The Effects of Working Memory Capacity in Metaphor and Metonymy Comprehension in Mandarin–English Bilinguals’ Minds: An fMRI Study
Abstract
:1. Introduction
1.1. Research Background
1.1.1. Figurative Language
1.1.2. Working Memory (WM)
1.1.3. WM, Vocabulary, and Bilingualism
1.1.4. Types of Metonymies
1.2. Research Purpose
- Metaphorical processing engages some crucial brain areas with metonymic processing;
- There are individual differences in WMC for bilinguals when comprehending metaphor and systematic and circumstantial metonymy;
- There are individual differences in vocabulary size for bilinguals when comprehending metaphor and systematic and circumstantial metonymy.
- What are the neural correlates between metaphor and metonymy processing in Mandarin–English bilinguals’ minds?
- What is the role of working memory capacity in metaphor and metonymy in Mandarin–English bilinguals’ minds?
- What is the role of vocabulary size in metaphor and metonymy comprehension in Mandarin–English bilinguals’ minds?
2. Materials and Methods
2.1. Participants
2.2. Experiment Tasks
2.2.1. The Language Background Questionnaire and The Language Experience and Proficiency Questionnaire (LEAP-Q)
2.2.2. Working Memory Measurement (Reading Span Task)
2.2.3. Nelson–Denny Reading Test
2.3. Experimental Stimuli
2.4. General Experimental Procedure
3. Results
3.1. Data Acquisition
3.1.1. Behavioral Data Acquisition
3.1.2. Imaging Data Acquisition
3.1.3. Imaging Data Preprocessing
3.2. Data Analysis
3.2.1. Behavioral Data Analysis
3.2.2. Behavioral Data Results
3.2.3. Imaging Data Analysis
3.2.4. General Linear Model Analysis
3.3. Metaphor and Metonymy in General Processing
3.3.1. META > METO
3.3.2. METO > META
3.3.3. Metaphor and Circumstantial Metonymy and Systematic Metonymy Processing
3.3.4. Vocabulary Effects
META > C LIT
META > C METO
C METO
3.3.5. Working Memory Capacity Effects
C METO > C LIT
C METO
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bischofshausen, S.; Makoid, L.A.; Cole, J. Effects of Inference Requirements on Comprehension and Recognition of Metaphors. Metaphor Symb. Act. 1989, 4, 227–246. [Google Scholar] [CrossRef]
- Levorato, M.C.; Cacciari, C. Children’s comprehension and production of idioms: The role of context and familiarity. J. Child Lang. 1992, 19, 415–433. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, W.W. Lost science in the third world. Sci. Am. 1995, 273, 92–99. [Google Scholar] [CrossRef]
- Makkai, A.; Boatner, M.T.; Gates, J.E. A Dictionary of American Idioms, 3rd ed.; Barron’s Educational Series: Hauppauge, NY, USA, 1995. [Google Scholar]
- Milosky, L.M. Nonliteral language abilities: Seeing the forest for the trees. In Language Learning Disabilities in School-Age Children and Adolescents: Some Principles and Applications; Macmillan College Publishers: New York, NY, USA, 1994; pp. 275–303. [Google Scholar]
- Kennedy, G.A. The Art of Rhetoric in the Roman World: 300 BC–AD 300; Wipf and Stock Publishers: Eugene, OR, USA, 2008; Volume 2. [Google Scholar]
- McCarthy, M.; Carter, R. “There’s millions of them”: Hyperbole in everyday conversation. J. Pragmat. 2004, 36, 149–184. [Google Scholar] [CrossRef]
- Brownell, H.H.; Simpson, T.L.; Bihrle, A.M.; Potter, H.H.; Gardner, H. Appreciation of metaphoric alternative word meanings by left and right brain-damaged patients. Neuropsychologia 1990, 28, 375–383. [Google Scholar] [CrossRef]
- Rinaldi, M.C.; Marangolo, P.; Baldassari, F. Metaphor processing in right braindamaged patients with visuo-verbal and verbal material: A dissociation (re)considered. Cortex 2004, 40, 479490. [Google Scholar] [CrossRef]
- Mashal, N.; Faust, M.; Hendler, T.; Jung-Beeman, M. An fMRI investigation of the neural correlates underlying the processing of novel metaphoric expressions. Brain Lang. 2007, 100, 115–126. [Google Scholar] [CrossRef]
- Stringaris, A.K.; Medford, N.; Giora, R.; Giampietro, V.C.; Brammer, M.J.; David, A.S. How metaphors influence semantic relatedness judgments: The role of the right frontal cortex. NeuroImage 2006, 33, 784–793. [Google Scholar] [CrossRef]
- Lee, S.S.; Dapretto, M. Metaphorical vs. literal word meanings: fMRI evidence against a selective role of the right hemisphere. NeuroImage 2006, 29, 536–544. [Google Scholar] [CrossRef]
- Rapp, A.M.; Leube, D.T.; Erb, M.; Grodd, W.; Kircher, T. Neural correlates of metaphor processing. Cogn. Brain Res. 2004, 20, 395–402. [Google Scholar] [CrossRef]
