Targeting CNS Neural Mechanisms of Gait in Stroke Neurorehabilitation
Abstract
:1. Background: Complexity of Gait Control
2. Hypotheses and Rationale
2.1. Hypotheses
2.2. CNS Mechanisms of Gait Coordination Control after Stroke
2.2.1. Drivers of CNS Plasticity
2.2.2. Structures Critical to Recovery
2.2.3. Neural Function Influencing Recovery
2.2.4. Measuring Brain Activity during Gait after Stroke
Methods
Differential CNS Activation Patterns across Whole-Body Gait Tasks after Stroke
2.2.5. Measuring the Change in Gait-Related Brain Activity in Response to Treatment
2.2.6. Non-Invasive Brain Stimulation as an Intervention for Gait Dyscoordination after Stroke
3. Future Work
3.1. Potential Directions of Inquiry
3.1.1. Moving beyond the Current Milieu
3.1.2. Brain Activity Patterns for Gait Characterization
3.1.3. CNS Control of Balance and Lower-Limb-Coordinated Movement during Walking
3.1.4. Large Database of CNS Control of Gait and Recovery of Gait Coordination
3.2. Study Design Issues
3.2.1. Variables with the Potential to Confound or Diminish the Results for any Given Study
3.2.2. Accurate Interpretation of Results in Response to Gait Training Intervention
3.2.3. Use Knowledge of the Array of Pathologies and Impairments after Stroke to Construct Valid Hypotheses and Intervention Content, and Valid Outcome Measures
3.2.4. Encourage Inter-Disciplinary Teams and Consultants, including Neurorehabilitation Specialists, Engineers, Biomechanistst, and Physicists
4. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Perry, J.; Burnfield, J. Gait Analysis: Normal and Pathologisl Function, 2nd ed.; SLACK Inc.: West Deptford, NJ, USA, 2010. [Google Scholar]
- Grillner, S.; El Manira, A. Current Principles of Motor Control, with Special Reference to Vertebrate Locomotion. Physiol. Rev. 2020, 100, 271–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanderah, T.W.; Gould, D.J. (Eds.) Nolte’s the Human Brain: An Introduction to Its Functional Anatomy, 8th ed.; Elsevier: Philadelphia, PA, USA, 2020; ISBN 978-0-323-65398-5. [Google Scholar]
- Côté, M.-P.; Murray, L.M.; Knikou, M. Spinal Control of Locomotion: Individual Neurons, Their Circuits and Functions. Front. Physiol. 2018, 9, 784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, I.-H.; Yang, Y.-R.; Lu, C.-F.; Wang, R.-Y. Novel Gait Training Alters Functional Brain Connectivity during Walking in Chronic Stroke Patients: A Randomized Controlled Pilot Trial. J. NeuroEng. Rehabil. 2019, 16, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klarner, T.; Zehr, E.P. Sherlock Holmes and the Curious Case of the Human Locomotor Central Pattern Generator. J. Neurophysiol. 2018, 120, 53–77. [Google Scholar] [CrossRef]
- Dimitrijevic, M.R.; Gerasimenko, Y.; Pinter, M.M. Evidence for a Spinal Central Pattern Generator in Humansa. Ann. N. Y. Acad. Sci. 1998, 860, 360–376. [Google Scholar] [CrossRef]
- Guillaud, E.; Seyres, P.; Barrière, G.; Jecko, V.; Bertrand, S.S.; Cazalets, J.-R. Locomotion and Dynamic Posture: Neuro-Evolutionary Basis of Bipedal Gait. Neurophysiol. Clin. 2020, 50, 467–477. [Google Scholar] [CrossRef]
- Ryczko, D.; Dubuc, R. Dopamine and the Brainstem Locomotor Networks: From Lamprey to Human. Front. Neurosci. 2017, 11, 295. [Google Scholar] [CrossRef] [Green Version]
- Sampaio-Baptista, C.; Sanders, Z.-B.; Johansen-Berg, H. Structural Plasticity in Adulthood with Motor Learning and Stroke Rehabilitation. Annu. Rev. Neurosci. 2018, 41, 25–40. [Google Scholar] [CrossRef]
