Is the Age of Developmental Milestones a Predictor for Future Development in Down Syndrome?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedure
2.3. Measures
2.3.1. Clinical Data
2.3.2. Developmental Measures
2.4. Griffiths-III
2.5. Wechsler Preschool and Primary Scale of Intelligence (WPPSI-III)
2.6. Developmental Profile 3 (DP-3)
2.7. Vineland Adaptive Behavior Scales-Survey Interview Form-Second Edition (VABS-II)
2.8. Statistical Analyses
3. Results
3.1. The Onset of Developmental Milestones
3.2. Developmental Milestones and Later Development
3.2.1. The Preschooler Group
3.2.2. The School-Age Group
4. Discussion
4.1. The Onset of Developmental Milestones
4.2. The Role of Developmental Milestones
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lejeune, J.; Gauthier, M.; Turpin, R. Human Chromosomes in Tissue Cultures. C. R. Hebd. Seances Acad. Sci. 1959, 248, 602–603. [Google Scholar] [PubMed]
- Pelleri, M.C.; Cicchini, E.; Petersen, M.B.; Tranebjærg, L.; Mattina, T.; Magini, P.; Antonaros, F.; Caracausi, M.; Vitale, L.; Locatelli, C. Partial Trisomy 21 Map: Ten Cases Further Supporting the Highly Restricted Down Syndrome Critical Region (HR-DSCR) on Human Chromosome 21. Mol. Genet. Genom. Med. 2019, 7, e797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Psychiatric Pub. Diagnostic and Statistical Manual of Mental Disorders (DSM-5®); American Psychiatric Pub: Washington, DC, USA, 2013. [Google Scholar]
- Vicari, S. Motor Development and Neuropsychological Patterns in Persons with Down Syndrome. Behav. Genet. 2006, 36, 355–364. [Google Scholar] [CrossRef]
- Fidler, D. Early Intervention in Down Syndrome: Targeting the Emerging Behavioral Phenotype. Perspect. Lang. Learn. Educ. 2009, 16, 83–89. [Google Scholar] [CrossRef]
- Annerén, G.; Gustavson, K.; Sara, V.R.; Tuvemo, T. Growth Retardation in Down Syndrome in Relation to Insulin-like Growth Factors and Growth Hormone. Am. J. Med. Genet. 1990, 37, 59–62. [Google Scholar] [CrossRef] [PubMed]
- Gardiner, K.; Herault, Y.; Lott, I.T.; Antonarakis, S.E.; Reeves, R.H.; Dierssen, M. Down Syndrome: From Understanding the Neurobiology to Therapy. J. Neurosci. 2010, 30, 14943–14945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pelleri, M.C.; Gennari, E.; Locatelli, C.; Piovesan, A.; Caracausi, M.; Antonaros, F.; Rocca, A.; Donati, C.M.; Conti, L.; Strippoli, P. Genotype-Phenotype Correlation for Congenital Heart Disease in down Syndrome through Analysis of Partial Trisomy 21 Cases. Genomics 2017, 109, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Roizen, N.J.; Patterson, D. Down’s Syndrome. Lancet 2003, 361, 1281–1289. [Google Scholar] [CrossRef]
- Strippoli, P.; Pelleri, M.C.; Caracausi, M.; Vitale, L.; Piovesan, A.; Locatelli, C.; Mimmi, M.C.; Berardi, A.C.; Ricotta, D.; Radeghieri, A. An Integrated Route to Identifying New Pathogenesis-Based Therapeutic Approaches for Trisomy 21 (Down Syndrome) Following the Thought of Jérôme Lejeune. Sci. Postprint 2013, 1, e00010. [Google Scholar] [CrossRef]
- Strippoli, P.; Pelleri, M.C.; Piovesan, A.; Caracausi, M.; Antonaros, F.; Vitale, L. Genetics and Genomics of Down Syndrome. In International Review of Research in Developmental Disabilities; Elsevier: Amsterdam, The Netherlands, 2019; Volume 56, pp. 1–39. [Google Scholar]