- Rapp, A.M.; Leube, D.T.; Erb, M.; Grodd, W.; Kircher, T. Laterality in metaphor processing: Lack of evidence from functional magnetic resonance imaging for the right hemisphere theory. Brain Lang. 2007, 100, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Shibata, M.; Abe, J.-I.; Terao, A.; Miyamoto, T. Neural mechanisms involved in the comprehension of metaphoric and literal sentences: An fMRI study. Brain Res. 2007, 1166, 92–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferstl, E.C.; Neumann, J.; Bogler, C.; Von Cramon, D.Y. The extended language network: A meta-analysis of neuroimaging studies on text comprehension. Hum. Brain Mapp. 2008, 29, 581–593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benedek, M.; Beaty, R.; Jauk, E.; Koschutnig, K.; Fink, A.; Silvia, P.J.; Dunst, B.; Neubauer, A.C. Creating metaphors: The neural basis of figurative language production. NeuroImage 2013, 90, 99–106. [Google Scholar] [CrossRef] [Green Version]
- Lai, V.T.; Desai, R.H. The grounding of temporal metaphors. Cortex 2016, 76, 43–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piñango, M.M.; Zhang, M.; Foster-Hanson, E.; Negishi, M.; Lacadie, C.; Constable, R.T. Metonymy as referential dependency: Psycholinguistic and neurolinguistic arguments for a unified linguistic treatment. Cogn. Sci. 2017, 41, 351–378. [Google Scholar] [CrossRef]
- Michl, D. Metonymies are more literal than metaphors: Evidence from ratings of German idioms. Lang. Cogn. 2019, 11, 98–124. [Google Scholar] [CrossRef] [Green Version]
- Goossens, L. From Three Respectable Horses’ Mouths: Metonymy and Conventionalization in a Diachronically Differentiated Data Base; Pragmatics and beyond New Series; John Benjamins Publishing Company: Amsterdam, The Netherlands, 1995; pp. 175–204. [Google Scholar]
- Taylor, J.R. Linguistic Categorization. Prototypes in Linguistic Theory, 2nd ed.; Basil Blackwell: Oxford, UK, 1995. [Google Scholar]
- Annaz, D.; Van Herwegen, J.; Thomas, M.; Fishman, R.; Karmiloff-Smith, A.; Rundblad, G. Comprehension of metaphor and metonymy in children with Williams syndrome. Int. J. Lang. Commun. Disord. 2009, 44, 962–978. [Google Scholar] [CrossRef]
- Klepousniotou, E. The Processing of Lexical Ambiguity: Homonymy and Polysemy in the Mental Lexicon. Brain Lang. 2002, 81, 205–223. [Google Scholar] [CrossRef]
- Rundblad, G.; Annaz, D.; Dimitriou, D. The atypical development of metaphor and metonymy comprehension in children with autism. Autism 2010, 14, 29–46. [Google Scholar] [CrossRef]
- Weiland, H.; Bambini, V.; Schumacher, P.B. The role of literal meaning in figurative language comprehension: Evidence from masked priming ERP. Front. Hum. Neurosci. 2014, 8, 583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lakoff, G.; Turner, M. More Than Cool Reason: A Field Guide to Poetic Metaphor; University of Chicago Press: Chicago, IL, USA, 1989. [Google Scholar]
- Sweetser, E. From Etymology to Pragmatics: Metaphorical and Cultural Aspects of Semantic Structure; Cambridge University Press: Cambridge, UK, 1990; Volume 54. [Google Scholar]
- Qualls, C.D.; Bodle, H.; O’Brien, R.; Treaster, B.; Blood, G.W.; Hammer, C.S. Idioms in Rural 5th Graders: Effects of Differential Language Exposure. In Proceedings of the Annual Convention of the American Speech-Language and Hearing Association, New Orleans, LA, USA, 2001. [Google Scholar]
- Qualls, C.D.; Harris, J.L. Age, Working Memory, Figurative Language Type, and Reading Ability. Am. J. Speech-Lang. Pathol. 2003, 12, 92–102. [Google Scholar] [CrossRef]
- Zelinski, E.M.; Hyde, J.C. Old Words, New Meanings: Aging and Sense Creation. J. Mem. Lang. 1996, 35, 689–707. [Google Scholar] [CrossRef]
- Levorato, M.C.; Cacciari, C. The effects of different tasks on the comprehension and production of idioms in children. J. Exp. Child Psychol. 1995, 60, 261–283. [Google Scholar] [CrossRef] [PubMed]
- Daneman, M.; Carpenter, P.A. Individual differences in working memory and reading. J. Verbal Learn. Verbal Behav. 1980, 19, 450–466. [Google Scholar] [CrossRef]
- Salthouse, T.A. Working memory as a processing resource in cognitive aging. Dev. Rev. 1990, 10, 101–124. [Google Scholar] [CrossRef]
- Searle, J.R.; Willis, Y.S. The Construction of Social Reality; Simon and Schuster: New York, NY, USA, 1995. [Google Scholar]
- Fraser, G. The Pornographic Imagination in All Strange Away. MFS Mod. Fict. Stud. 1995, 41, 515–530. [Google Scholar] [CrossRef]
- Clark, H.H.; Gerrig, R.J. Understanding old words with new meanings. J. Verbal Learn. Verbal Behav. 1983, 22, 591–608. [Google Scholar] [CrossRef]
- Fregni, S.; Heidlmayr, K.; Weber, K.; Peeters, D. An Exploratory fMRI Study on Metonymy and Metaphor Processing. Master’s Thesis; Radbound University: The Netherlands, 2019. Available online: http://docplayer.net/214866682-An-exploratory-fmri-study-on-metonymy-and-metaphor-processing.html (accessed on 12 December 2021).
