Clinical Manifestation, Auxiliary Examination Features, and Prognosis of GFAP Autoimmunity: A Chinese Cohort Study
Abstract
:1. Introduction
2. Patients and Methods
2.1. Patients
2.2. Measurement of Neuronal or Glial Autoantibodies
- (1)
- An indirect immunofluorescence cell-based assay (CBA) using human embryonic kidney (HEK) 293 cells transfected with an appropriate expression of plasmids was used to detect conventional neuronal surface and glial antibodies targeting N-methyl-D-aspartate receptors (NMDARs), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors 1/2 (AMPARs 1/2), gamma-aminobutyric acid type B receptors (GABABRs), leucine-rich glioma-inactivated protein 1 (LGI-1), contactin-associated protein 2 (CASPR2), aquaporin 4 (AQP4), and myelin oligodendrocyte glycoprotein (MOG) (FA112d-1005-1, FA1128-1005-50, FA1156-1005-50, Euroimmun AG, Lübeck, Germany);
- (2)
- A line immunoblot assay was used to detected antibodies targeting GAD 65, Titin (MGT30), Recoverin, PKCɣ, Zic4, Tr (DNER), SOX1, Ma2, Ma1, Amphiphysin, CV2 (CRMP5), Ri, Yo, and HuD associated with paraneoplastic neurological syndromes (PNS14-003, ravo Diagnostika GmbH, Freiburg, Germany);
- (3)
- All the serum and CSF specimens were further evaluated by indirect immunofluorescence tissue-based assay (TBA) using rat and monkey brain tissue (Euroimmun AG, Lübeck, Germany) for additional autoantibodies;
- (4)
- An indirect immunofluorescence cell-based assay (CBA) using human embryonic kidney (HEK) 293 cells transfected with GFAPα expression plasmids (MT231-16, Shaanxi MYBiotech Co. Ltd., Xian, China) was used to confirm whether the antibodies in selected samples present a characteristic immunoreactive pattern reminiscent of GFAP of astrocytes.
2.3. Statistical Analysis
3. Results
3.1. Serum and CSF GFAP-IgG Status
3.2. Clinical Characteristics of Patients with GFAP Autoimmunity
3.3. Diagnostic Radiology Findings
3.4. Laboratory Findings
3.5. Coexisting Autoantibodies and Oncological Associations
3.6. Treatment and Prognosis
4. Index Cases
4.1. Case 2
4.2. Case 3
4.3. Case 5
4.4. Case 6
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fang, B.; McKeon, A.; Hinson, S.R.; Kryzer, T.J.; Pittock, S.J.; Aksamit, A.J.; Lennon, V.A. Autoimmune glial fibrillary acidic protein astrocytopathy: A novel meningoencephalomyelitis. JAMA Neurol. 2016, 73, 1297–1307. [Google Scholar] [CrossRef] [PubMed]
- Flanagan, E.P.; Hinson, S.R.; Lennon, V.A.; Fang, B.; Aksamit, A.J.; Morris, P.P.; Basal, E.; Honorat, J.A.; Alfugham, N.B.; Linnoila, J.J.; et al. Glial fibrillary acidic protein immunoglobulin G as biomarker of autoimmune astrocytopathy: Analysis of 102 patients. Ann. Neurol. 2017, 81, 298–309. [Google Scholar] [CrossRef] [PubMed]
- Dubey, D.; Hinson, S.R.; Jolliffe, E.A.; Zekeridou, A.; Flanagan, E.P.; Pittock, S.J.; Basal, E.; Drubach, D.A.; Lachance, D.H.; Lennon, V.A.; et al. Autoimmune GFAP astrocytopathy: Prospective evaluation of 90 patients in 1 year. J. Neuroimmunol. 2018, 321, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Li, H.; Huang, L.; Fu, C.; Chen, Y.; Zhi, C.; Qiu, W.; Long, Y. CD8(+) T-cell predominance in autoimmune glial fibrillary acidic protein astrocytopathy. Eur. J. Neurol. 2021, 28, 2121–2125. [Google Scholar] [CrossRef] [PubMed]