- Vianello, R.; Lanfranchi, S.; Moalli, E. La Sindrome Di Down; Edizioni Junior: Reggio Emilia, Italy, 2006. [Google Scholar]
- Pulina, F.; Vianello, R.; Lanfranchi, S. Cognitive Profiles in Individuals with Down Syndrome. In International Review of Research in Developmental Disabilities; Elsevier: Amsterdam, The Netherlands, 2019; Volume 56, pp. 67–92. [Google Scholar]
- Lanfranchi, S.; Cornoldi, C.; Vianello, R. Verbal and Visuospatial Working Memory Deficits in Children with Down Syndrome. Am. J. Ment. Retard. 2004, 109, 456–466. [Google Scholar] [CrossRef]
- Lukowski, A.F.; Milojevich, H.M.; Eales, L. Cognitive Functioning in Children with Down Syndrome: Current Knowledge and Future Directions. Adv. Child. Dev. Behav. 2019, 56, 257–289. [Google Scholar] [PubMed]
- Will, E.A.; Caravella, K.E.; Hahn, L.J.; Fidler, D.J.; Roberts, J.E. Adaptive Behavior in Infants and Toddlers with Down Syndrome and Fragile X Syndrome. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2018, 177, 358–368. [Google Scholar] [CrossRef] [PubMed]
- Spiridigliozzi, G.A.; Goeldner, C.; Edgin, J.; Hart, S.J.; Noeldeke, J.; Squassante, L.; Visootsak, J.; Heller, J.H.; Khwaja, O.; Kishnani, P.S. Adaptive Behavior in Adolescents and Adults with Down Syndrome: Results from a 6-month Longitudinal Study. Am. J. Med. Genet. Part A 2019, 179, 85–93. [Google Scholar] [CrossRef]
- Van Duijn, G.; Dijkxhoorn, Y.; Scholte, E.M.; Van Berckelaer-Onnes, I.A. The Development of Adaptive Skills in Young People with Down Syndrome. J. Intellect. Disabil. Res. 2010, 54, 943–954. [Google Scholar] [CrossRef]
- Fidler, D.J. The Emerging Down Syndrome Behavioral Phenotype in Early Childhood: Implications for Practice. Infants Young Child. 2005, 18, 86–103. [Google Scholar] [CrossRef] [Green Version]
- Tudella, E.; Pereira, K.; Basso, R.P.; Savelsbergh, G.J.P. Description of the Motor Development of 3–12 Month Old Infants with Down Syndrome: The Influence of the Postural Body Position. Res. Dev. Disabil. 2011, 32, 1514–1520. [Google Scholar] [CrossRef]
- Karmiloff-Smith, A.; Al-Janabi, T.; D’Souza, H.; Groet, J.; Massand, E.; Mok, K.; Startin, C.; Fisher, E.; Hardy, J.; Nizetic, D. The Importance of Understanding Individual Differences in Down Syndrome. F1000Research 2016, 5. [Google Scholar] [CrossRef] [PubMed]
- Pelleri, M.C.; Cicchini, E.; Locatelli, C.; Vitale, L.; Caracausi, M.; Piovesan, A.; Rocca, A.; Poletti, G.; Seri, M.; Strippoli, P. Systematic Reanalysis of Partial Trisomy 21 Cases with or without Down Syndrome Suggests a Small Region on 21q22. 13 as Critical to the Phenotype. Hum. Mol. Genet. 2016, 25, 2525–2538. [Google Scholar] [PubMed] [Green Version]
- Van Hooste, A.; Maes, B. Family Factors in the Early Development of Children with Down Syndrome. J. Early Interv. 2003, 25, 296–309. [Google Scholar] [CrossRef]
- Kaat-van den Os, D.T.; Volman, C.; Jongmans, M.; Lauteslager, P. Expressive Vocabulary Development in Children with Down Syndrome: A Longitudinal Study. J. Policy Pract. Intellect. Disabil. 2017, 14, 311–318. [Google Scholar] [CrossRef]
- Zampini, L.; D’Odorico, L. Gesture Production and Language Development: A Longitudinal Study of Children with Down Syndrome. Gesture 2011, 11, 174–193. [Google Scholar] [CrossRef]
