Electrophysiological Evidence of Anticipatory Cognitive Control in the Stroop Task
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Apparatus and Task Procedure
2.3. Behavioral Measures
2.4. EEG Recording and Analysis
2.5. Correlation Analysis
3. Results
3.1. Behavioral Results
3.2. Electrophysiological Results
3.2.1. Posterior BP
3.2.2. BP
3.2.3. pN
3.3. Correlation Results
4. Discussion
5. Conclusion and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Miller, E.K.; Cohen, J.D. An Integrative Theory of Prefrontal Cortex Function. Annu. Rev. Neurosci. 2001, 24, 167–202. [Google Scholar] [CrossRef] [Green Version]
- Stroop, J.R. Studies of interference in serial verbal reactions. J. Exp. Psychol. 1935, 18, 643–662. [Google Scholar] [CrossRef]
- Posner, M.I.; Snyder, C.R.R. Attention and Cognitive Control. In Information Processing and Cognition; Solso, R.L., Ed.; Erlbaum: Hillsdale, NJ, USA, 1975; pp. 55–85. [Google Scholar]
- Epp, A.M.; Dobson, K.S.; Dozois, D.J.; Frewen, P.A. A systematic meta-analysis of the Stroop task in depression. Clin. Psychol. Rev. 2012, 32, 316–328. [Google Scholar] [CrossRef]
- Henik, A.; Salo, R. Schizophrenia and the Stroop Effect. Behav. Cogn. Neurosci. Rev. 2004, 3, 42–59. [Google Scholar] [CrossRef] [PubMed]
- Stuss, D.; Floden, D.; Alexander, M.; Levine, B.; Katz, D. Stroop performance in focal lesion patients: Dissociation of processes and frontal lobe lesion location. Neuropsychologia 2001, 39, 771–786. [Google Scholar] [CrossRef]
- MacLeod, C.M. Half a century of research on the Stroop effect: An integrative review. Psychol. Bull. 1991, 109, 163–203. [Google Scholar] [CrossRef]
- Heidlmayr, K.; Kihlstedt, M.; Isel, F. A review on the electroencephalography markers of Stroop executive control processes. Brain Cogn. 2020, 146, 105637. [Google Scholar] [CrossRef] [PubMed]
- Augustinova, M.; Parris, B.A.; Ferrand, L. The Loci of Stroop Interference and Facilitation Effects with Manual and Vocal Responses. Front. Psychol. 2019, 10, 1786. [Google Scholar] [CrossRef] [Green Version]
- Parris, B.A.; Augustinova, M.; Ferrand, L. The Locus of the Stroop Effect. Front. Psychol. 2019, 10, 2860. [Google Scholar] [CrossRef] [Green Version]
- Aine, C.J.; Harter, M.R. Event-Related Potentials to Stroop Stimuli: Color and Word Processing. Ann. N. Y. Acad. Sci. 1984, 425, 152–153. [Google Scholar] [CrossRef]
- Coderre, E.; Conklin, K.; van Heuven, W.J. Electrophysiological measures of conflict detection and resolution in the Stroop task. Brain Res. 2011, 1413, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Grapperon, J.; Vidal, F.; Leni, P. The contribution of cognitive evoked potentials to knowledge of mechanisms on the Stroop test. Neurophysiol. Clin. Clin. Neurophysiol. 1998, 28, 207. [Google Scholar] [CrossRef]
- Ilan, A.B.; Polich, J. P300 and response time from a manual Stroop task. Clin. Neurophysiol. 1999, 110, 367–373. [Google Scholar]
- Liotti, M.; Woldorff, M.G.; Perez, R.; Mayberg, H.S. An ERP study of the temporal course of the Stroop color-word interference effect. Neuropsychologia 2000, 38, 701–711. [Google Scholar] [CrossRef]
- Mager, R.; Bullinger, A.H.; Brand, S.; Schmidlin, M.; Schärli, H.; Müller-Spahn, F.; Störmer, R.; Falkenstein, M. Age-related changes in cognitive conflict processing: An event-related potential study. Neurobiol. Aging 2007, 28, 1925–1935. [Google Scholar] [CrossRef]
- Rebai, M.; Bernard, C.; Lannou, J. The Stroop’s test evokes a negative brain potential, the N400. Int. J. Neurosci. 1997, 91, 85–94. [Google Scholar] [CrossRef] [PubMed]
- West, R.; Alain, C. Event-related neural activity associated with the Stroop task. Cogn. Brain Res. 1999, 8, 157–164. [Google Scholar] [CrossRef]