- Hauptman, M.; Blank, I.; Fedorenko, E. Non-literal language processing is jointly supported by the language and Theory of Mind networks: Evidence from a novel meta-analytic fMRI approach. bioRxiv 2022. [Google Scholar] [CrossRef]
- Rapp, A.M.; Wild, B. Nonliteral language in Alzheimer dementia: A review. J. Int. Neuropsychol. Soc. 2011, 17, 207–218. [Google Scholar] [CrossRef]
- Gregory, M.E.; Waggoner, J.E. Factors that influence metaphor comprehension skills in adulthood. Exp. Aging Res. 1996, 22, 83–98. [Google Scholar] [CrossRef] [PubMed]
- Hasher, L.; Zacks, R.T. Working memory, comprehension, and aging: A review and a new view. Psychol. Learn. Motiv. 1988, 22, 193–225. [Google Scholar]
- Gildea, P.; Glucksberg, S. On understanding metaphor: The role of context. J. Verbal Learn. Verbal Behav. 1983, 22, 577–590. [Google Scholar] [CrossRef]
- Glucksberg, S.; Gildea, P.; Bookin, H.B. On understanding nonliteral speech: Can people ignore metaphors? J. Verbal Learn. Verbal Behav. 1982, 21, 85–98. [Google Scholar] [CrossRef]
- Tourangeau, R.; Sternberg, R.J. Aptness in metaphor. Cogn. Psychol. 1981, 13, 27–55. [Google Scholar] [CrossRef]
- Baddeley, A.D.; Hitch, G. Working memory. In Psychology of Learning and Motivation; Academic Press: Cambridge, MA, USA, 1974; Volume 8, pp. 47–89. [Google Scholar]
- Just, M.A.; Carpenter, P.A. A capacity theory of comprehension: Individual differences in working memory. Psychol. Rev. 1992, 99, 122. [Google Scholar] [CrossRef]
- Baddeley, A. The episodic buffer: A new component of working memory? Trends Cogn. Sci. 2000, 4, 417–423. [Google Scholar] [CrossRef]
- Metcalfe, J.; Shimamura, A.P. (Eds.) Metacognition: Knowing about Knowing; MIT Press: Cambridge, MA, USA, 1994. [Google Scholar]
- Baddeley, A.D. Working Memory; Oxford University Press: Oxford, UK, 1986. [Google Scholar]
- Linck, J.A.; Osthus, P.; Koeth, J.T.; Bunting, M.F. Working memory and second language comprehension and production: A meta-analysis. Psychon. Bull. Rev. 2014, 21, 861–883. [Google Scholar] [CrossRef]
- Grundy, J.G.; Anderson, J.A.; Bialystok, E. Bilinguals have more complex EEG brain signals in occipital regions than monolinguals. NeuroImage 2017, 159, 280–288. [Google Scholar] [CrossRef]
- DeLuca, V.; Rothman, J.; Bialystok, E.; Pliatsikas, C. Redefining bilingualism as a spectrum of experiences that differentially affects brain structure and function. Proc. Natl. Acad. Sci. USA 2019, 116, 7565–7574. [Google Scholar] [CrossRef] [Green Version]
- Pigott, S.; Milner, B. Capacity of visual short-term memory after unilateral frontal or anterior temporal-lobe resection. Neuropsychologia 1994, 32, 969–981. [Google Scholar] [CrossRef]
- D’Esposito, M.; Detre, J.A.; Alsop, D.; Shin, R.K.; Atlas, S.; Grossman, M. The neural basis of the central executive system of working memory. Nature 1995, 378, 279–281. [Google Scholar] [CrossRef] [PubMed]
- Salmon, E.; Van der Linden, M.; Collette, F.; Delfiore, G.; Maquet, P.; Degueldre, C.; Maquet, P.; Degueldre, C.; Luxen, A.; Franck, G. Regional brain activity during working memory tasks. Brain 1996, 119, 1617–1625. [Google Scholar] [CrossRef] [PubMed]
- Na, D.G.; Ryu, J.W.; Byun, H.S.; Choi, D.S.; Lee, E.J.; Chung, W.I.; Cho, J.M.; Han, B.K. Functional MR Imaging of Working Memory in the Human Brain. Korean J. Radiol. 2000, 1, 19–24. [Google Scholar] [CrossRef] [Green Version]
- Lewis, S.J.; Cools, R.; Robbins, T.; Dove, A.; Barker, R.A.; Owen, A.M. Using executive heterogeneity to explore the nature of working memory deficits in Parkinson’s disease. Neuropsychologia 2003, 41, 645–654. [Google Scholar] [CrossRef]
- Monetta, L.; Pell, M.D. Effects of verbal working memory deficits on metaphor comprehension in patients with Parkinson’s disease. Brain Lang. 2007, 101, 80–89. [Google Scholar] [CrossRef]
- Bialystok, E.; Luk, G.; Peets, K.F.; Sujin, Y.A.N.G. Receptive vocabulary differences in monolingual and bilingual children. Biling. Lang. Cogn. 2010, 13, 525–531. [Google Scholar] [CrossRef] [Green Version]
- Bialystok, E.; Luk, G. Receptive vocabulary differences in monolingual and bilingual adults. Biling. Lang. Cogn. 2011, 15, 397–401. [Google Scholar] [CrossRef]
- Prat, C.S.; Mason, R.A.; Just, M.A. Individual differences in the neural basis of causal inferencing. Brain Lang. 2011, 116, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Guo, T.; Liu, H.; Misra, M.; Kroll, J.F. Local and global inhibition in bilingual word production: fMRI evidence from Chinese–English bilinguals. NeuroImage 2011, 56, 2300–2309. [Google Scholar] [CrossRef] [Green Version]