- Roberts, J.E.; Price, J.; Malkin, C. Language and Communication Development in Down Syndrome. Ment. Retard. Dev. Disabil. Res. Rev. 2007, 13, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Levy, Y.; Eilam, A.; Bavin, E.L.; Naigles, L.R. Pathways to Language: A Naturalistic Study of Children with Williams Syndrome and Children with Down Syndrome. J. Child. Lang. 2013, 40, 106. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.I.; Kim, S.W.; Kim, J.; Jeon, H.R.; Jung, D.W. Motor and Cognitive Developmental Profiles in Children with Down Syndrome. Ann. Rehabil. Med. 2017, 41, 97. [Google Scholar] [CrossRef] [Green Version]
- Winders, P.; Wolter-Warmerdam, K.; Hickey, F. A Schedule of Gross Motor Development for Children with Down Syndrome. J. Intellect. Disabil. Res. 2019, 63, 346–356. [Google Scholar] [CrossRef]
- Frank, K.; Esbensen, A.J. Fine Motor and Self-care Milestones for Individuals with D Own Syndrome Using a R Etrospective C Hart R Eview. J. Intellect. Disabil. Res. 2015, 59, 719–729. [Google Scholar] [CrossRef] [PubMed]
- Dolva, A.-S.; Coster, W.; Lilja, M. Functional Performance in Children with Down Syndrome. Am. J. Occup. Ther. 2004, 58, 621–629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piek, J.P.; Dawson, L.; Smith, L.M.; Gasson, N. The Role of Early Fine and Gross Motor Development on Later Motor and Cognitive Ability. Hum. Mov. Sci. 2008, 27, 668–681. [Google Scholar] [CrossRef] [PubMed]
- Bornstein, M.H.; Hahn, C.-S.; Suwalsky, J.T.D. Physically Developed and Exploratory Young Infants Contribute to Their Own Long-Term Academic Achievement. Psychol. Sci. 2013, 24, 1906–1917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murray, G.K.; Veijola, J.; Moilanen, K.; Miettunen, J.; Glahn, D.C.; Cannon, T.D.; Jones, P.B.; Isohanni, M. Infant Motor Development Is Associated with Adult Cognitive Categorisation in a Longitudinal Birth Cohort Study. J. Child. Psychol. Psychiatry 2006, 47, 25–29. [Google Scholar] [CrossRef]
- Gaysina, D.; Maughan, B.; Richards, M. Association of Reading Problems with Speech and Motor Development: Results from a British 1946 Birth Cohort. Dev. Med. Child. Neurol. 2010, 52, 680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walle, E.A.; Campos, J.J. Infant Language Development Is Related to the Acquisition of Walking. Dev. Psychol. 2014, 50, 336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viholainen, H.; Ahonen, T.; Lyytinen, P.; Cantell, M.; LicSSc, A.T.; Lyytinen, H. Early Motor Development and Later Language and Reading Skills in Children at Risk of Familial Dyslexia. Dev. Med. Child. Neurol. 2006, 48, 367–373. [Google Scholar] [CrossRef] [PubMed]
- Clearfield, M.W. Learning to Walk Changes Infants’ Social Interactions. Infant Behav. Dev. 2011, 34, 15–25. [Google Scholar] [CrossRef]
- Walle, E.A. Infant Social Development across the Transition from Crawling to Walking. Front. Psychol. 2016, 7, 960. [Google Scholar] [CrossRef] [Green Version]
- Lang, S.; Bartl-Pokorny, K.D.; Pokorny, F.B.; Garrido, D.; Mani, N.; Fox-Boyer, A.V.; Zhang, D.; Marschik, P.B. Canonical Babbling: A Marker for Earlier Identification of Late Detected Developmental Disorders? Curr. Dev. Disord. Rep. 2019, 6, 111–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lohmander, A.; Holm, K.; Eriksson, S.; Lieberman, M. Observation Method Identifies That a Lack of Canonical Babbling Can Indicate Future Speech and Language Problems. Acta Paediatr. 2017, 106, 935–943. [Google Scholar] [CrossRef] [PubMed]
