A Network Analysis of the Relationship among Reading, Spelling and Maths Skills
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Test Materials
2.2.1. Mathematical Skills
- −
- Computation. This subtest assesses children’s ability to complete written computational operations (addition, subtraction, multiplication, and division);
- −
- Number ordering. This task requires understanding the semantics of numbers and thus evaluating number sense. Series of four numbers are presented and the child has to place them in the correct order (from the highest to the lowest and vice versa);
- −
- Arithmetical Facts. This task is used to investigate whether children have stored arithmetical facts and are able to automatically retrieve the results of basic and simple operations from memory. Children are asked to recall several arithmetic facts, each within a 5 s time limit. Responses given after the time limit are considered incorrect.
2.2.2. Text Reading Task
2.2.3. Text Comprehension Task
2.2.4. Spelling Skills
2.3. Procedure
2.4. Network Analysis
3. Results
- −
- The different measures of the same ability (reading, writing, and arithmetic) form separate clusters;
- −
- These clusters are related to each other at different levels (i.e., different nodes), but there are three nodes that are more central in connecting them. Indeed, if we consider the reliable edges that do not include 0 in their CI (see Figure 2 lower panel), the three clusters are connected only by the nodes with the arithmetic facts subtest, spelling words with ambiguous transcription, and accuracy in reading a text passage. The same nodes emerged as those with higher strength centrality, a measure that highlights the importance of the nodes for the network.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Coltheart, M.; Rastle, K.; Perry, C.; Langdon, R.; Ziegler, J.C. DRC: A dual-route cascaded model of visual word recognition and reading aloud. Psychol. Rev. 2001, 108, 204–256. [Google Scholar] [CrossRef]
- Plaut, D.C.; McClelland, J.L.; Seidenberg, M.S.; Patterson, K. Understanding normal and impaired word reading: Computational principles in quasi-regular domains. Psychol. Rev. 1996, 103, 56–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seidenberg, M.S.; McClelland, J.L. A distributed, developmental model of word recognition and naming. Psychol. Rev. 1989, 96, 523–568. [Google Scholar] [CrossRef] [PubMed]
- Perry, C.; Ziegler, J.C.; Zorzi, M. Nested incremental modeling in the development of computational theories: The CDP+ model of reading aloud. Psychol. Rev. 2007, 114, 273–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patterson, K.E.; Marshall, J.C.; Coltheart, M. Surface Dyslexia: Cognitive and Neuropsychological Studies of Phonological Reading; Lawrence Erlbaum Associates: Hove, UK, 1985. [Google Scholar]
- Patterson, K.E. Lexical but non semantic spelling? Cogn. Neuropsychol. 1986, 3, 341–367. [Google Scholar] [CrossRef]
- Butterworth, B.; Varma, S.; Laurillard, D. Dyscalculia: From brain to education. Science 2011, 332, 1049–1053. [Google Scholar] [CrossRef] [Green Version]
- Landerl, K.; Moll, K. Comorbidity of learning disorders: Prevalence and familial transmission. J. Chi. Psychol. Psychiat. 2010, 51, 287–294. [Google Scholar] [CrossRef]
- Moll, K.; Landerl, K.; Snowling, M.J.; Schulte-Körne, G. Understanding comorbidity of learning disorders: Task-dependent estimates of prevalence. J. Child Psychol. Psychiatry 2019, 60, 286–294. [Google Scholar] [CrossRef]
- Zoccolotti, P.; De Luca, M.; Marinelli, C.V.; Spinelli, D. Predicting individual differences in reading, spelling and maths in a sample of typically developing children: A study in the perspective of comorbidity. PLoS ONE 2020, 15, e0231937. [Google Scholar] [CrossRef]