- Martin-Rhee, M.M.; Bialystok, E. The development of two types of inhibitory control in monolingual and bilingual children. Biling. Lang. Cogn. 2008, 11, 81–93. [Google Scholar] [CrossRef]
- Grainger, J.; Beauvillain, C. Language blocking and lexical access in bilinguals. Q. J. Exp. Psychol. Sect. A 1987, 39, 295–319. [Google Scholar] [CrossRef]
- Brysbaert, M. Word recognition in bilinguals: Evidence against the existence of two separate lexicons. Psychol. Belg. 1998, 38, 163–175. [Google Scholar] [CrossRef]
- Dijkstra, T.; Kroll, J.F. Bilingual visual word recognition and lexical access. In Handbook of Bilingualism: Psycholinguistic Approaches; Oxford University Press: Oxford, UK, 2005; Volume 178, p. 201. [Google Scholar]
- Dunn, L.; Dunn, L. Peabody Picture Vocabulary Test, 3rd ed.; American Guidance Service: Circle Pines, MN, USA, 1997. [Google Scholar]
- Bialystok, E.; Craik, F.I.; Luk, G. Bilingualism: Consequences for mind and brain. Trends Cogn. Sci. 2012, 16, 240–250. [Google Scholar] [CrossRef] [PubMed]
- Prat, C.S.; Mason, R.A.; Just, M.A. An fMRI investigation of analogical mapping in metaphor comprehension: The influence of context and individual cognitive capacities on processing demands. J. Exp. Psychol. Learn. Mem. Cogn. 2012, 38, 282–294. [Google Scholar] [CrossRef] [Green Version]
- Prat, C.S.; Keller, T.A.; Just, M.A. Individual Differences in Sentence Comprehension: A Functional Magnetic Resonance Imaging Investigation of Syntactic and Lexical Processing Demands. J. Cogn. Neurosci. 2007, 19, 1950–1963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kazmerski, V.A.; Blasko, D.G.; Dessalegn, B.G. ERP and behavioral evidence of individual differences in metaphor comprehension. Mem. Cogn. 2003, 31, 673–689. [Google Scholar] [CrossRef] [Green Version]
- Rundblad, G.; Annaz, D. Development of metaphor and metonymy comprehension: Receptive vocabulary and conceptual knowledge. Br. J. Dev. Psychol. 2010, 28, 547–563. [Google Scholar] [CrossRef] [Green Version]
- Boers, F. Metaphor awareness and vocabulary retention. Appl. Linguist. 2000, 21, 553–571. [Google Scholar] [CrossRef]
- Kintsch, W. Predication. Cogn. Sci. 2001, 25, 173–202. [Google Scholar] [CrossRef]
- Landauer, T.K. Learning and representing verbal meaning: The latent semantic analysis theory. Curr. Dir. Psychol. Sci. 1998, 7, 161–164. [Google Scholar] [CrossRef]
- Chiappe, D.L.; Chiappe, P. The role of working memory in metaphor production and comprehension. J. Mem. Lang. 2007, 56, 172–188. [Google Scholar] [CrossRef]
- Stein-Smith, K. The Role of Multilingualism in Effectively Addressing Global Issues: The Sustainable Development Goals and Beyond. Theory Pract. Lang. Stud. 2016, 6, 2254. [Google Scholar] [CrossRef]
- Amaro, J.C.; Flynn, S.; Rothman, J. (Eds.) Third Language Acquisition in Adulthood; John Benjamins Publishing: Amsterdam, The Netherlands, 2012; Volume 46. [Google Scholar]
- Rothman, J.; Niño Murcia, M. Multilingualism and identity. In Bilingualism and Identity: Spanish at the Crossroads with Other Languages; John Benjamins Publishing: Amsterdam, The Netherlands, 2008; pp. 301–332. [Google Scholar]
- Rothman, J.; Halloran, B. Formal linguistic approaches to L3/Ln acquisition: A focus on morphosyntactic transfer in adult multilingualism. Annu. Rev. Appl. Linguist. 2013, 33, 51–67. [Google Scholar] [CrossRef]
- Slabakovaa, R.; Amarob, J.C.; Kangc, S.K. L2 regular and novel metonymy: How to curl up with a good Agatha Christie in your L2. In Proceedings of the 37th Boston University Conference on Language Development, Boston, MA, USA, 2–4 November 2012; Cascadilla Press: Somerville, MA, USA, 2013; pp. 397–409. [Google Scholar]
- Apresjan, J.D. Regular Polysemy. Linguistics 1974, 12, 142. [Google Scholar] [CrossRef]
- Eckardt, R. Three ways to create metonymy: A study in locative readings of institution names. Studi Ital. Linguist. Teor. Appl. 1999, 28, 265–282. [Google Scholar]
- Jackendoff, R. The Architecture of the Language Faculty; No. 28; MIT Press: Cambridge, MA, USA, 1997. [Google Scholar]
- Nunberg, G. The non-uniqueness of semantic solutions: Polysemy. Linguist. Philos. 1979, 3, 143–184. [Google Scholar] [CrossRef]
- Nunberg, G. Transfers of meaning. J. Semant. 1995, 12, 109–132. [Google Scholar] [CrossRef]