- Yamauchi, Y.; Aoki, S.; Koike, J.; Hanzawa, N.; Hashimoto, K. Motor and Cognitive Development of Children with Down Syndrome: The Effect of Acquisition of Walking Skills on Their Cognitive and Language Abilities. Brain Dev. 2019, 41, 320–326. [Google Scholar] [CrossRef]
- Fidler, D.J.; Schworer, E.; Prince, M.A.; Will, E.A.; Needham, A.W.; Daunhauer, L.A. Exploratory Behavior and Developmental Skill Acquisition in Infants with Down Syndrome. Infant Behav. Dev. 2019, 54, 140–150. [Google Scholar] [CrossRef] [PubMed]
- Malak, R.; Kotwicka, M.; Krawczyk-Wasielewska, A.; Mojs, E.; Szamborski, W. Motor Skills, Cognitive Development and Balance Functions of Children with Down Syndrome. Ann. Agric. Environ. Med. 2013, 20, 803–806. [Google Scholar] [PubMed]
- Lynch, M.P.; Oller, D.K.; Steffens, M.L.; Levine, S.L. Onset of Speech-like Vocalizations in Infants with Down Syndrome. Am. J. Ment. Retard. 1995, 100, 68–86. [Google Scholar] [PubMed]
- Cobo-Lewis, A.B.; Oller, D.K.; Lynch, M.P.; Levine, S.L. Relations of Motor and Vocal Milestones in Typically Developing Infants and Infants with Down Syndrome. Am. J. Ment. Retard. AJMR 1996, 100, 456–467. [Google Scholar]
- Green, E.; Stroud, L.; Bloomfield, S.; Cronje, J.; Foxcroft, C.; Hunter, K.; Venter, D. Griffiths Scales of Child Development; Hogrefe Ltd.: Oxford, UK, 2016. [Google Scholar]
- Antonaros, F.; Ghini, V.; Pulina, F.; Ramacieri, G.; Cicchini, E.; Mannini, E.; Martelli, A.; Feliciello, A.; Lanfranchi, S.; Onnivello, S. Plasma Metabolome and Cognitive Skills in Down Syndrome. Sci. Rep. 2020, 10, 1–12. [Google Scholar] [CrossRef]
- Antonaros, F.; Lanfranchi, S.; Locatelli, C.; Martelli, A.; Olivucci, G.; Cicchini, E.; Diatricch, L.C.; Mannini, E.; Vione, B.; Feliciello, A. One-Carbon Pathway and Cognitive Skills in Children with Down Syndrome. Sci. Rep. 2021, 11, 1–13. [Google Scholar]
- Wechsler, D. Wechsler Preschool and Primary Scale of Intelligence, 4th ed.; Psychological Corporation: San Antonio, TX, USA, 2012. [Google Scholar]
- Alpern, G.D. Developmental Profile 3 (DP-3); Western Psychological Services: Los Angeles, CA, UA, 2007. [Google Scholar]
- Sparrow, S.S.; Cicchetti, D.V.; Balla, D.A. Vineland Adaptive Behavior Scales, 2nd ed.; AGS Publishing: Circle Pines, MN, USA, 2005. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https//www.R-project.org/ (accessed on 6 July 2020).
- Schwarz, G. Estimating the Dimension of a Model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]
- Schönbrodt, F.D.; Wagenmakers, E.-J. Bayes Factor Design Analysis: Planning for Compelling Evidence. Psychon. Bull. Rev. 2018, 25, 128–142. [Google Scholar] [CrossRef]
- Lee, M.D.; Wagenmakers, E.-J. Bayesian Cognitive Modeling: A Practical Course; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Raftery, A.E. Bayesian Model Selection in Social Research. Sociol. Methodol. 1995, 25, 111–163. [Google Scholar] [CrossRef]
- Couzens, D.; Cuskelly, M.; Haynes, M. Cognitive Development and Down Syndrome: Age-Related Change on the Stanford-Binet Test. Am. J. Intellect. Dev. Disabil. 2011, 116, 181–204. [Google Scholar] [CrossRef] [PubMed]
- Iverson, J.M. Developing Language in a Developing Body: The Relationship between Motor Development and Language Development. J. Child. Lang. 2010, 37, 229. [Google Scholar] [CrossRef]