- Zoccolotti, P.; De Luca, M.; Marinelli, C.V.; Spinelli, D. Testing the specificity of predictors of reading, spelling and maths: A new model of the association among learning skills based on competence, performance and acquisition. Front. Hum. Neurosci. 2020, 14, 573998. [Google Scholar] [CrossRef]
- Chomsky, N. Topics in the Theory of Generative Grammar; Walter de Gruyter: Berlin, Germany, 1966; Volume 56. [Google Scholar]
- Bishop, D.V. Cognitive neuropsychology and developmental disorders: Uncomfortable bedfellows. Q. J. Exp. Psychol. Sect. A 1997, 50, 899–923. [Google Scholar] [CrossRef]
- Reichle, E.D.; Rayner, K.; Pollatsek, A. The EZ Reader model of eye-movement control in reading: Comparisons to other models. Behav. Brain Sci. 2003, 26, 445–526. [Google Scholar] [CrossRef]
- Snell, J.; van Leipsig, S.; Grainger, J.; Meeter, M. OB1-reader: A model of word recognition and eye movements in text reading. Psychol. Rev. 2018, 125, 969–984. [Google Scholar] [CrossRef] [Green Version]
- Koponen, T.K.; Georgiou, G.; Aro, M.; Salmi, P. A Meta-Analysis of the Relation between RAN and Mathematics. J. Educ. Psychol. 2017, 109, 977–992. [Google Scholar] [CrossRef]
- Logan, G.D. Toward an instance theory of automatization. Psychol. Rev. 1988, 95, 492–527. [Google Scholar] [CrossRef]
- Logan, G.D. Shapes of reaction-time distributions and shapes of learning curves: A test of the instance theory of automaticity. J. Exp. Psychol. Learn. Mem. Cogn. 1992, 18, 883–914. [Google Scholar] [CrossRef]
- Keresztes, A.; Ngo, C.T.; Lindenberger, U.; Werkle-Bergner, M.; Newcombe, N.S. Hippocampal maturation drives memory from generalization to specificity. Trends Cogn. Sci. 2018, 22, 676–686. [Google Scholar] [CrossRef] [Green Version]
- Angelelli, P.; Judica, A.; Spinelli, D.; Zoccolotti, P.; Luzzatti, C. Characteristics of writing disorders in Italian dyslexic children. Cogn. Behav. Neurol. 2004, 17, 18–31. [Google Scholar] [CrossRef]
- Marinelli, C.V.; Zoccolotti, P.; Romani, C. The ability to learn new written words is modulated by language orthographic consistency. PLoS ONE 2020, 15, e0228129. [Google Scholar]
- De Nooy, W.; Mrvar, A.; Batagelj, V. Exploratory Social Network Analysis with Pajek: Revised and Expanded, 2nd ed.; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Epskamp, S.; Fried, E.I. A tutorial on regularized partial correlation networks. Psychol. Meth. 2018, 23, 617–634. [Google Scholar] [CrossRef] [Green Version]
- Costantini, G.; Epskamp, S.; Borsboom, D.; Perugini, M.; Mõttus, R.; Waldorp, L.J.; Cramer, A.O.J. State of the aRt personality research: A tutorial on network analysis of personality data in R. J. Res. Pers. 2015, 54, 13–29. [Google Scholar] [CrossRef]
- Pruneti, C.A.; Fenu, A.; Freschi, G.; Rota, S.; Cocci, D.; Marchionni, M. Aggiornamento della standardizzazione italiana del test delle Matrici Progressive Colorate di Raven (CPM) [Update of the Italian standardization of Raven’s Coloured Progressive Matrices]. Boll. Psicol. Appl. 1996, 217, 51–57. [Google Scholar]
- Cornoldi, C.; Lucangeli, D.; Bellina, M. Test AC-MT 6-11—Test di Valutazione Delle Abilità di Calcolo e Soluzione di Problemi (Nuova Edizione); Edizioni Erickson: Trento, Italy, 2012. [Google Scholar]
- McCloskey, M.; Caramazza, A.; B1asili, A. Cognitive mechanisms in number processing and calculation: Evidence from dyscalculia. Brain Cogn. 1985, 4, 171–196. [Google Scholar] [CrossRef]
- McCloskey, M. Cognitive mechanisms in numerical processing: Evidence from acquired dyscalculia. Cognition 1992, 44, 107–157. [Google Scholar] [CrossRef]
- Dehaene, S.; Cohen, L. Cerebral pathways for calculation: Double dissociation between rote verbal and quantitative knowledge of arithmetic. Cortex 1997, 33, 219–250. [Google Scholar] [CrossRef]
- Cornoldi, C.; Carretti, B. Prove MT-3-Clinica; Organizzazioni Speciali: Florence, Italy, 2016. [Google Scholar]
