predicting higher cognitive functions using dynamic brain connectivity patterns. Hum. Brain Mapp. 2018, 39, 902–915. [Google Scholar] [CrossRef]
- Miranda-Dominguez, O.; Feczko, E.; Grayson, D.S.; Walum, H.; Nigg, J.T.; Fair, D.A. Heritability of the human connectome: A connectotyping study. Netw. Neurosci. 2018, 2, 175–199. [Google Scholar] [CrossRef]
- Wang, X.; Li, Q.; Zhao, Y.; He, Y.; Ma, B.; Fu, Z.; Li, S. Decomposition of individual-specific and individual-shared components from resting-state functional connectivity using a multi-task machine learning method. Neuroimage 2021, 238, 118252. [Google Scholar] [CrossRef]
- Domhof, J.W.M.; Eickhoff, S.B.; Popovych, O.V. Reliability and subject specificity of personalized whole-brain dynamical models. Neuroimage 2022, 257, 119321. [Google Scholar] [CrossRef]
- Ooi, L.Q.R.; Chen, J.; Zhang, S.; Kong, R.; Tam, A.; Li, J.; Dhamala, E.; Zhou, J.H.; Holmes, A.J.; Yeo, B.T.T. Comparison of individualized behavioral predictions across anatomical, diffusion and functional connectivity MRI. Neuroimage 2022, 263, 119636. [Google Scholar] [CrossRef] [PubMed]
- Huang, J. Human brain functional areas of unitary pooled activity discovered with fMRI. Sci. Rep. 2018, 8, 2388. [Google Scholar] [CrossRef] [PubMed]
- Huang, J. Greater brain activity during the resting state and the control of activation during the performance of tasks. Sci. Rep. 2019, 9, 5027. [Google Scholar] [CrossRef] [PubMed]
- Huang, J. Dynamic activity of human brain task-specific networks. Sci. Rep. 2020, 10, 7851. [Google Scholar] [CrossRef]
- Cox, R.W. AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Comput. Biomed. Res. 1996, 29, 162–173. [Google Scholar] [CrossRef] [PubMed]
- Huang, J. Method and System for Determining Brain-State Dependent Functional Areas of Unitary Pooled Activity and Associated Dynamic Networks with Functional Magnetic Resonance Imaging. U.S. Patent 20200069237, 5 March 2020. [Google Scholar]
- Amunts, K.; Zilles, K. Architectonic Mapping of the Human Brain beyond Brodmann. Neuron 2015, 88, 1086–1107. [Google Scholar] [CrossRef]
- Malikovic, A.; Amunts, K.; Schleicher, A.; Mohlberg, H.; Eickhoff, S.B.; Wilms, M.; Palomero-Gallagher, N.; Armstrong, E.; Zilles, K. Cytoarchitectonic analysis of the human extrastriate cortex in the region of V5/MT+: A probabilistic, stereotaxic map of area hOc5. Cereb. Cortex 2007, 17, 562–574. [Google Scholar] [CrossRef]
- Frost, M.A.; Goebel, R. Measuring structural-functional correspondence: Spatial variability of specialised brain regions after macro-anatomical alignment. Neuroimage 2012, 59, 1369–1381. [Google Scholar] [CrossRef]
- Datta, R.; Detre, J.A.; Aguirre, G.; Cucchiara, B. Absence of changes in cortical thickness in patients with migraine. Cephalalgia 2011, 31, 1452–1458. [Google Scholar] [CrossRef]