- Iorio, R.; Damato, V.; Evoli, A.; Gessi, M.; Gaudino, S.; Di Lazzaro, V.; Spagni, G.; Sluijs, J.A.; Hol, E.M. Clinical and immunological characteristics of the spectrum of GFAP autoimmunity: A case series of 22 patients. J. Neurol. Neurosurg. Psychiatry 2018, 89, 138–146. [Google Scholar] [CrossRef]
- Yang, X.; Xu, H.; Ding, M.; Huang, Q.; Chen, B.; Yang, H.; Liu, T.; Long, Y.; Gao, C. Overlapping autoimmune syndromes in patients with glial fibrillary acidic protein antibodies. Front. Neurol. 2018, 9, 251. [Google Scholar] [CrossRef]
- Zhou, Z.H.; Yu, Q.Y.; Hong, M.F. Autoimmune glial fibrillary acidic protein astrocytopathy with the detection of Anti-GM3 and Anti-GM4 IgG antibodies, masquerading as Brown-Sequared Syndrome. JAMA Neurol. 2021, 78, 115–116. [Google Scholar] [CrossRef]
- Shan, F.; Long, Y.; Qiu, W. Autoimmune glial fibrillary acidic protein astrocytopathy: A review of the literature. Front. Immunol. 2018, 9, 2802. [Google Scholar] [CrossRef]
- Huang, Q.; Yang, H.; Liu, T.; Xu, H.; Chen, B.; Liu, S.; Li, W.; Long, Y.; Gao, C. Patients with suspected benign tumors and glial fibrillary acidic protein autoantibody: An analysis of five cases. Int. J. Neurosci. 2019, 129, 1183–1188. [Google Scholar] [CrossRef]
- Wang, H.; Chin, J.H.; Fang, B.Y.; Chen, X.; Zhao, A.L.; Ren, H.T.; Guan, H.Z. Autoimmune glial fibrillary acidic protein astrocytopathy manifesting as subacute meningoencephalitis with descending myelitis: A case report. BMC Neurol. 2020, 20, 443. [Google Scholar] [CrossRef]
- Zhao, C.; Li, A.; Liu, L.; Wang, J.; Fan, D. Acute myelitis, recurrent optic neuritis, and seizures over 17 years. Front Neurol. 2020, 11, 541146. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Wang, K.K. Glial fibrillary acidic protein: From intermediate filament assembly and gliosis to neurobiomarker. Trends. Neurosci. 2015, 38, 364–374. [Google Scholar] [CrossRef] [PubMed]
- Quinlan, R.A.; Brenner, M.; Goldman, J.E.; Messing, A. GFAP and its role in Alexander disease. Exp. Cell. Res. 2007, 313, 2077–2087. [Google Scholar] [CrossRef] [PubMed]
- Ciron, J.; Sourdrille, F.; Biotti, D.; Tchoumi, T.; Ruiz, A.; Bernard-Valnet, R.; Maubeuge, N.; Marignier, R. Area postrema syndrome: Another feature of anti-GFAP encephalomyelitis. Mult. Scler. 2020, 26, 253–255. [Google Scholar] [CrossRef]
- Petrelli, F.; Dallérac, G.; Pucci, L.; Calì, C.; Zehnder, T.; Sultan, S.; Lecca, S.; Chicca, A.; Ivanov, A.; Asensio, C.S.; et al. Dysfunction of homeostatic control of dopamine by astrocytes in the developing prefrontal cortex leads to cognitive impairments. Mol. Psychiatry 2020, 25, 732–749. [Google Scholar] [CrossRef]
- Kimura, A.; Takekoshi, A.; Yoshikura, N.; Hayashi, Y.; Shimohata, T. Clinical characteristics of autoimmune GFAP astrocytopathy. J. Neuroimmunol. 2019, 332, 91–98. [Google Scholar] [CrossRef]
- Kimura, A.; Takekoshi, A.; Shimohata, T. Characteristics of movement disorders in patients with autoimmune GFAP astrocytopathy. Brain Sci. 2022, 12, 462. [Google Scholar] [CrossRef]
- Gravier-Dumonceau, A.; Ameli, R.; Rogemond, V.; Ruiz, A.; Joubert, B.; Muñiz-Castrillo, S.; Vogrig, A.; Picard, G.; Ambati, A.; Benaiteau, M.; et al. Glial fibrillary acidic protein autoimmunity: A French cohort study. Neurology 2022, 98, e653–e668. [Google Scholar] [CrossRef]