- Biernaskie, J.; Corbett, D. Enriched Rehabilitative Training Promotes Improved Forelimb Motor Function and Enhanced Dendritic Growth after Focal Ischemic Injury. J. Neurosci. 2001, 21, 5272–5280. [Google Scholar] [CrossRef]
- Jones, T.A.; Chu, C.J.; Grande, L.A.; Gregory, A.D. Motor Skills Training Enhances Lesion-Induced Structural Plasticity in the Motor Cortex of Adult Rats. J. Neurosci. 1999, 19, 10153–10163. [Google Scholar] [CrossRef] [Green Version]
- Nudo, R.J.; Wise, B.M.; SiFuentes, F.; Milliken, G.W. Neural Substrates for the Effects of Rehabilitative Training on Motor Recovery after Ischemic Infarct. Science 1996, 272, 1791–1794. [Google Scholar] [CrossRef] [Green Version]
- Nudo, R.; Milliken, G.; Jenkins, W.; Merzenich, M. Use-Dependent Alterations of Movement Representations in Primary Motor Cortex of Adult Squirrel Monkeys. J. Neurosci. 1996, 16, 785–807. [Google Scholar] [CrossRef] [Green Version]
- Daly, J.J.; McCabe, J.P.; Holcomb, J.; Monkiewicz, M.; Gansen, J.; Pundik, S. Long-Dose Intensive Therapy Is Necessary for Strong, Clinically Significant, Upper Limb Functional Gains and Retained Gains in Severe/Moderate Chronic Stroke. Neurorehabil. Neural Repair 2019, 33, 523–537. [Google Scholar] [CrossRef] [Green Version]
- Daly, J.J.; Zimbelman, J.; Roenigk, K.L.; McCabe, J.P.; Rogers, J.M.; Butler, K.; Burdsall, R.; Holcomb, J.P.; Marsolais, E.B.; Ruff, R.L. Recovery of Coordinated Gait: Randomized Controlled Stroke Trial of Functional Electrical Stimulation (FES) versus No FES, with Weight-Supported Treadmill and over-Ground Training. Neurorehabil. Neural Repair 2011, 25, 588–596. [Google Scholar] [CrossRef]
- Butefisch, C.; Hummelsheim, H.; Denzler, P.; Mauritz, K.-H. Repetitive Training of Isolated Movements Improves the Outcome of Motor Rehabilitation of the Centrally Paretic Hand. J. Neurol. Sci. 1995, 130, 59–68. [Google Scholar] [CrossRef]
- Dean, C.M.; Shepherd, R.B. Task-Related Training Improves Performance of Seated Reaching Tasks after Stroke. A Randomized Controlled Trial. Stroke 1997, 28, 722–728. [Google Scholar] [CrossRef]
- Waddell, K.J.; Birkenmeier, R.L.; Moore, J.L.; Hornby, T.G.; Lang, C.E. Feasibility of High-Repetition, Task-Specific Training for Individuals with Upper-Extremity Paresis. Am. J. Occup. Ther. 2014, 68, 444–453. [Google Scholar] [CrossRef] [Green Version]
- Singer, R.N.; Lidor, R.; Cauraugh, J.H. To Be Aware or Not Aware? What to Think about While Learning and Performing a Motor Skill. Sport Psychol. 1993, 7, 19–30. [Google Scholar] [CrossRef]
- Pascual-Leone, A.; Torres, F. Plasticity of the Sensorimotor Cortex Representation of the Reading Finger in Braille Readers. Brain 1993, 116, 39–52. [Google Scholar] [CrossRef]
- Elbert, T.; Pantev, C.; Wienbruch, C.; Rockstroh, B.; Taub, E. Increased Cortical Representation of the Fingers of the Left Hand in String Players. Science 1995, 270, 305–307. [Google Scholar] [CrossRef] [Green Version]
- Plautz, E.J.; Milliken, G.W.; Nudo, R.J. Effects of Repetitive Motor Training on Movement Representations in Adult Squirrel Monkeys: Role of Use versus Learning. Neurobiol. Learn. Mem. 2000, 74, 27–55. [Google Scholar] [CrossRef] [Green Version]
- Winstein, C.J. Knowledge of Results and Motor Learning—Implications for Physical Therapy. Phys. Ther. 1991, 71, 140–149. [Google Scholar] [CrossRef]