- Gibbs, R.W., Jr. Figurative Thought and Figurative Language; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Lakoff, G.; Johnson, M. Conceptual Metaphor in Everyday Language. J. Philos. 1980, 77, 453. [Google Scholar] [CrossRef] [Green Version]
- Barcelona, A. Metaphor and Metonymy at the Crossroads; De Gruyter Mouton: Berlin, Germany, 2000; pp. 109–132. [Google Scholar]
- Grice, H.P. Logic and conversation. In Speech Acts; Brill: Leiden, The Netherlands, 1975; pp. 41–58. [Google Scholar]
- Searle, J.R. The intentionality of intention and action. Inquiry 1979, 22, 253–280. [Google Scholar] [CrossRef]
- Sperber, D.; Wilson, D. Pragmatics, modularity and mind-reading. Mind Lang. 2002, 17, 3–23. [Google Scholar] [CrossRef] [Green Version]
- Chen, E.; Widick, P.; Chatterjee, A. Functional–anatomical organization of predicate metaphor processing. Brain Lang. 2008, 107, 194–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wakusawa, K.; Sugiura, M.; Sassa, Y.; Jeong, H.; Horie, K.; Sato, S.; Yokoyama, H.; Tsuchiya, S.; Inuma, K.; Kawashima, R. Comprehension of implicit meanings in social situations involving irony: A functional MRI study. NeuroImage 2007, 37, 1417–1426. [Google Scholar] [CrossRef] [PubMed]
- Eviatar, Z.; Just, M.A. Brain correlates of discourse processing: An fMRI investigation of irony and conventional metaphor comprehension. Neuropsychologia 2006, 44, 2348–2359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uchiyama, H.T.; Saito, D.N.; Tanabe, H.C.; Harada, T.; Seki, A.; Ohno, K.; Koeda, T.; Sadato, N. Distinction between the literal and intended meanings of sentences: A functional magnetic resonance imaging study of metaphor and sarcasm. Cortex 2012, 48, 563–583. [Google Scholar] [CrossRef] [PubMed]
- Marian, V.; Blumenfeld, H.K.; Kaushanskaya, M. The Language Experience and Proficiency Questionnaire (LEAP-Q): Assessing language profiles in bilinguals and multilinguals. J. Speech Lang. Hear. Res. 2007, 50, 940–947. [Google Scholar] [CrossRef] [Green Version]
- Conway, A.R.A.; Kane, M.J.; Bunting, M.F.; Hambrick, D.Z.; Wilhelm, O.; Engle, R.W. Working memory span tasks: A methodological review and user’s guide. Psychon. Bull. Rev. 2005, 12, 769–786. [Google Scholar] [CrossRef]
- Brown, J.A.; Fishco, V.V.; Hanna, G. Nelson-Denny Reading Test: Manual for Scoring and Interpretation, Forms G & H; Riverside Publishing: Rolling Meadows, IL, USA, 1993. [Google Scholar]
- Engle, R.W.; Carullo, J.J.; Collins, K.W. Individual Differences in Working Memory for Comprehension and Following Directions. J. Educ. Res. 1991, 84, 253–262. [Google Scholar] [CrossRef]
- Giora, R. Understanding figurative and literal language: The graded salience hypothesis. Cogn. Linguist. 1997, 8, 183–206. [Google Scholar] [CrossRef]
- Giora, R. On the priority of salient meanings: Studies of literal and figurative language. J. Pragmat. 1999, 31, 919–929. [Google Scholar] [CrossRef]
- Giora, R. Literal vs. figurative language: Different or equal? J. Pragmat. 2002, 34, 487–506. [Google Scholar] [CrossRef]
- Giora, R. On Our Mind: Salience, Context, and Figurative Language; Oxford University Press: Oxford, UK, 2003. [Google Scholar]
- Giora, R.; Zaidel, E.; Soroker, N.; Batori, G.; Kasher, A. Differential effects of right-and left-hemisphere damage on understanding sarcasm and metaphor. Metaphor. Symb. 2000, 15, 63–83. [Google Scholar] [CrossRef]
- Yang, F.G.; Edens, J.; Simpson, C.; Krawczyk, D.C. Differences in task demands influence the hemispheric lateralization and neural correlates of metaphor. Brain Lang. 2009, 111, 114–124. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.G.; Fuller, J.; Khodaparast, N.; Krawczyk, D.C. Figurative language processing after traumatic brain injury in adults: A preliminary study. Neuropsychologia 2010, 48, 1923–1929. [Google Scholar] [CrossRef]
- Zhou, H.; Rossi, S.; Chen, B. Effects of working memory capacity and tasks in processing L2 complex sentence: Evidence from Chinese-English bilinguals. Front. Psychol. 2017, 8, 595. [Google Scholar] [CrossRef] [Green Version]
- Ratcliff, R. Methods for dealing with reaction time outliers. Psychol. Bull. 1993, 114, 510–532. [Google Scholar] [CrossRef]
- Bates, D.; Maechler, M.; Bolker, B.; Walker, S.; Christensen, R.H.B.; Singmann, H.; Dai, B.; Scheipl, F.; Grothendieck, G. Package Mixed-Effects Models Using S4 Classes. Package ‘lme4’, R Package Version 1. 2011, pp. 1–48. Available online: https://cran.microsoft.com/snapshot/2020-04-13/web/packages/lme4/lme4.pdf (accessed on 27 February 2022).