- Libertus, K.; Violi, D.A. Sit to Talk: Relation between Motor Skills and Language Development in Infancy. Front. Psychol. 2016, 7, 475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hitzert, M.M.; Roze, E.; Van Braeckel, K.N.J.A.; Bos, A.F. Motor Development in 3-month-old Healthy Term-born Infants Is Associated with Cognitive and Behavioural Outcomes at Early School Age. Dev. Med. Child. Neurol. 2014, 56, 869–876. [Google Scholar] [CrossRef]
- Van Batenburg-Eddes, T.; Henrichs, J.; Schenk, J.J.; Sincer, I.; De Groot, L.; Hofman, A.; Jaddoe, V.W.V.; Verhulst, F.C.; Tiemeier, H. Early Infant Neuromotor Assessment Is Associated with Language and Nonverbal Cognitive Function in Toddlers: The Generation R Study. J. Dev. Behav. Pediatr. 2013, 34, 326–334. [Google Scholar] [CrossRef] [PubMed]
- Fowler, C.J.; Griffiths, D.; De Groat, W.C. The Neural Control of Micturition. Nat. Rev. Neurosci. 2008, 9, 453–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kern, M.K.; Arndorfer, R.C.; Hyde, J.S.; Shaker, R. Cerebral Cortical Representation of External Anal Sphincter Contraction: Effect of Effort. Am. J. Physiol. Liver Physiol. 2004, 286, G304–G311. [Google Scholar] [CrossRef] [Green Version]
- Daunhauer, L.A.; Fidler, D.J.; Hahn, L.; Will, E.; Lee, N.R.; Hepburn, S. Profiles of Everyday Executive Functioning in Young Children with Down Syndrome. Am. J. Intellect. Dev. Disabil. 2014, 119, 303–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomaszewski, B.; Fidler, D.; Talapatra, D.; Riley, K. Adaptive Behaviour, Executive Function and Employment in Adults with Down Syndrome. J. Intellect. Disabil. Res. 2018, 62, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Bettison, S. Toilet Training to Independence for the Handicapped: A Manual for Trainers; Charles C Thomas Pub Limited: Springfield, IL, USA, 1982. [Google Scholar]
- LeBlanc, L.A.; Carr, J.E.; Crossett, S.E.; Bennett, C.M.; Detweiler, D.D. Intensive Outpatient Behavioral Treatment of Primary Urinary Incontinence of Children with Autism. Focus Autism Other Dev. Disabl. 2005, 20, 98–105. [Google Scholar] [CrossRef]
- Rogers, J.; Enoch, N. Early intervention toilet training for children with Down syndrome. Br. J. Nurs. 2020, 29, 1325–1326. [Google Scholar] [CrossRef] [PubMed]
- Mainemer, A.; Rosenblatt, B. Reliability of parental recall of developmental milestones. Pediatr. Neurol. 1994, 10, 304–308. [Google Scholar] [CrossRef]
Variables | |
---|---|
Model 0 | Null model |
Model 1 | Sitting |
Model 2 | Walking |
Model 3 | Babbling |
Model 4 | Sphincter Control |
Model 5 | Sitting + Walking |
Model 6 | Sitting + Babbling |
Model 7 | Sitting + Sphincter Control |
Model 8 | Babbling + Walking |
Model 9 | Babbling + Sphincter Control |
Model 10 | Walking + Sphincter Control |
Model 11 | Sitting + Babbling + Walking |
Model 12 | Sitting + Babbling + Sphincter Control |
Model 13 | Sitting + Walking + Sphincter Control |
Model 14 | Babbling + Walking + Sphincter Control |
Model 15 | Sitting + Babbling + Walking + Sphincter Control |
Preschoolers (n = 39) M (SD) | School-Age Group (n = 66) M (SD) | Total Group (n = 105) M (SD) | |
---|---|---|---|
Sitting | 8.44 (2.98) n = 36 | 10.07 (7.28) n = 59 | 9.45 (6.03) n = 95 |