- Preston, E.; Ada, L.; Stanton, R.; Mahendran, N.; Dean, C.M. Prediction of Independent Walking in People Who Are Nonambulatory Early After Stroke: A Systematic Review. Stroke 2021, 52, 3217–3224. [Google Scholar] [CrossRef]
- Soulard, J.; Huber, C.; Baillieul, S.; Thuriot, A.; Renard, F.; Aubert Broche, B.; Krainik, A.; Vuillerme, N.; Jaillard, A. On behalf of the ISIS-HERMES Group Motor Tract Integrity Predicts Walking Recovery: A Diffusion MRI Study in Subacute Stroke. Neurology 2020, 94, e583–e593. [Google Scholar] [CrossRef]
- Grefkes, C.; Fink, G.R. Reorganization of Cerebral Networks after Stroke: New Insights from Neuroimaging with Connectivity Approaches. Brain 2011, 134, 1264–1276. [Google Scholar] [CrossRef] [Green Version]
- Cleland, B.T.; Madhavan, S. Ipsilateral Motor Pathways and Transcallosal Inhibition during Lower Limb Movement After Stroke. Neurorehabil. Neural Repair 2021, 35, 367–378. [Google Scholar] [CrossRef]
- Binder, E.; Leimbach, M.; Pool, E.; Volz, L.J.; Eickhoff, S.B.; Fink, G.R.; Grefkes, C. Cortical Reorganization after Motor Stroke: A Pilot Study on Differences between the Upper and Lower Limbs. Hum. Brain Mapp. 2021, 42, 1013–1033. [Google Scholar] [CrossRef] [PubMed]
- Souissi, H.; Zory, R.; Bredin, J.; Roche, N.; Gerus, P. Co-Contraction around the Knee and the Ankle Joints during Post-Stroke Gait. Eur. J. Phys. Rehabil. Med. 2018, 54, 380–387. [Google Scholar] [CrossRef]
- Nascimento, L.R.; de Menezes, K.K.P.; Scianni, A.A.; Faria-Fortini, I.; Teixeira-Salmela, L.F. Deficits in Motor Coordination of the Paretic Lower Limb Limit the Ability to Immediately Increase Walking Speed in Individuals with Chronic Stroke. Braz. J. Phys. Ther. 2020, 24, 496–502. [Google Scholar] [CrossRef]
- Kwan, M.S.-M.; Hassett, L.M.; Ada, L.; Canning, C.G. Relationship between Lower Limb Coordination and Walking Speed after Stroke: An Observational Study. Braz. J. Phys. Ther. 2019, 23, 527–531. [Google Scholar] [CrossRef]
- McCabe, J.P.; Roenigk, K.; Daly, J.J. Necessity and Content of Swing Phase Gait Coordination Training Post Stroke; A Case Report. Brain Sci. 2021, 11, 1498. [Google Scholar] [CrossRef] [PubMed]
- Neumann, D.A.; Kelly, E.R.; Kiefer, C.L.; Martens, K.; Grosz, C.M. Kinesiology of the Musculoskeletal System: Foundations for Rehabilitation, 3rd ed.; Elsevier: St. Louis, MO, USA, 2017; ISBN 978-0-323-28753-1. [Google Scholar]
- Litinas, K.; Roenigk, K.; Daly, J.J. Thigh and Shank, Kinetic and Potential Energies during Gait Swing Phase in Healthy Adults and Stroke Survivors. Brain Sci. 2022, 12, 1026. [Google Scholar] [CrossRef]
- Moore, S.; Schurr, K.; Wales, A.; Moseley, A.; Herbert, R. Observation and Analysis of Hemiplegic Gait: Swing Phase. Aust. J. Physiother. 1993, 39, 271–278. [Google Scholar] [CrossRef] [Green Version]
- Moseley, A.; Wales, A.; Herbert, R.; Schurr, K.; Moore, S. Observation and Analysis of Hemiplegic Gait: Stance Phase. Aust. J. Physiother. 1993, 39, 259–267. [Google Scholar] [CrossRef] [Green Version]
- Chatterjee, S.A.; Fox, E.J.; Daly, J.J.; Rose, D.K.; Wu, S.S.; Christou, E.A.; Hawkins, K.A.; Otzel, D.M.; Butera, K.A.; Skinner, J.W.; et al. Interpreting Prefrontal Recruitment during Walking After Stroke: Influence of Individual Differences in Mobility and Cognitive Function. Front. Hum. Neurosci. 2019, 13, 194. [Google Scholar] [CrossRef]