- West, R.; Jakubek, K.; Wymbs, N.; Perry, M.; Moore, K. Neural correlates of conflict processing. Exp. Brain Res. 2005, 167, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Perri, R.L. Is there a proactive and a reactive mechanism of inhibition? Towards an executive account of the attentional inhibitory control model. Behav. Brain Res. 2020, 377, 112243. [Google Scholar] [CrossRef] [PubMed]
- Bugg, J.M.; Jacoby, L.L.; Toth, J.P. Multiple levels of control in the Stroop task. Mem. Cogn. 2008, 36, 1484–1494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lansbergen, M.M.; Kenemans, J.L. Stroop interference and the timing of selective response activation. Clin. Neurophysiol. 2008, 119, 2247–2254. [Google Scholar] [CrossRef]
- Perri, R.L.; Bianco, V.; Facco, E.; Di Russo, F. Now you see one letter, now you see meaningless symbols: Perceptual and semantic hypnotic suggestions reduce Stroop errors through different neurocognitive mechanisms. Front. Neurosci. 2020, 14, 1361. [Google Scholar]
- Kornhuber, H.H.; Deecke, L. Hirnpotentialänderungen bei Willkürbewegungen und passiven Bewegungen des Menschen: Bereitschaftspotential und reafferente Potentiale. Pflüger’s Arch. Gesamte Physiol. Menschen Tiere 1965, 284, 1–17. [Google Scholar] [CrossRef]
- Loveless, N.E.; Sanford, A.J. Slow potential correlates of preparatory set. Biol. Psychol. 1974, 1, 303–314. [Google Scholar] [CrossRef]
- Damen, E.J.P.; Brunia, C.H.M. Is a stimulus conveying task-relevant information a sufficient condition to elicit a stimulus-preceding negativity? Psychophysiology 1994, 31, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Di Russo, F.; Lucci, G.; Sulpizio, V.; Berchicci, M.; Spinelli, D.; Pitzalis, S.; Galati, G. Spatiotemporal brain mapping during preparation, perception, and action. NeuroImage 2016, 126, 1–14. [Google Scholar] [CrossRef]
- Berchicci, M.; Lucci, G.; Pesce, C.; Spinelli, D.; Di Russo, F. Prefrontal hyperactivity in older people during motor planning. NeuroImage 2012, 62, 1750–1760. [Google Scholar] [CrossRef] [PubMed]
- Bianco, V.; Perri, R.L.; Berchicci, M.; Quinzi, F.; Spinelli, D.; Di Russo, F. Modality-specific sensory readiness for upcoming events revealed by slow cortical potentials. Brain Struct. Funct. 2020, 225, 149–159. [Google Scholar] [CrossRef]
- Aron, A.R. From reactive to proactive and selective control: Developing a richer model for stopping inappropriate responses. Biol. Psychiatry 2011, 69, e55–e68. [Google Scholar] [CrossRef] [Green Version]
- Morooka, T.; Ogino, T.; Takeuchi, A.; Hanafusa, K.; Oka, M.; Ohtsuka, Y. Relationships between the color-word matching Stroop task and the Go/NoGo task: Toward multifaceted assessment of attention and inhibition abilities of children. Acta Med. Okayama 2012, 66, 377–386. [Google Scholar]
- Bozzacchi, C.; Giusti, M.A.; Pitzalis, S.; Spinelli, D.; Di Russo, F. Awareness affects motor planning for goal-oriented actions. Biol. Psychol. 2012, 89, 503–514. [Google Scholar] [CrossRef]
- Bozzacchi, C.; Giusti, M.A.; Pitzalis, S.; Spinelli, D.; Di Russo, F. Similar cerebral motor plans for real and virtual actions. PLoS ONE 2012, 7, e47783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bozzacchi, C.; Cimmino, R.L.; Di Russo, F. The temporal coupling effect: Preparation and execution of bimanual reaching movements. Biol. Psychol. 2016, 123, 302–309. [Google Scholar] [CrossRef]
- Lucci, G.; Berchicci, M.; Spinelli, D.; Di Russo, F. The motor preparation of directionally incompatible movements. NeuroImage 2014, 91, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.-G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, S.S.; Huang, C.J.; Wu, C.T.; Chang, Y.K.; Hung, T.M. Acute exercise facilitates the N450 inhibition marker and P3 attention marker during stroop test in young and older adults. J. Clin. Med. 2018, 7, 391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, T.P.; Makeig, S.; Westerfield, M.; Townsend, J.; Courchesne, E.; Sejnowski, T.J. Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects. Clin. Neurophysiol. 2000, 111, 1745–1758. [Google Scholar] [CrossRef]