- Angelelli, P.; Marinelli, C.V.; Iaia, M.; Notarnicola, A.; Costabile, D.; Judica, A.; Zoccolotti, P.; Luzzatti, C. DDO 2-Diagnosi dei Disturbi Ortografici in Età Evolutiva [Test for the Diagnosing of Orthographic Disorders in Children and Adolescents]; Edizioni Erickson: Trento, Italy, 2016. [Google Scholar]
- Borsboom, D. A network theory of mental disorders. World Psychiatry 2017, 16, 5–13. [Google Scholar] [CrossRef] [Green Version]
- Costantini, G.; Richetin, J.; Preti, E.; Casini, E.; Epskamp, S.; Perugini, M. Stability and variability of personality networks. A tutorial on recent developments in network psychometrics. Pers. Ind. Diff. 2017, 136, 68–78. [Google Scholar] [CrossRef]
- Cramer, A.O.J.; van der Sluis, S.; Noordhof, A.; Wichers, M.; Geschwind, N.; Aggen, S.H.; Kendler, K.S.; Borsboom, D. Dimensions of normal personality as networks in search of equilibrium: You can’t like parties if you don’t like people. Eur. J. Pers. 2012, 26, 414–431. [Google Scholar] [CrossRef]
- Dalege, J.; Borsboom, D.; van Harreveld, F.; van den Berg, H.; Conner, M.; van der Maas, H.L.J. Toward a formalized account of attitudes: The Causal Attitude Network (CAN) model. Psychol. Rev. 2016, 123, 2–22. [Google Scholar] [CrossRef] [PubMed]
- Schmittmann, V.D.; Cramer, A.O.J.; Waldorp, L.J.; Epskamp, S.; Kievit, R.A.; Borsboom, D. Deconstructing the construct: A network perspective on psychological phenomena. New Ideas Psychol. 2013, 31, 43–53. [Google Scholar] [CrossRef]
- Romano, D.; Maravita, A.; Perugini, M. Psychometric properties of the embodiment scale for the rubber hand illusion and its relation with individual differences. Sci. Rep. 2021, 11, 5029. [Google Scholar] [CrossRef]
- Tosi, G.; Borsani, C.; Castiglioni, S.; Daini, R.; Romano, D. Complexity in neuropsychological assessments of cognitive impairment: A network analysis approach. Cortex 2020, 124, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, C.; Alzheimer’s Disease Neuroimaging Initiative. A network psychometric approach to neurocognition in Alzheimer’s disease. Cortex 2021, 137, 61–73. [Google Scholar] [CrossRef]
- Epskamp, S.; Waldorp, L.J.; Mõttus, R.; Borsboom, D. The Gaussian Graphical Model in Cross-Sectional and Time-Series Data. Multiv. Behav. Res. 2018, 53, 453–480. [Google Scholar] [CrossRef] [Green Version]
- Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Epskamp, S. Regularized gaussian psychological networks: Brief report on the performance of extended BIC model selection. arXiv 2016, arXiv:1606.05771. [Google Scholar]
- McNeish, D.M. Using lasso for predictor selection and to assuage overfitting: A method long overlooked in behavioral sciences. Multiv. Behav. Res. 2015, 50, 471–484. [Google Scholar] [CrossRef]
- Epskamp, S.; Kruis, J.; Marsman, M. Estimating psychopathological networks: Be careful what you wish for. PLoS ONE 2017, 12, e0179891. [Google Scholar] [CrossRef]
- Epskamp, S.; Borsboom, D.; Fried, E.I. Estimating Psychological Networks and their Accuracy: A Tutorial Paper. Behav. Res. Meth. 2018, 50, 195–212. [Google Scholar] [CrossRef] [Green Version]
- Barrat, A.; Barthélemy, M.; Pastor-Satorras, R.; Vespignani, A. The architecture of complex weighted networks. Proc. Natl. Acad. Sci. USA 2004, 101, 3747–3752. [Google Scholar] [CrossRef] [Green Version]
- van Doorn, J.; van den Bergh, D.; Böhm, U.; Dablander, F.; Derks, K.; Draws, T.; Etz, A.; Evans, N.J.; Gronau, Q.F.; Wagenmakers, E.J.; et al. The JASP guidelines for conducting and reporting a Bayesian analysis. Psychon. Bull. Rev. 2020. [Google Scholar] [CrossRef]
- Epskamp, S.; Cramer, A.O.J.; Waldorp, L.J.; Schmittmann, V.D.; Borsboom, D. qgraph: Network visualizations of relationships in psychometric data. J. Stat. Softw. 2012, 48, 1–18. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing, Version 3.3.3; R Foundation for Statistical Computing: Vienna, Austria, 2017. [Google Scholar]