- Clark, D.J.; Manini, T.M.; Ferris, D.P.; Hass, C.J.; Brumback, B.A.; Cruz-Almeida, Y.; Pahor, M.; Reuter-Lorenz, P.A.; Seidler, R.D. Multimodal Imaging of Brain Activity to Investigate Walking and Mobility Decline in Older Adults (Mind in Motion Study): Hypothesis, Theory, and Methods. Front. Aging Neurosci. 2020, 11, 358. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, T.; Starrs, F.; Thiel, A.; Paquette, C. Changes in Complex Locomotor Control in Chronic Stroke; Sage Publications Ltd.: London, UK, 2018; Volume 13, pp. 43–44. [Google Scholar]
- Fang, Y.; Daly, J.J.; Hansley, J.; Yao, W.X.; Yang, Q.; Sun, J.; Hvorat, K.; Pundik, S.; Yue, G.H. Hemispheric Activation during Planning and Execution Phases in Reaching Post Stroke: A Consort Study. Medicine 2015, 94, e307. [Google Scholar] [CrossRef]
- Lim, S.B.; Louie, D.R.; Peters, S.; Liu-Ambrose, T.; Boyd, L.A.; Eng, J.J. Brain Activity during Real-Time Walking and with Walking Interventions after Stroke: A Systematic Review. J. NeuroEng. Rehabil. 2021, 18, 8. [Google Scholar] [CrossRef]
- Heng, H.-M.; Lu, M.-K.; Chou, L.-W.; Meng, N.-H.; Huang, H.-C.; Hamada, M.; Tsai, C.-H.; Chen, J.-C. Changes in Balance, Gait and Electroencephalography Oscillations after Robot-Assisted Gait Training: An Exploratory Study in People with Chronic Stroke. Brain Sci. 2020, 10, 821. [Google Scholar] [CrossRef]
- Clark, D.J.; Rose, D.K.; Butera, K.A.; Hoisington, B.; DeMark, L.; Chatterjee, S.A.; Hawkins, K.A.; Otzel, D.M.; Skinner, J.W.; Christou, E.A.; et al. Rehabilitation with Accurate Adaptability Walking Tasks or Steady State Walking: A Randomized Clinical Trial in Adults Post-Stroke. Clin. Rehabil. 2021, 35, 1196–1206. [Google Scholar] [CrossRef]
- Cassidy, J.M.; Mark, J.I.; Cramer, S.C. Functional Connectivity Drives Stroke Recovery: Shifting the Paradigm from Correlation to Causation. Brain 2021, 145, awab469. [Google Scholar] [CrossRef]
- Lindenberg, R.; Renga, V.; Zhu, L.L.; Nair, D.; Schlaug, G. Bihemispheric Brain Stimulation Facilitates Motor Recovery in Chronic Stroke Patients. Neurology 2010, 75, 2176–2184. [Google Scholar] [CrossRef]
- Tahtis, V.; Kaski, D.; Seemungal, B.M. The Effect of Single Session Bi-Cephalic Transcranial Direct Current Stimulation on Gait Performance in Sub-Acute Stroke: A Pilot Study. Restor. Neurol. Neurosci. 2014, 32, 527–532. [Google Scholar] [CrossRef]
- Bolognini, N.; Vallar, G.; Casati, C.; Latif, L.A.; El-Nazer, R.; Williams, J.; Banco, E.; Macea, D.D.; Tesio, L.; Chessa, C.; et al. Neurophysiological and Behavioral Effects of TDCS Combined with Constraint-Induced Movement Therapy in Poststroke Patients. Neurorehabil. Neural Repair 2011, 25, 819–829. [Google Scholar] [CrossRef]
- Wang, R.Y.; Tseng, H.Y.; Liao, K.K.; Wang, C.J.; Lai, K.L.; Yang, Y.R. RTMS Combined with Task-Oriented Training to Improve Symmetry of Interhemispheric Corticomotor Excitability and Gait Performance after Stroke: A Randomized Trial. Neurorehabil. Neural Repair 2012, 26, 222–230. [Google Scholar] [CrossRef]
- Xu, Y.; Hou, Q.; Russell, S.; Bennett, B.; Sellers, A.; Lin, Q.; Huang, D. Neuroplasticity in Post-Stroke Gait Recovery and Noninvasive Brain Stimulation. Neural Regen. Res. 2015, 10, 2072. [Google Scholar] [CrossRef]
- Jayaram, G.; Stinear, J.W. The Effects of Transcranial Stimulation on Paretic Lower Limb Motor Excitability during Walking. J. Clin. Neurophysiol. 2009, 26, 272–279. [Google Scholar] [CrossRef]