Babbling | 12.88 (5.27) n = 33 | 16.09 (11.30) n = 56 | 14.90 (9.61) n = 89 |
Walking | 23.59 (5.04) n = 35 | 24.78 (8.96) n = 65 | 24.37 (7.81) n = 100 |
Sphincter Control | 33.45 (11.02) n = 16 | 46.43 (23.71) n = 61 | 43.73 (22.27) n = 77 |
Sitting n = 95 | Babbling n = 89 | Walking n = 100 | Sphincter Control n = 77 | |
---|---|---|---|---|
Sitting | - | 0.734 | 0.610 | 0.534 |
Babbling | 0.734 | - | 0.442 | 0.463 |
Walking | 0.610 | 0.442 | - | 0.412 |
Sphincter Control | 0.534 | 0.463 | 0.412 | - |
Sitting | Babbling | Walking | Sphincter Control | |
---|---|---|---|---|
Griffiths-III Foundations of Learning | −0.080 | 0.158 | −0.011 | 0.209 |
Griffiths-III Language and Communication | −0.238 | −0.002 | 0.135 | 0.307 |
Griffiths-III Eye and Hand Coordination (n = 25. For these variables the number is reduced because 5 participants did not complete the Griffiths-III assessment) | −0.137 | −0.040 | −0.148 | 0.280 |
Griffiths-III Personal-Social-Emotional (n = 25. For these variables the number is reduced because 5 participants did not complete the Griffiths-III assessment) | −0.167 | 0.099 | 0.105 | 0.321 |
Griffiths-III Gross Motor Skills (n = 25. For these variables the number is reduced because 5 participants did not complete the Griffiths-III assessment) | −0.445 | 0.033 | 0.022 | 0.266 |
DP-3 Motor | −0.233 | −0.062 | 0.131 | 0.331 |
DP-3 Socio-Emotional | 0.167 | 0.074 | 0.253 | 0.400 |
DP-3 Adaptive Skills | 0.093 | −0.053 | 0.222 | 0.430 |
DP-3 Cognitive | −0.114 | 0.063 | 0.238 | 0.246 |
DP-3 Communication | −0.220 | −0.300 | 0.203 | 0.291 |
VABS-II Communication | −0.360 | −0.161 | 0.067 | 0.230 |
VABS-II Daily Living Skills | −0.239 | 0.136 | −0.07 | 0.120 |
VABS-II Socialization | −0.152 | 0.024 | 0.097 | 0.213 |
VABS-II Motor Skills | −0.397 | 0.127 | −0.098 | 0.102 |
Best Model | BF10 | adjR2 | Standardized Coefficients | |
---|---|---|---|---|
Griffiths-III Foundations of Learning | Null model | |||
Griffiths-III Language and Communication | Null model | |||
Griffiths-III Eye and Hand Coordination (n = 25 For these variables the numerosity is reduced because 5 participants did not complete the Griffiths-III assessment) | Null model | |||
Griffiths-III Personal-Social-Emotional (n = 25. For these variables the number is reduced because 5 participants did not complete the Griffiths-III assessment) | Null model | |||
Griffiths-III Gross Motor Skills (n = 25. For these variables the number is reduced because 5 participants did not complete the Griffiths-III assessment) | Sitting | BF10 = 3.19 | 16% | Sitting ß = −0.45, (−0.83, −0.59) |
DP-3 Motor | Sphincter Control | BF10 = 1.04 | 8% | Sphincter control ß = 0.33, (−0.03, 0.67) |
DP-3 Socio-Emotional | Sphincter Control | BF10 = 2.53 | 13% | Sphincter control ß = 0.40, (0.05, 0.76) |
DP-3 Adaptive Skills | Sphincter Control | BF10 = 4.44 | 16% | Sphincter control ß = 0.44, (0.09, 0.79) |
DP-3 Cognitive | Null model | |||
DP-3 Communication | Null model | |||
VABS-II Communication | Sitting | BF10 = 1.48 | 10% | Sitting ß = −0.36, (−0.72, 0) |
VABS-II Daily Living skills | Null model | |||
VABS-II Socialization | Null model | |||
VABS-II Motor Skills | Sitting + Babbling | Sitting BF10 = 12.18 Babbling BF10 = 1.21 | 20% | Sitting ß = −0.54, (−0.91, −0.17) Babbling ß = 0.36, (−0.03, 0.72) |
Sitting | Babbling | Walking | Sphincter Control | |