- Berent, I.; Vaknin-Nusbaum, V.; Balaban, E.; Galaburda, A.M. Phonological generalizations in dyslexia: The phonological grammar may not be impaired. Cogn. Neuropsychol. 2013, 30, 285–310. [Google Scholar] [CrossRef]
- Berent, I.; Zhao, X.; Balaban, E.; Galaburda, A. Phonology and phonetics dissociate in dyslexia: Evidence from adult English speakers. Lang. Cogn. Neurosci. 2016, 31, 1178–1192. [Google Scholar] [CrossRef]
- Ramus, F.; Szenkovits, G. What phonological deficit? Q. J. Exp. Psychol. 2008, 61, 129–141. [Google Scholar] [CrossRef]
- Angelelli, P.; Marinelli, C.V.; Zoccolotti, P. Single or dual orthographic representations for reading and spelling? A study on Italian dyslexic and dysgraphic children. Cogn. Neuropsychol. 2010, 27, 305–333. [Google Scholar] [CrossRef]
- Marinelli, C.V.; Cellini, P.; Zoccolotti, P.; Angelelli, P. Lexical processing and distributional knowledge in sound–spelling mapping in a consistent orthography: A longitudinal study of reading and spelling in dyslexic and typically developing children. Cogn. Neuropsychol. 2017, 34, 163–186. [Google Scholar] [CrossRef]
- Paizi, D.; De Luca, M.; Zoccolotti, P.; Burani, C. A comprehensive evaluation of lexical reading in Italian developmental dyslexics. J. Res. Read. 2013, 36, 303–329. [Google Scholar] [CrossRef] [Green Version]
Function(s) | Characteristics | Specificity/Overlap | |
---|---|---|---|
Competence | Ability to activate a specific set of representations and processes |
| Dissociation of deficit |
Acquisition |
|
| |
|
| Learning disorders across different domains (comorbidity) | |
|
| ||
Performance | Actual performance depends on the characteristics of the task |
| Both associations and dissociations depending on task similarity |
Descriptive | Variable | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) |
---|---|---|---|---|---|---|---|---|---|---|
−0.079 ± 0.90 | (1) Computation | 0.56 | 0.22 | 0.37 | 0.20 | 0.15 | 0.27 | 0.28 | 0.19 | 0.16 |
0.131 ± 0.84 | (2) Number Ordering | 0.09 | 0.38 | 0.24 | 0.03 | 0.18 | 0.14 | 0.22 | 0.19 | 0.17 |
0.146 ± 1.02 | (3) Arithmetical Facts | 0.23 | 0.11 | 0.72 | 0.23 | 0.23 | 0.32 | 0.33 | 0.20 | 0.21 |
−0.134 ± 0.90 | (4) Text Comprehension | 0.06 | 0.00 | 0.08 | 0.47 | 0.30 | 0.28 | 0.18 | 0.18 | 0.11 |
−0.343 ± 0.90 | (5) Reading Speed | 0.00 | 0.06 | 0.05 | 0.17 | 0.55 | 0.36 | 0.27 | 0.07 | 0.16 |
−0.249 ± 0.96 | (6) Reading Accuracy | 0.08 | 0.00 | 0.11 | 0.11 | 0.19 | 0.85 | 0.48 | 0.30 | 0.22 |
−0.104 ± 1.22 | (7) Spelling: Ambiguous Words | 0.08 | 0.05 | 0.11 | 0.00 | 0.06 | 0.29 | 0.98 | 0.45 | 0.40 |
0.064 ± 1.14 | (8) Spelling: Pseudowords | 0.01 | 0.05 | 0.00 | 0.05 | 0.00 | 0.07 | 0.22 | 0.76 | 0.51 |
−0.325 ± 1.89 | (9) Spelling: Regular Words | 0.00 | 0.02 | 0.05 | 0.00 | 0.01 | 0.00 | 0.16 | 0.36 | 0.61 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zoccolotti, P.; Angelelli, P.; Marinelli, C.V.; Romano, D.L. A Network Analysis of the Relationship among Reading, Spelling and Maths Skills. Brain Sci. 2021, 11, 656. https://doi.org/10.3390/brainsci11050656
Zoccolotti P, Angelelli P, Marinelli CV, Romano DL. A Network Analysis of the Relationship among Reading, Spelling and Maths Skills. Brain Sciences. 2021; 11(5):656. https://doi.org/10.3390/brainsci11050656
Chicago/Turabian StyleZoccolotti, Pierluigi, Paola Angelelli, Chiara Valeria Marinelli, and Daniele Luigi Romano. 2021. "A Network Analysis of the Relationship among Reading, Spelling and Maths Skills" Brain Sciences 11, no. 5: 656. https://doi.org/10.3390/brainsci11050656
APA StyleZoccolotti, P., Angelelli, P., Marinelli, C. V., & Romano, D. L. (2021). A Network Analysis of the Relationship among Reading, Spelling and Maths Skills. Brain Sciences, 11(5), 656. https://doi.org/10.3390/brainsci11050656