- Madhavan, S.; Weber, K.A.; Stinear, J.W. Non-Invasive Brain Stimulation Enhances Fine Motor Control of the Hemiparetic Ankle: Implications for Rehabilitation. Exp. Brain Res. 2011, 209, 9–17. [Google Scholar] [CrossRef]
- Chieffo, R.; De, P.S.; Houdayer, E.; Nuara, A.; Di, M.G.; Coppi, E.; Ferrari, L.; Straffi, L.; Spagnolo, F.; Velikova, S.; et al. Deep Repetitive Transcranial Magnetic Stimulation With H-Coil on Lower Limb Motor Function in Chronic Stroke: A Pilot Study. Arch. Phys. Med. Rehabil. 2014, 95, 1141–1147. [Google Scholar] [CrossRef] [PubMed]
- Park, S.D.; Kim, J.Y.; Song, H.S. Effect of Application of Transcranial Direct Current Stimulation during Task-Related Training on Gait Ability of Patients with Stroke. J. Phys. Ther. Sci. 2015, 27, 623–625. [Google Scholar] [CrossRef] [Green Version]
- Kakuda, W.; Abo, M.; Nakayama, Y.; Kiyama, A.; Yoshida, H. High-Frequency RTMS Using a Double Cone Coil for Gait Disturbance. Acta Neurol. Scand. 2013, 128, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Salameh, A.; McCabe, J.; Skelly, M.; Duncan, K.R.; Chen, Z.; Tatsuoka, C.; Bikson, M.; Hardin, E.C.; Daly, J.J.; Pundik, S. Stance Phase Gait Training Post Stroke Using Simultaneous Transcranial Direct Current Stimulation and Motor Learning-Based Virtual Reality-Assisted Therapy: Protocol Development and Initial Testing. Brain Sci. 2022, 12, 701. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.-Y.; Cheng, Y.-H.; Lai, C.-H.; Lin, Y.-N. Clinical Non-Superiority of Technology-Assisted Gait Training with Body Weight Support in Patients with Subacute Stroke: A Meta-Analysis. Ann. Phys. Rehabil. Med. 2020, 63, 535–542. [Google Scholar] [CrossRef] [PubMed]
- Jaqueline da Cunha, M.; Rech, K.D.; Salazar, A.P.; Pagnussat, A.S. Functional Electrical Stimulation of the Peroneal Nerve Improves Post-Stroke Gait Speed When Combined with Physiotherapy. A Systematic Review and Meta-Analysis. Ann. Phys. Rehabil. Med. 2021, 64, 101388. [Google Scholar] [CrossRef]
- Patel, P.; Casamento-Moran, A.; Christou, E.A.; Lodha, N. Force-Control vs. Strength Training: The Effect on Gait Variability in Stroke Survivors. Front. Neurol. 2021, 12, 667340. [Google Scholar] [CrossRef]
- Brush, K.; Govil, K.; Farrar, L.; Govil, K. Dynamic BodyWeight Support Overground Gait Training Using Ceiling Mounted Trolley Sytem: Effects on Stroke Patient. Arch. Phys. Med. Rehabil. 2019, 100, e65. [Google Scholar] [CrossRef]
- Daly, J.J.; McCabe, J.P.; Gansen, J.; Rogers, J.; Butler, K.; Brenner, I.; Burdsall, R.; Nethery, J. Guest Editorial: Gait Coordination Protocol for Recovery of Coordinated Gait, Function, and Quality of Life Following Stroke. JRRD 2012, 49, xix. [Google Scholar] [CrossRef]
- Boissoneault, C.; Grimes, T.; Rose, D.K.; Waters, M.F.; Khanna, A.; Datta, S.; Daly, J.J. Innovative Long-Dose Neurorehabilitation for Balance and Mobility in Chronic Stroke: A Preliminary Case Series. Brain Sci. 2020, 10, 555. [Google Scholar] [CrossRef]
- Boissoneault, C.; Rose, D.K.; Grimes, T.; Waters, M.F.; Khanna, A.; Datta, S.; Daly, J.J. Trajectories of Stroke Recovery of Impairment, Function, and Quality of Life in Response to 12-Month Mobility and Fitness Intervention. NRE 2021, 49, 573–584. [Google Scholar] [CrossRef]