- Lakoff, G. The Neural Theory of Metaphor. 2009. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1437794 (accessed on 27 February 2022).
- Gallagher, H.L.; Happé, F.; Brunswick, N.; Fletcher, P.C.; Frith, U.; Frith, C.D. Reading the mind in cartoons and stories: An fMRI study of ‘theory of mind’in verbal and nonverbal tasks. Neuropsychologia 2000, 38, 11–21. [Google Scholar] [CrossRef]
- Hale, C.M.; Tager-Flusberg, H. The influence of language on theory of mind: A training study. Dev. Sci. 2003, 6, 346–359. [Google Scholar] [CrossRef] [Green Version]
- Cieślicka, A.B. Bilingual figurative language processing. In Psychology of Bilingualism; Springer: Cham, Switzerland, 2017; pp. 75–118. [Google Scholar]
- Silani, G.; Lamm, C.; Ruff, C.; Singer, T. Right Supramarginal Gyrus Is Crucial to Overcome Emotional Egocentricity Bias in Social Judgments. J. Neurosci. 2013, 33, 15466–15476. [Google Scholar] [CrossRef]
- Leiner, H.C.; Leiner, A.L.; Dow, R.S. Cognitive and language functions of the human cerebellum. Trends Neurosci. 1993, 16, 444–447. [Google Scholar] [CrossRef]
- De Smet, H.J.; Paquier, P.; Verhoeven, J.; Mariën, P. The cerebellum: Its role in language and related cognitive and affective functions. Brain Lang. 2013, 127, 334–342. [Google Scholar] [CrossRef] [PubMed]
- Botez-Marquard, T.; Léveillé, J.; Botez, M. Neuropsychological Functioning in Unilateral Cerebellar Damage. J. Can. Sci. Neurol. 1994, 21, 353–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gottwald, B.; Wilde, B.; Mihajlovic, Z.; Mehdorn, H.M. Evidence for distinct cognitive deficits after focal cerebellar lesions. J. Neurol. Neurosurg. Psychiatry 2004, 75, 1524–1531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cook, M.; Murdoch, B.; Cahill, L.; Whelan, B. Higher-level language deficits resulting from left primary cerebellar lesions. Aphasiology 2004, 18, 771–784. [Google Scholar] [CrossRef]
- Whelan, B.-M.; Murdoch, B. Unravelling subcortical linguistic substrates: Comparison of thalamic versus cerebellar cognitive-linguistic regulation mechanisms. Aphasiology 2005, 19, 1097–1106. [Google Scholar] [CrossRef]
- Murdoch, B.E.; Whelan, B.-M. Language Disorders Subsequent to Left Cerebellar Lesions: A Case for Bilateral Cerebellar Involvement in Language? Folia Phoniatr. Logop. 2007, 59, 184–189. [Google Scholar] [CrossRef]
- Cavanna, A.E.; Trimble, M.R. The precuneus: A review of its functional anatomy and behavioural correlates. Brain 2006, 129, 564–583. [Google Scholar] [CrossRef] [Green Version]
- Bohrn, I.C.; Altmann, U.; Jacobs, A.M. Looking at the brains behind figurative language—A quantitative meta-analysis of neuroimaging studies on metaphor, idiom, and irony processing. Neuropsychologia 2012, 50, 2669–2683. [Google Scholar] [CrossRef]
- Virshup, E.; Virshup, B. Visual imagery: The language of the right brain. In Imagery; Springer: Boston, MA, USA, 1980; pp. 107–112. [Google Scholar]
- He, K. A Theory of Creative Thinking; Springer: Beijing, China, 2017. [Google Scholar]
- Rapp, A.M.; Mutschler, D.E.; Erb, M. Where in the brain is nonliteral language? A coordinate-based meta-analysis of functional magnetic resonance imaging studies. NeuroImage 2012, 63, 600–610. [Google Scholar] [CrossRef]
- Just, M.A.; Carpenter, P.A.; Keller, T.A.; Eddy, W.F.; Thulborn, K.R. Brain activation modulated by sentence comprehension. Science 1996, 274, 114–116. [Google Scholar] [CrossRef]
- Prat, C.S.; Long, D.L.; Baynes, K. The representation of discourse in the two hemispheres: An individual differences investigation. Brain Lang. 2007, 100, 283–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prat, C.S.; Just, M.A. Exploring the neural dynamics underpinning individual differences in sentence comprehension. Cereb. Cortex 2011, 21, 1747–1760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Segal, D.; Gollan, T.H. What’s left for balanced bilinguals? Language proficiency and item familiarity affect left-hemisphere specialization in metaphor processing. Neuropsychology 2018, 32, 866–879. [Google Scholar] [CrossRef]
- Dodds, C.M.; Morein-Zamir, S.; Robbins, T.W. Dissociating inhibition, attention, and response control in the frontoparietal network using functional magnetic resonance imaging. Cereb. Cortex 2011, 21, 1155–1165. [Google Scholar] [CrossRef] [Green Version]