- Wickel, J.; Chung, H.Y.; Kirchhof, K.; Boeckler, D.; Merkelbach, S.; Kuzman, P.; Mueller, W.C.; Geis, C.; Günther, A. Encephalitis with radial perivascular emphasis: Not necessarily associated with GFAP antibodies. Neurol. Neuroimmunol. Neuroinflamm. 2020, 7, e670. [Google Scholar] [CrossRef]
- Yang, X.; Liang, J.; Huang, Q.; Xu, H.; Gao, C.; Long, Y.; Xiao, X. Treatment of autoimmune glial fibrillary acidic protein astrocytopathy: Follow-up in 7 cases. Neuroimmunomodulation 2017, 24, 113–119. [Google Scholar] [CrossRef]
- Fang, J.; Tong, Z.; Lu, W. Case report: Need for caution in the diagnosis of GFAP astrocytopathy-A case of GFAP astrocytopathy coexistent with primary central nervous system lymphoma. Front. Neurol. 2022, 13, 806224. [Google Scholar] [CrossRef] [PubMed]
- McKeon, A. Glial fibrillary acidic protein immunoglobulin G in CSF: A biomarker of severe but reversible encephalitis. Neurology 2022, 98, 221–222. [Google Scholar] [CrossRef] [PubMed]
- Kunchok, A.; Zekeridou, A.; McKeon, A. Autoimmune glial fibrillary acidic protein astrocytopathy. Curr. Opin. Neurol. 2019, 32, 452–458. [Google Scholar] [CrossRef] [PubMed]
No. | Sex/Age | Monophasic | Prodromal Symptoms | Clinical Manifestations | CSF Findings | GFAP-IgG | Other Abs | Tumors | MRI Enhancement | Immunotherapies | Two-Year Follow Up (mRS) |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | M/62 | Yes | Flu-like | Headache, diplopia, ptosis | WBC 5, Pro 66 mg/dL, SOB (+) | CSF+/Serum+ | None | No | No | IVIG + Oral MP | Complete recovery |
2 | M/62 | Yes | Flu-like | Cognitive decline, epilepsy | WBC 42, Pro 115 mg/dL | CSF+/Serum− | CSF: NMDAR | No | No | IVIG + IVMP | Complete recovery |
3 | F/58 | Yes | Flu-like | Tremor, hypertonia | WBC 140, Pro 67 mg/dL | CSF+/Serum+ | None | No | Yes | ACV + IVIG + IVMP | Complete recovery |
4 | M/59 | Yes | Flu-like | Urinary retention, tremor, facial twitching | WBC 45, Pro 88 mg/dL, SOB (+) | CSF+/Serum− | None | No | NA | IVIG + Oral MP | Complete recovery |
5 | F/59 | Yes | Flu-like | Urinary retention, tremor, hypertonia | WBC116, Pro 120 mg/dL, SOB(+) | CSF+/Serum+ | Serum: Yo * | PET (−) | Yes | ACV + IVIG + IVMP | Complete recovery |
6 | F/35 | Multiphasic | None | Ataxia, blurry vision | WBC 6, Pro 46.4 mg/dL, SOB(+) | CSF+/Serum− | None | PCNSL, PET (−) | Yes | No | Lost |
7 | F/43 | Multiphasic | None | Myelitis, epilepsy, ON | NA, SOB(-) | CSF-/Serum+ | Serum: MOG | OT | Yes | IVIG + IVMP + MMF | mRS 1 |
8 | F/28 | Yes | Flu-like | Tremor, ataxia | WBC 300, Pro 177 mg/dL | CSF+/Serum+ | No | No | Yes | IVIG + Oral MP | Complete recovery |
9 | M/63 | Yes | Flu-like | Tremor, radicular pain, abnormal behavior, memory loss, ataxia | WBC 10, Pro 68 mg/dL | CSF+/Serum+ | No | PET (−) | No | Oral MP | Complete recovery |
10 | M/48 | Multiphasic | Flu-like | Diplopia, altered mental status, slow response, aphasia, hypersomnia | WBC 21, Pro 40 mg/dL | CSF+/Serum+ | CSF: NMDAR | No | Yes | IVIG + IVMP + AZA | mRS 1 |
11 | F/72 | Yes | Flu-like | Cognitive decline, apathy, urinary retention | WBC 51, Pro 103 mg/dL, SOB(+) | CSF+/Serum+ | CSF: NMDAR | No | Yes | IVIG + IVMP | mRS 4 |
12 | M/52 | Yes | None | Dizziness, tremor, myelitis | WBC 25, Pro 77 mg/dL | CSF+/Serum− | No | No | Yes | IVIG + IVMP | Complete recovery |
13 | M//39 | Multiphasic | Flu-like | Urinary retention, blurry vision, peripheral neuropathy | WBC 233, Pro 99 mg/dL | CSF+/Serum+ | No | No | Yes | Oral MP | mRS 1 |