- De Athayde Costa e Silva, A.; Viana da Cruz Júnior, A.T.; Cardoso do Nascimento, N.I.; Andrade Candeira, S.R.; do Socorro Soares Cardoso Almeida, A.; Santana de Castro, K.J.; Costa de Lima, R.; Generoso Campos Pinho Barroso, T.; da Silva Souza, G.; Callegari, B. Positive Balance Recovery in Ischemic Post-Stroke Patients with Delayed Access to Physical Therapy. BioMed Res. Int. 2020, 2020, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Logan, D.; Kiemel, T.; Dominici, N.; Cappellini, G.; Ivanenko, Y.; Lacquaniti, F.; Jeka, J.J. The Many Roles of Vision during Walking. Exp. Brain Res. 2010, 206, 337–350. [Google Scholar] [CrossRef]
- Logan, D.; Ivanenko, Y.P.; Kiemel, T.; Cappellini, G.; Sylos-Labini, F.; Lacquaniti, F.; Jeka, J.J. Function Dictates the Phase Dependence of Vision during Human Locomotion. J. Neurophysiol. 2014, 112, 165–180. [Google Scholar] [CrossRef] [Green Version]
- Qiao, M.; Feld, J.A.; Franz, J.R. Aging Effects on Leg Joint Variability during Walking with Balance Perturbations. Gait Posture 2018, 62, 27–33. [Google Scholar] [CrossRef]
- Bauby, C.E.; Kuo, A.D. Active Control of Lateral Balance in Human Walking. J. Biomech. 2000, 33, 1433–1440. [Google Scholar] [CrossRef]
- Wang, Y.; Srinivasan, M. Stepping in the Direction of the Fall: The next Foot Placement Can Be Predicted from Current Upper Body State in Steady-State Walking. Biol. Lett. 2014, 10, 20140405. [Google Scholar] [CrossRef] [Green Version]
- Vlutters, M.; Van Asseldonk, E.H.F.; Van der Kooij, H. Center of Mass Velocity Based Predictions in Balance Recovery following Pelvis Perturbations during Human Walking. J. Exp. Biol. 2016, 219, 1514–1523. [Google Scholar] [CrossRef] [Green Version]
- Reimann, H.; Fettrow, T.D.; Thompson, E.D.; Agada, P.; McFadyen, B.J.; Jeka, J.J. Complementary Mechanisms for Upright Balance during Walking. PLoS ONE 2017, 12, e0172215. [Google Scholar] [CrossRef] [Green Version]
- Hof, A.L.; Duysens, J. Responses of Human Ankle Muscles to Mediolateral Balance Perturbations during Walking. Hum. Mov. Sci. 2018, 57, 69–82. [Google Scholar] [CrossRef]
- Reimann, H.; Fettrow, T.; Thompson, E.D.; Jeka, J.J. Neural Control of Balance During Walking. Front. Physiol. 2018, 9, 1271. [Google Scholar] [CrossRef]
- Mukherjee, A.; Chakravarty, A. Spasticity Mechanisms—for the Clinician. Front. Neur. 2010, 1. [Google Scholar] [CrossRef] [Green Version]
- Burke, D.; Wissel, J.; Donnan, G.A. Pathophysiology of Spasticity in Stroke. Neurology 2013, 80, S20–S26. [Google Scholar] [CrossRef]
- Li, S.; Francisco, G.E. New Insights into the Pathophysiology of Post-Stroke Spasticity. Front. Hum. Neurosci. 2015, 9, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Mihara, M.; Fujimoto, H.; Hattori, N.; Otomune, H.; Kajiyama, Y.; Konaka, K.; Watanabe, Y.; Hiramatsu, Y.; Sunada, Y.; Miyai, I.; et al. Effect of Neurofeedback Facilitation on Poststroke Gait and Balance Recovery: A Randomized Controlled Trial. Neurology 2021, 96, e2587–e2598. [Google Scholar] [CrossRef]
- Spencer, J.; Wolf, S.L.; Kesar, T.M. Biofeedback for Post-Stroke Gait Retraining: A Review of Current Evidence and Future Research Directions in the Context of Emerging Technologies. Front. Neurol. 2021, 12, 637199. [Google Scholar] [CrossRef]
- Matarasso, A.K.; Rieke, J.D.; White, K.; Yusufali, M.M.; Daly, J.J. Combined Real-Time FMRI and Real Time FNIRS Brain Computer Interface (BCI): Training of Volitional Wrist Extension after Stroke, a Case Series Pilot Study. PLoS ONE 2021, 16, e0250431. [Google Scholar] [CrossRef]
- Mane, R.; Chouhan, T.; Guan, C. BCI for Stroke Rehabilitation: Motor and Beyond. J. Neural Eng. 2020, 17, 041001. [Google Scholar] [CrossRef]