- Luck, S.J.; Gaspelin, N. How to get statistically significant effects in any ERP experiment (and why you shouldn’t). Psychophysiology 2017, 54, 146–157. [Google Scholar] [CrossRef] [Green Version]
- Skrandies, W. Global field power and topographic similarity. Brain Topogr. 1990, 3, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Wheaton, L.A.; Shibasaki, H.; Hallett, M. Temporal activation pattern of parietal and premotor areas related to praxis movements. Clin. Neurophysiol. 2005, 116, 1201–1212. [Google Scholar] [CrossRef] [PubMed]
- Berchicci, M.; Russo, Y.; Bianco, V.; Quinzi, F.; Rum, L.; Macaluso, A.; Committeri, G.; Vannozzi, G.; Di Russo, F. Stepping forward, stepping backward: A movement-related cortical potential study unveils distinctive brain activities. Behav. Brain Res. 2020, 388, 112663. [Google Scholar] [CrossRef] [PubMed]
- Petersen, S.E.; Robinson, D.L.; Currie, J.N. Influences of lesions of parietal cortex on visual spatial attention in humans. Exp. Brain Res. 1989, 76, 267–280. [Google Scholar] [CrossRef]
- Lynch, J.C. The functional organization of posterior parietal association cortex. Behav. Brain Sci. 1980, 3, 485–499. [Google Scholar] [CrossRef]
- Snyder, L.; Batista, A.; Andersen, R. Intention-related activity in the posterior parietal cortex: A review. Vis. Res. 2000, 40, 1433–1441. [Google Scholar] [CrossRef] [Green Version]
- Gratton, G.; Coles, M.G.H.; Sirevaag, E.J.; Eriksen, C.W.; Donchin, E. Pre- and poststimulus activation of response channels: A psychophysiological analysis. J. Exp. Psychol. Hum. Percept. Perform. 1988, 14, 331–344. [Google Scholar] [CrossRef] [PubMed]
- Szűcs, D.; Soltész, F. Stimulus and response conflict in the color–word Stroop task: A combined electro-myography and event-related potential study. Brain Res. 2010, 1325, 63–76. [Google Scholar] [CrossRef]
- Jahanshahi, M.; Hallett, M. (Eds.) The Bereitschaftspotential: Movement-Related Cortical Potentials; Springer Science & Business Media: Berlin, Germany, 2003. [Google Scholar]
- Cunnington, R.; Iansek, R.; Bradshaw, J.L.; Phillips, J.G. Movement-related potentials associated with movement prep- aration and motor imagery. Exp. Brain Res. 1996, 111, 429–436. [Google Scholar] [CrossRef]
- Di Russo, F.; Berchicci, M.; Bianco, V.; Perri, R.L.; Pitzalis, S.; Quinzi, F.; Spinelli, D. Normative event-related potentials from sensory and cognitive tasks reveal occipital and frontal activities prior and following visual events. Neuroimage 2019, 196, 173–187. [Google Scholar] [CrossRef]
- Mussini, E.; Berchicci, M.; Bianco, V.; Perri, R.; Quinzi, F.; Di Russo, F. Effect of task complexity on motor and cognitive preparatory brain activities. Int. J. Psychophysiol. 2021, 159, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Aron, A.R.; Poldrack, R.A. Cortical and subcortical contributions to stop signal response inhibition: Role of the subthalamic nucleus. J. Neurosci. 2006, 26, 2424–2433. [Google Scholar] [CrossRef] [Green Version]
- Bianco, V.; Berchicci, M.; Perri, R.; Spinelli, D.; Di Russo, F. The proactive self-control of actions: Time-course of underlying brain activities. NeuroImage 2017, 156, 388–393. [Google Scholar] [CrossRef]
- Perri, R.L.; Berchicci, M.; Spinelli, D.; Di Russo, F. Individual differences in response speed and accuracy are associated to specific brain activities of two interacting systems. Front. Behav. Neurosci. 2014, 8, 251. [Google Scholar] [CrossRef] [PubMed]
- Wilkins, A.; Shallice, T.; McCarthy, R. Frontal lesions and sustained attention. Neuropsychologia 1987, 25, 359–365. [Google Scholar] [CrossRef]