---|---|---|---|---|
WPPSI-III Verbal | −0.273 | −0.539 | −0.214 | −0.492 |
WPPSI-III Non-Verbal | −0.299 | −0.301 | −0.274 | −0.352 |
DP-3 Motor | −0.229 | −0.107 | −0.340 | −0.399 |
DP-3 Socio-Emotional | −0.101 | −0.125 | −0.112 | −0.292 |
DP-3 Adaptive Skills | −0.294 | −0.217 | −0.330 | −0.541 |
DP-3 Cognition | −0.249 | −0.340 | −0.223 | −0.575 |
DP-3 Communication | −0.194 | −0.332 | −0.213 | −0.521 |
VABS-II Communication | −0.160 | −0.260 | −0.222 | −0.451 |
VABS-II Daily Living Skills | −0.145 | −0.063 | −0.185 | −0.437 |
VABS-II Socialization | −0.064 | −0.002 | −0.149 | −0.355 |
Best Model | BF10 | adjR2 | Standardized Coefficients | |
---|---|---|---|---|
WPPSI-III Verbal | Sitting + Babbling + Sphincter Control | Sitting BF10 = 23.33 Babbling BF10 = 2892.857 Sphincter Control BF10 = 90.01 | 45% | Sitting ß = 0.55, (0.21, 0.89) Babbling ß = −0.76, (−1.00,−0.43) Sphincter ß = −0.45, (−0.70, −0.21) |
WPPSI-III Non Verbal | Sphincter Control | BF10 = 4.53 | 11% | Sphincter ß = −0.35 (−0.61,−0.09) |
DP-3 Motor | Sphincter Control | BF10 = 13.60 | 14% | Sphincter ß = −0.39, (−0.66,−0.14) |
DP-3 Socio-Emotional | Sphincter Control | BF10 = 1.46 | 28% | Sphincter ß = −0.29, (−0.56,−0.02) |
DP-3 Adaptive Skills | Sphincter Control | BF10 = 1339.431 | 7% | Sphincter ß = −0.54, (−0.78, −0.20) |
DP-3 Cognitive | Sphincter Control | BF10 = 5825.499 | 32% | Sphincter ß = −0.57, (−0.81, −0.35) |
DP-3 Communication | Sphincter Control | BF10 = 607.8937 | 26% | Sphincter ß = −0.52, (−0.76, −0.28) |
VABS-II Communication | Sphincter Control | BF10 = 56.83 | 19% | Sphincter ß = −0.46, (−0.70, −0.20) |
VABS-II Daily Living skills | Sphincter Control | BF10 = 37.71 | 18% | Sphincter ß = −0.44, (−0.70, −0.18) |
VABS-II Socialization | Sphincter Control | BF10 = 4.95 | 11% | Sphincter ß = −0.36, (−0.62, −0.09) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Locatelli, C.; Onnivello, S.; Antonaros, F.; Feliciello, A.; Filoni, S.; Rossi, S.; Pulina, F.; Marcolin, C.; Vianello, R.; Toffalini, E.; et al. Is the Age of Developmental Milestones a Predictor for Future Development in Down Syndrome? Brain Sci. 2021, 11, 655. https://doi.org/10.3390/brainsci11050655
Locatelli C, Onnivello S, Antonaros F, Feliciello A, Filoni S, Rossi S, Pulina F, Marcolin C, Vianello R, Toffalini E, et al. Is the Age of Developmental Milestones a Predictor for Future Development in Down Syndrome? Brain Sciences. 2021; 11(5):655. https://doi.org/10.3390/brainsci11050655
Chicago/Turabian StyleLocatelli, Chiara, Sara Onnivello, Francesca Antonaros, Agnese Feliciello, Sonia Filoni, Sara Rossi, Francesca Pulina, Chiara Marcolin, Renzo Vianello, Enrico Toffalini, and et al. 2021. "Is the Age of Developmental Milestones a Predictor for Future Development in Down Syndrome?" Brain Sciences 11, no. 5: 655. https://doi.org/10.3390/brainsci11050655
APA StyleLocatelli, C., Onnivello, S., Antonaros, F., Feliciello, A., Filoni, S., Rossi, S., Pulina, F., Marcolin, C., Vianello, R., Toffalini, E., Ramacieri, G., Martelli, A., Procaccini, G., Sperti, G., Caracausi, M., Pelleri, M. C., Vitale, L., Pirazzoli, G. L., Strippoli, P., ... Lanfranchi, S. (2021). Is the Age of Developmental Milestones a Predictor for Future Development in Down Syndrome? Brain Sciences, 11(5), 655. https://doi.org/10.3390/brainsci11050655