- Ravindran, A.; Rieke, J.D.; Zapata, J.D.A.; White, K.D.; Matarasso, A.; Yusufali, M.M.; Rana, M.; Gunduz, A.; Modarres, M.; Sitaram, R.; et al. Four Methods of Brain Pattern Analyses of FMRI Signals Associated with Wrist Extension versus Wrist Flexion Studied for Potential Use in Future Motor Learning BCI. PLoS ONE 2021, 16, e0254338. [Google Scholar] [CrossRef]
- Rubino, C.; Larssen, B.C.; Chiu, L.K.; Liu, H.; Kraeutner, S.N.; Mahendran, N.; Denyer, R.; Lakhani, B.; Borich, M.R.; Laule, C.; et al. Experience-Dependent Learning and Myelin Plasticity in Individuals with Stroke. Neuroscience 2022. [Google Scholar] [CrossRef]
- Liew, S.; Zavaliangos-Petropulu, A.; Jahanshad, N.; Lang, C.E.; Hayward, K.S.; Lohse, K.R.; Juliano, J.M.; Assogna, F.; Baugh, L.A.; Bhattacharya, A.K.; et al. The ENIGMA Stroke Recovery Working Group: Big Data Neuroimaging to Study Brain–Behavior Relationships after Stroke. Hum. Brain Mapp. 2022, 43, 129–148. [Google Scholar] [CrossRef] [Green Version]
- Mohammadian Foroushani, H.; Dhar, R.; Chen, Y.; Gurney, J.; Hamzehloo, A.; Lee, J.-M.; Marcus, D.S. The Stroke Neuro-Imaging Phenotype Repository: An Open Data Science Platform for Stroke Research. Front. Neuroinform. 2021, 15, 597708. [Google Scholar] [CrossRef]
- Lee, K.B.; Lim, S.H.; Kim, K.H.; Kim, K.J.; Kim, Y.R.; Chang, W.N.; Yeom, J.W.; Kim, Y.D.; Hwang, B.Y. Six-Month Functional Recovery of Stroke Patients: A Multi-Time-Point Study. Int. J. Rehabil. Res. 2015, 38, 173–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grefkes, C.; Ward, N.S. Cortical Reorganization after Stroke: How Much and How Functional? Neuroscientist 2014, 20, 56–70. [Google Scholar] [CrossRef] [PubMed]
- Ballester, B.R.; Maier, M.; Duff, A.; Cameirão, M.; Bermúdez, S.; Duarte, E.; Cuxart, A.; Rodríguez, S.; San Segundo Mozo, R.M.; Verschure, P.F.M.J. A Critical Time Window for Recovery Extends beyond One-Year Post-Stroke. J. Neurophysiol. 2019, 122, 350–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furlan, L.; Sterr, A. The Applicability of Standard Error of Measurement and Minimal Detectable Change to Motor Learning Research—A Behavioral Study. Front. Hum. Neurosci. 2018, 12, 95. [Google Scholar] [CrossRef]
- Hiengkaew, V.; Jitaree, K.; Chaiyawat, P. Minimal Detectable Changes of the Berg Balance Scale, Fugl-Meyer Assessment Scale, Timed “Up & Go” Test, Gait Speeds, and 2-Minute Walk Test in Individuals with Chronic Stroke With Different Degrees of Ankle Plantarflexor Tone. Arch. Phys. Med. Rehabil. 2012, 93, 1201–1208. [Google Scholar] [CrossRef]
- Lewek, M.D.; Sykes, R. Minimal Detectable Change for Gait Speed Depends on Baseline Speed in Individuals with Chronic Stroke. J. Neurol. Phys. Ther. 2019, 43, 122–127. [Google Scholar] [CrossRef]
- Fulk, G.D.; He, Y. Minimal Clinically Important Difference of the 6-Minute Walk Test in People with Stroke. J. Neurol. Phys. Ther. 2018, 42, 235–240. [Google Scholar] [CrossRef]
- Bohannon, R.W.; Glenney, S.S. Minimal Clinically Important Difference for Change in Comfortable Gait Speed of Adults with Pathology: A Systematic Review. J. Eval. Clin. Pract. 2014, 20, 295–300. [Google Scholar] [CrossRef]
- Tamura, S.; Miyata, K.; Kobayashi, S.; Takeda, R.; Iwamoto, H. The Minimal Clinically Important Difference in Berg Balance Scale Scores among Patients with Early Subacute Stroke: A Multicenter, Retrospective, Observational Study. Top. Stroke Rehabil. 2021, 12, 1–7. [Google Scholar] [CrossRef]