14 | M/59 | Yes | None | Tremor | WBC 87, Pro 101 mg/dL | CSF+/Serum+ | No | PET (−) | NA | ACV | mRS 1 |
15 | F/41 | Yes | Flu-like | Tremor, urine retention, constipation | WBC 100, Pro 130 mg/dL | CSF+/Serum+ | No | No | Yes | ACV + IVIG + IVMP | Complete recovery |
No. | Clinical Phenotype | Long Tract Signs | Brainstem Signs | Tremor | Headache | Psychiatric Symptoms | Memory Deficits | Blurred Vision | Ataxia | Bladder Dysfunction | Seizures | Radiculoneuropathy |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | ME | + | + | + | + | |||||||
2 | ME | + | + | + | ||||||||
3 | ME | + | + | + | ||||||||
4 | MEM | + | + | + | + | + | + | |||||
5 | MEM | + | + | + | + | + | ||||||
6 | ME | + | + | + | + | + | ||||||
7 | MEM | + | + | + | + | |||||||
8 | MEM | + | + | + | + | + | + | + | ||||
9 | MEM | + | + | + | + | + | + | + | + | |||
10 | ME | + | + | + | + | |||||||
11 | ME | + | + | + | ||||||||
12 | M | + | + | + | ||||||||
13 | MEM | + | + | + | ||||||||
14 | ME | + | + | + | ||||||||
15 | M | + | + | + | ||||||||
Total | 2M:7ME:6MEM | 10 | 9 | 8 | 7 | 6 | 5 | 5 | 5 | 5 | 2 | 2 |
Examination | Patients, Number (%) |
---|---|
Cranial MRI | 15 |
Abnormal hyperintensity lesions on T2WI/FLAIR images | 12 (80) |
Cerebral white matter | 3 (25) |
Cerebral lobe | 1 (8.3) |
Thalamus | 1 (8.3) |
Basal ganglia | 2 (17) |
Cerebellum | 2 (17) |
Brainstem | 2 (17) |
Optic nerve | 1 (8.3) |
Nonspecific small vessel ischemic changes | 8 (67) |
Gadolinium-enhanced brain MRI | 11 |
Abnormal enhancement images | 7 (64) |
Linear radial enhancement pattern of cerebral white matter | 2 (18) |
Enhancement of meninges | 4 (36) |
Cerebellum | 4 (36) |
Brainstem | 3 (27) |
Cerebral lobe | 2 (18) |
Thalamus | 2 (18) |
Basal ganglia | 2 (18) |
Spine MRI | 9 |
Intramedullary hyperintensity lesions on T2WI | 4 (44) |
Gadolinium-enhanced spine MRI | 5 |
Abnormal enhancement images | 5 (100) |
Enhancement of spinal cord surface | 1 (20) |
Intramedullary enhancement | 5 (100) |
18F-FDG PET | 4 |
Low uptake | 3 (75) |
Brain lobe (Frontal, Parietal, Temporal, Posterior lobe) | 2 (50) |
Putamen | 1 (25) |
High uptake | 2 (50) |
Frontal lobe | 1 (25) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Fang, B.; Qiao, Z.; Di, X.; Ma, Q.; Zhang, J.; Wang, J. Clinical Manifestation, Auxiliary Examination Features, and Prognosis of GFAP Autoimmunity: A Chinese Cohort Study. Brain Sci. 2022, 12, 1662. https://doi.org/10.3390/brainsci12121662
Liu L, Fang B, Qiao Z, Di X, Ma Q, Zhang J, Wang J. Clinical Manifestation, Auxiliary Examination Features, and Prognosis of GFAP Autoimmunity: A Chinese Cohort Study. Brain Sciences. 2022; 12(12):1662. https://doi.org/10.3390/brainsci12121662
Chicago/Turabian StyleLiu, Lei, Boyan Fang, Zhixin Qiao, Xiaomeng Di, Qiuying Ma, Jingxiao Zhang, and Jiawei Wang. 2022. "Clinical Manifestation, Auxiliary Examination Features, and Prognosis of GFAP Autoimmunity: A Chinese Cohort Study" Brain Sciences 12, no. 12: 1662. https://doi.org/10.3390/brainsci12121662
APA StyleLiu, L., Fang, B., Qiao, Z., Di, X., Ma, Q., Zhang, J., & Wang, J. (2022). Clinical Manifestation, Auxiliary Examination Features, and Prognosis of GFAP Autoimmunity: A Chinese Cohort Study. Brain Sciences, 12(12), 1662. https://doi.org/10.3390/brainsci12121662