- Haldane, M.; Cunningham, G.; Androutsos, C.; Frangou, S. Structural brain correlates of response inhibition in Bipolar Disorder I. J. Psychopharmacol. 2008, 22, 138–143. [Google Scholar] [CrossRef]
- Tomasi, D.; Ernst, T.; Caparelli, E.C.; Chang, L. Common deactivation patterns during working memory and visual attention tasks: An intra-subject fMRI study at 4 Tesla. Hum. Brain Mapp. 2006, 27, 694–705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lagopoulos, J.; Ivanovski, B.; Malhi, G.S. An event-related functional MRI study of working memory in euthymic bipolar disorder. J. Psychiatry Neurosci. 2007, 32, 174–184. [Google Scholar]
- Miyake, A.; Just, M.A.; Carpenter, P.A. Working memory constraints on the resolution of lexical ambiguity: Maintaining multiple interpretations in neutral contexts. J. Mem. Lang. 1994, 33, 175–202. [Google Scholar] [CrossRef]
- Pearlmutter, N.J.; MacDonald, M.C. Individual differences and probabilistic constraints in syntactic ambiguity resolution. J. Mem. Lang. 1995, 34, 521–542. [Google Scholar] [CrossRef]
- Farmer, T.A.; Fine, A.B.; Misyak, J.B.; Christiansen, M.H. Reading Span Task Performance, Linguistic Experience, and the Processing of Unexpected Syntactic Events. Q. J. Exp. Psychol. 2017, 70, 413–433. [Google Scholar] [CrossRef]
- Bellebaum, C.; Daum, I. Cerebellar involvement in executive control. Cerebellum 2007, 6, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Desmond, J.E.; Fiez, J.A. Neuroimaging studies of the cerebellum: Language, learning and memory. Trends Cogn. Sci. 1998, 2, 355–362. [Google Scholar] [CrossRef]
- Hayter, A.; Langdon, D.; Ramnani, N. Cerebellar contributions to working memory. NeuroImage 2007, 36, 943–954. [Google Scholar] [CrossRef] [PubMed]
- Osaka, M.; Osaka, N.; Kondo, H.; Morishita, M.; Fukuyama, H.; Aso, T.; Shibasaki, H. The neural basis of individual differences in working memory capacity: An fMRI study. NeuroImage 2003, 18, 789–797. [Google Scholar] [CrossRef]
- Baier, B.; Karnath, H.-O.; Dieterich, M.; Birklein, F.; Heinze, C.; Müller, N.G. Keeping Memory Clear and Stable—The Contribution of Human Basal Ganglia and Prefrontal Cortex to Working Memory. J. Neurosci. 2010, 30, 9788–9792. [Google Scholar] [CrossRef]
- Ell, S.W.; Marchant, N.L.; Ivry, R.B. Focal putamen lesions impair learning in rule-based, but not information-integration categorization tasks. Neuropsychologia 2006, 44, 1737–1751. [Google Scholar] [CrossRef] [Green Version]
- Cardillo, E.R.; Watson, C.; Schmidt, G.L.; Kranjec, A.; Chatterjee, A. From novel to familiar: Tuning the brain for metaphors. NeuroImage 2012, 59, 3212–3221. [Google Scholar] [CrossRef] [Green Version]
- Subramaniam, K.; Faust, M.; Beeman, M.; Mashal, N. The Repetition Paradigm: Enhancement of novel metaphors and suppression of conventional metaphors in the left inferior parietal lobe. Neuropsychologia 2012, 50, 2705–2719. [Google Scholar] [CrossRef]
- Leung, H.C.; Gore, J.C.; Goldman-Rakic, P.S. Sustained mnemonic response in the human middle frontal gyrus during on-line storage of spatial memoranda. J. Cogn. Neurosci. 2002, 14, 659–671. [Google Scholar] [CrossRef]
- Abutalebi, J.; Annoni, J.-M.; Zimine, I.; Pegna, A.; Seghier, M.; Lee-Jahnke, H.; Lazeyras, F.; Cappa, S.; Khateb, A. Language Control and Lexical Competition in Bilinguals: An Event-Related fMRI Study. Cereb. Cortex 2007, 18, 1496–1505. [Google Scholar] [CrossRef]
- Abutalebi, J.; Green, D. Bilingual language production: The neurocognition of language representation and control. J. Neurolinguist. 2007, 20, 242–275. [Google Scholar] [CrossRef]
- Lakoff, G.; Johnson, M. The metaphorical structure of the human conceptual system. Cogn. Sci. 1980, 4, 195–208. [Google Scholar] [CrossRef]
- Gibbs, R.W.; Bogdanovich, J.M.; Sykes, J.R.; Barr, D.J. Metaphor in Idiom Comprehension. J. Mem. Lang. 1997, 37, 141–154. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Lai, H. EFL learners’ awareness of metonymy-metaphor continuum. Lang. Aware. 2012, 21, 235–248. [Google Scholar] [CrossRef]