- Pandian, S.; Arya, K.N.; Kumar, D. Minimal Clinically Important Difference of the Lower-Extremity Fugl-Meyer Assessment in Chronic-Stroke. Top. Stroke Rehabil. 2016, 23, 233–239. [Google Scholar] [CrossRef]
- Cramer, S.C.; Wolf, S.L.; Saver, J.L.; Johnston, K.C.; Mocco, J.; Lansberg, M.G.; Savitz, S.I.; Liebeskind, D.S.; Smith, W.; Wintermark, M.; et al. The Utility of Domain-Specific End Points in Acute Stroke Trials. Stroke 2021, 52, 1154–1161. [Google Scholar] [CrossRef]
- Daly, J.J. Comment: Chow, J.W. and Stokic, D.S. Longitudinal Changes in Temporospatial Gait Characteristics during the First Year Post-Stroke. Brain Sci. 2022, 11, 1648. [Google Scholar]
- Ferrarello, F.; Bianchi, V.A.M.; Baccini, M.; Rubbieri, G.; Mossello, E.; Cavallini, M.C.; Marchionni, N.; Di Bari, M. Tools for Observational Gait Analysis in Patients With Stroke: A Systematic Review. Phys. Ther. 2013, 93, 1673–1685. [Google Scholar] [CrossRef] [Green Version]
- Gor-García-Fogeda, M.D.; Cano de la Cuerda, R.; Carratalá Tejada, M.; Alguacil-Diego, I.M.; Molina-Rueda, F. Observational Gait Assessments in People with Neurological Disorders: A Systematic Review. Arch. Phys. Med. Rehabil. 2016, 97, 131–140. [Google Scholar] [CrossRef]
- Daly, J.J.; Nethery, J.; McCabe, J.P.; Brenner, I.; Rogers, J.; Gansen, J.; Butler, K.; Burdsall, R.; Roenigk, K.; Holcomb, J. Development and Testing of the Gait Assessment and Intervention Tool (G.A.I.T.): A Measure of Coordinated Gait Components. J. Neurosci. Methods 2009, 178, 334–339. [Google Scholar] [CrossRef] [Green Version]
- Daly, J.J.; Gor-García-Fogeda, M.D.; McCabe, J.P. Gait Assessment and Intervention Tool (G.A.I.T), Update on a Gait Coordination Measure. Brain Sci. 2022; 12, in press. [Google Scholar]
- Chen, B.; Liu, P.; Xiao, F.; Liu, Z.; Wang, Y. Review of the Upright Balance Assessment Based on the Force Plate. IJERPH 2021, 18, 2696. [Google Scholar] [CrossRef]
- Daly, J.J.; Ruff, R.L. Construction of Efficacious Gait and Upper Limb Functional Interventions Based on Brain Plasticity Evidence and Model-Based Measures For Stroke Patients. Sci. World J. 2007, 7, 2031–2045. [Google Scholar] [CrossRef] [Green Version]
- McCabe, J.P. Feasibility of Combining Gait Robot and Multichannel Functional Electrical Stimulation with Intramuscular Electrodes. JRRD 2008, 45, 997–1006. [Google Scholar] [CrossRef]
- Daly, J.J.; Ruff, R.L. Feasibility of Combining Multi-Channel Functional Neuromuscular Stimulation with Weight-Supported Treadmill Training. J. Neurol. Sci. 2004, 225, 105–115. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McCabe, J.P.; Pundik, S.; Daly, J.J. Targeting CNS Neural Mechanisms of Gait in Stroke Neurorehabilitation. Brain Sci. 2022, 12, 1055. https://doi.org/10.3390/brainsci12081055
McCabe JP, Pundik S, Daly JJ. Targeting CNS Neural Mechanisms of Gait in Stroke Neurorehabilitation. Brain Sciences. 2022; 12(8):1055. https://doi.org/10.3390/brainsci12081055
Chicago/Turabian StyleMcCabe, Jessica P., Svetlana Pundik, and Janis J. Daly. 2022. "Targeting CNS Neural Mechanisms of Gait in Stroke Neurorehabilitation" Brain Sciences 12, no. 8: 1055. https://doi.org/10.3390/brainsci12081055
APA StyleMcCabe, J. P., Pundik, S., & Daly, J. J. (2022). Targeting CNS Neural Mechanisms of Gait in Stroke Neurorehabilitation. Brain Sciences, 12(8), 1055. https://doi.org/10.3390/brainsci12081055