- Sarter, M.; Givens, B.; Bruno, J.P. The cognitive neuroscience of sustained attention: Where top-down meets bottom-up. Brain Res. Rev. 2001, 35, 146–160. [Google Scholar] [CrossRef]
- Corbetta, M.; Miezin, F.M.; Dobmeyer, S.; Shulman, G.L.; Petersen, S.E. Selective and divided attention during visual discriminations of shape, color, and speed: Functional anatomy by positron emission tomography. J. Neurosci. 1991, 11, 2383–2402. [Google Scholar] [CrossRef]
- Perrotta, D.; Bianco, V.; Berchicci, M.; Quinzi, F.; Perri, R.L. Anodal tDCS over the dorsolateral prefrontal cortex reduces Stroop errors. A comparison of different tasks and designs. Behav. Brain Res. 2021, 405, 113215. [Google Scholar] [CrossRef] [PubMed]
- Heinen, K.; Feredoes, E.; Ruff, C.C.; Driver, J. Functional connectivity between prefrontal and parietal cortex drives visuo-spatial attention shifts. Neuropsychologia 2017, 99, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Banich, M.T. The Stroop effect occurs at multiple points along a cascade of control: Evidence from cognitive neuroscience approaches. Front. Psychol. 2019, 10, 2164. [Google Scholar] [CrossRef] [PubMed]
- Milham, M.P.; Erickson, K.I.; Banich, M.T.; Kramer, A.F.; Webb, A.; Wszalek, T.; Cohen, N.J. Attentional control in the aging brain: Insights from an fMRI study of the stroop task. Brain Cogn. 2002, 49, 277–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalanthroff, E.; Henik, A. Preparation time modulates pro-active control and enhances task conflict in task switching. Psychol. Res. 2014, 78, 276–288. [Google Scholar] [CrossRef]
- Bianco, V.; Di Russo, F.; Perri, R.L.; Berchicci, M. Different proactive and reactive action control in fencers’ and boxers’ brain. Neuroscience 2017, 343, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Bianco, V.; Berchicci, M.; Perri, R.L.; Quinzi, F.; Di Russo, F. Exercise-related cognitive effects on sensory-motor control in athletes and drummers compared to non-athletes and other musicians. Neuroscience 2017, 360, 39–47. [Google Scholar] [CrossRef]
- Bianco, V.; Berchicci, M.; Perri, R.L.; Quinzi, F.; Mussini, E.; Spinelli, D.; Di Russo, F. Preparatory ERPs in visual, auditory, and somatosensory discriminative motor tasks. Psychophysiology 2020, 57, 13687. [Google Scholar] [CrossRef] [PubMed]
- De Tommaso, M.; Betti, V.; Bocci, T.; Bolognini, N.; Di Russo, F.; Fattapposta, F.; Ferri, R.; Invitto, S.; Koch, G.; Miniussi, C.; et al. Pearls and pitfalls in brain functional analysis by event-related potentials: A narrative review by the Italian Psychophysiology and Cognitive Neuroscience Society on methodological limits and clinical reliability—Part I. Neurol. Sci. 2020, 41, 2711–2735. [Google Scholar] [CrossRef] [PubMed]
RT ± SE | CE ± SE | |
---|---|---|
Incongruent | 549 ± 10 | 7.2 ± 1.2 |
Congruent | 505 ± 8 | 5.1 ± 0.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bianco, V.; Berchicci, M.; Mussini, E.; Perri, R.L.; Quinzi, F.; Di Russo, F. Electrophysiological Evidence of Anticipatory Cognitive Control in the Stroop Task. Brain Sci. 2021, 11, 783. https://doi.org/10.3390/brainsci11060783
Bianco V, Berchicci M, Mussini E, Perri RL, Quinzi F, Di Russo F. Electrophysiological Evidence of Anticipatory Cognitive Control in the Stroop Task. Brain Sciences. 2021; 11(6):783. https://doi.org/10.3390/brainsci11060783
Chicago/Turabian StyleBianco, Valentina, Marika Berchicci, Elena Mussini, Rinaldo Livio Perri, Federico Quinzi, and Francesco Di Russo. 2021. "Electrophysiological Evidence of Anticipatory Cognitive Control in the Stroop Task" Brain Sciences 11, no. 6: 783. https://doi.org/10.3390/brainsci11060783
APA StyleBianco, V., Berchicci, M., Mussini, E., Perri, R. L., Quinzi, F., & Di Russo, F. (2021). Electrophysiological Evidence of Anticipatory Cognitive Control in the Stroop Task. Brain Sciences, 11(6), 783. https://doi.org/10.3390/brainsci11060783