- Ozkan, E.; Gursoy-Ozdemir, Y. Occipital bending in migraine with visual aura. Headache 2021, 61, 1562–1567. [Google Scholar] [CrossRef]
- Fox, M.D.; Snyder, A.Z.; Vincent, J.L.; Corbetta, M.; Van Essen, D.C.; Raichle, M.E. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. USA 2005, 102, 9673–9678. [Google Scholar] [CrossRef] [PubMed]
Subject | A | Mean r | ||
---|---|---|---|---|
rs | Task | rs | Task | |
1 | 2.16 | 1.65 | 0.28 | 0.17 |
2 | 2.08 | 1.96 | 0.19 | 0.09 |
3 | 1.72 | 1.56 | 0.07 | 0.16 |
4 | 1.65 | 1.54 | 0.13 | 0.08 |
5 | 1.74 | 1.47 | 0.21 | 0.08 |
6 | 2.14 | 1.57 | 0.25 | 0.19 |
7 | 1.68 | 1.87 | 0.22 | 0.29 |
8 | 1.53 | 1.69 | 0.09 | 0.13 |
9 | 1.88 | 1.53 | 0.26 | 0.13 |
Mean ± SD | 1.84 ± 0.23 | 1.65 ± 0.17 | 0.19 ± 0.08 | 0.15 ± 0.07 |
t-test | p = 0.06 | p = 0.23 |
Subject | Resting State | Task | ||||
---|---|---|---|---|---|---|
Mean SD ± SD | Mean Δ ± SD | p (t-Test) | Mean SD ± SD | Mean Δ ± SD | p (t-Test) | |
1 | 0.088 ± 0.073 | 0.029 ± 0.022 | 6.3 × 10−24 | 0.082 ± 0.041 | 0.022 ± 0.019 | 3.0 × 10−56 |
2 | 0.093 ± 0.067 | 0.035 ± 0.022 | 7.1 × 10−26 | 0.108 ± 0.075 | 0.062 ± 0.041 | 3.6 × 10−13 |
3 | 0.093 ± 0.048 | 0.053 ± 0.032 | 4.6 × 10−20 | 0.095 ± 0.058 | 0.046 ± 0.035 | 6.9 × 10−21 |
4 | 0.073 ± 0.037 | 0.022 ± 0.012 | 1.5 × 10−57 | 0.081 ± 0.031 | 0.025 ± 0.012 | 3.5 × 10−72 |
5 | 0.083 ± 0.041 | 0.021 ± 0.023 | 1.4 × 10−56 | 0.081 ± 0.035 | 0.036 ± 0.026 | 9.8 × 10−37 |
6 | 0.078 ± 0.066 | 0.037 ± 0.028 | 8.1 × 10−15 | 0.073 ± 0.033 | 0.015 ± 0.010 | 1.0 × 10−71 |
7 | 0.086 ± 0.049 | 0.011 ± 0.006 | 6.5 × 10−67 | 0.077 ± 0.055 | 0.018 ± 0.011 | 1.1 × 10−39 |
8 | 0.081 ± 0.036 | 0.036 ± 0.024 | 2.6 × 10−37 | 0.050 ± 0.042 | 0.021 ± 0.012 | 5.4 × 10−56 |
9 | 0.097 ± 0.055 | 0.049 ± 0.034 | 3.6 × 10−21 | 0.077 ± 0.038 | 0.035 ± 0.027 | 6.3 × 10−30 |
Group Mean | 0.046 ± 0.019 | 0.025 ± 0.012 | 1.3 × 10−33 | 0.041 ± 0.017 | 0.022 ± 0.015 | 1.0 × 10−26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J. A Holistic Analysis of Individual Brain Activity Revealed the Relationship of Brain Areal Activity with the Entire Brain’s Activity. Brain Sci. 2023, 13, 6. https://doi.org/10.3390/brainsci13010006
Huang J. A Holistic Analysis of Individual Brain Activity Revealed the Relationship of Brain Areal Activity with the Entire Brain’s Activity. Brain Sciences. 2023; 13(1):6. https://doi.org/10.3390/brainsci13010006
Chicago/Turabian StyleHuang, Jie. 2023. "A Holistic Analysis of Individual Brain Activity Revealed the Relationship of Brain Areal Activity with the Entire Brain’s Activity" Brain Sciences 13, no. 1: 6. https://doi.org/10.3390/brainsci13010006
APA StyleHuang, J. (2023). A Holistic Analysis of Individual Brain Activity Revealed the Relationship of Brain Areal Activity with the Entire Brain’s Activity. Brain Sciences, 13(1), 6. https://doi.org/10.3390/brainsci13010006