- Ruigrok, A.N.; Salimi-Khorshidi, G.; Lai, M.-C.; Baron-Cohen, S.; Lombardo, M.; Tait, R.J.; Suckling, J. A meta-analysis of sex differences in human brain structure. Neurosci. Biobehav. Rev. 2013, 39, 34–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaywitz, B.A.; Shaywltz, S.E.; Pugh, K.R.; Constable, R.T.; Skudlarski, P.; Fulbright, R.K.; Bronen, R.A.; Fletcher, J.M.; Shankweiler, D.P.; Katz, L.; et al. Sex differences in the functional organization of the brain for language. Nature 1995, 373, 607–609. [Google Scholar] [CrossRef] [PubMed]
- Horga, G.; Kaur, T.; Peterson, B.S. Annual Research Review: Current limitations and future directions in MRI studies of child-and adult-onset developmental psychopathologies. J. Child Psychol. Psychiatry 2014, 55, 659–680. [Google Scholar] [CrossRef] [Green Version]
- Juffs, A. Representation, Processing and Working Memory in a Second Language. Trans. Philol. Soc. 2004, 102, 199–225. [Google Scholar] [CrossRef]
- Juffs, A. Working memory, second language acquisition and low-educated second language and literacy learners. LOT Occas. Ser. 2006, 6, 89–104. [Google Scholar]
- Juffs, A.; Harrington, M. Aspects of working memory in L2 learning. Lang. Teach. 2011, 44, 137–166. [Google Scholar] [CrossRef]
- Sagarra, N. From CALL to face-to-face interaction: The effect of computer-delivered recasts and working memory on L2 development. In Conversational Interaction in Second Language Acquisition: A Collection of Empirical Studies; Oxford University Press: New York, NY, USA, 2007; pp. 229–248. [Google Scholar]
- Havik, E.; Roberts, L.; Van Hout, R.; Schreuder, R.; Haverkort, M. Processing Subject-Object Ambiguities in the L2: A Self-Paced Reading Study with German L2 Learners of Dutch. Lang. Learn. 2009, 59, 73–112. [Google Scholar] [CrossRef]
- Badre, D.; Wagner, A.D. Semantic retrieval, mnemonic control, and prefrontal cortex. Behav. Cogn. Neurosci. Rev. 2002, 1, 206–218. [Google Scholar] [CrossRef] [PubMed]
- Gabrieli, J.D.E.; Poldrack, R.A.; Desmond, J.E. The role of left prefrontal cortex in language and memory. Proc. Natl. Acad. Sci. USA 1998, 95, 906–913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Type | Mean RT (ms) | Standard Error | p (F-Test) |
---|---|---|---|
Literal | 3830.27 | 141.36 | 0.59 |
Metaphor | 3843.44 | 140.67 | |
Metonymy | 3996.08 | 143.35 |
Region | BA | Hemisphere | Voxels | X | Y | Z | Max t-Value |
---|---|---|---|---|---|---|---|
SupraMarginal gyrus | 40 | R | 733 | 60 | −36 | 34 | 5.40 |
Cerebelum 4_5 | R | 312 | 20 | −42 | −24 | 5.28 | |
Precentral gyrus | 4 | L | 238 | −30 | −18 | 58 | 5.19 |
Region | BA | Hemisphere | Voxels | X | Y | Z | Max t-Value |
---|---|---|---|---|---|---|---|
Sub-gyral | R | 225 | 40 | 4 | 22 | 6.34 | |
IFG | 6/44/45 | R | 312 | 52 | 0 | 26 | 4.56 |
Region | BA | Hemisphere | Voxels | X | Y | Z | Max t-Value |
---|---|---|---|---|---|---|---|
VAN | R/L | 781 | 10 | −6 | 6 | 8.77 | |
IFG | 6/44/45 | R | 1031 | 22 | −22 | 44 | 8.16 |
MTG | 38 | L | 181 | −40 | −6 | −24 | 6.45 |
Region | BA | Left/Right | Voxels | X | Y | Z | Max t-Value |
---|---|---|---|---|---|---|---|
Cuneus | 18/19 | R | 195 | 20 | −100 | 8 | 7.01 |
Region | BA | Hemisphere | Voxels | X | Y | Z | Max t-Value |
---|---|---|---|---|---|---|---|
STG | 38 | R | 102 | −44 | 16 | −18 | 5.51 |
Declive | L | 242 | −30 | −78 | −24 | 4.86 | |
Extra-Nuclear | R | 197 | 0 | −38 | −4 | 5.25 | |
cerebellar vermis 3 | L | 100 | 28 | −28 | −4 | 9.82 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, C.-H.; Yang, F.-P.G. The Effects of Working Memory Capacity in Metaphor and Metonymy Comprehension in Mandarin–English Bilinguals’ Minds: An fMRI Study. Brain Sci. 2022, 12, 633. https://doi.org/10.3390/brainsci12050633
Yin C-H, Yang F-PG. The Effects of Working Memory Capacity in Metaphor and Metonymy Comprehension in Mandarin–English Bilinguals’ Minds: An fMRI Study. Brain Sciences. 2022; 12(5):633. https://doi.org/10.3390/brainsci12050633
Chicago/Turabian StyleYin, Chia-Hsin, and Fan-Pei Gloria Yang. 2022. "The Effects of Working Memory Capacity in Metaphor and Metonymy Comprehension in Mandarin–English Bilinguals’ Minds: An fMRI Study" Brain Sciences 12, no. 5: 633. https://doi.org/10.3390/brainsci12050633
APA StyleYin, C.-H., & Yang, F.-P. G. (2022). The Effects of Working Memory Capacity in Metaphor and Metonymy Comprehension in Mandarin–English Bilinguals’ Minds: An fMRI Study. Brain Sciences, 12(5), 633. https://doi.org/10.3390/brainsci12050633