An Interesting Molecule: γ-Aminobutyric Acid. What Can We Learn from Hydra Polyps?
Abstract
1. Introduction
2. The Discovery of GABA and Its Biological Functions
3. GABA Biosynthesis and Metabolic Pathways
4. GABA and Hydra: Available Evidence
5. The Microbiome of Hydra: Host–Microbe Interactions
6. GABA and Hydra: Open Questions
Funding
Conflicts of Interest
References
- Clarac, F.; Pearlstein, E. Invertebrate preparations and their contribution to neurobiology in the second half of the 20th century. Brain Res. Rev. 2007, 54, 113–161. [Google Scholar] [CrossRef]
- Arendt, D.; Tosches, M.A.; Marlow, H. From nerve net to nerve ring, nerve cord and brain — evolution of the nervous system. Nat. Rev. Neurosci. 2015, 17, 61–72. [Google Scholar] [CrossRef]
- Northcutt, R.G. Evolution of centralized nervous systems: Two schools of evolutionary thought. Proc. Natl. Acad. Sci. USA 2012, 109, 10626–10633. [Google Scholar] [CrossRef] [PubMed]
- Awapara, J.; Landua, A.J.; Fuerst, R.; Seale, R. Free γ-aminobutyric acid in brain. J. Biol. Chem. 1950, 187, 35–39. [Google Scholar] [CrossRef]
- Van der Kloot, W.G.; Robbins, J. The effects of γ-aminobutyric acid and picrotoxin on the junctional potential and the contraction of crayfish muscle. Cell. Mol. Life Sci. 1959, 15, 35–36. [Google Scholar] [CrossRef]
- Kravitz, E.A.; Potter, D.D.; Van Gelder, N.M. Gamma-Aminobutyric Acid and Other Blocking Substances extracted from Crab Muscle. Nat. Cell Biol. 1962, 194, 382–383. [Google Scholar] [CrossRef]
- Dudel, J.; Gryder, R.; Kaji, A.; Kuffler, S.W.; Potter, D.D. Gamma-aminobutyric acid and other blocking compounds in Crustacea: I. Central nervous system. J. Neurophysiol. 1963, 26, 721–728. [Google Scholar] [CrossRef]
- Smart, T.G.; Stephenson, F.A. A half century of γ-aminobutyric acid. Brain Neurosci. Adv. 2019, 3, 2398212819858249. [Google Scholar] [CrossRef] [PubMed]
- Olsen, R.W.; Sieghart, W. International Union of Pharmacology. LXX. Subtypes of γ-Aminobutyric AcidA Receptors: Classification on the Basis of Subunit Composition, Pharmacology, and Function. Update. Pharmacol. Rev. 2008, 60, 243–260. [Google Scholar] [CrossRef] [PubMed]
- Bowery, N.G. International Union of Pharmacology. XXXIII. Mammalian gamma -Aminobutyric AcidB Receptors: Structure and Function. Pharmacol. Rev. 2002, 54, 247–264. [Google Scholar] [CrossRef] [PubMed]
- Szabadics, J.; Varga, C.; Molnár, G.; Oláh, S.; Barzó, P.; Tamás, G. Excitatory Effect of GABAergic Axo-Axonic Cells in Cortical Microcircuits. Science 2006, 311, 233–235. [Google Scholar] [CrossRef]
- Ben-Ari, Y. Excitatory actions of GABA during development: The nature of the nurture. Nat. Rev. Neurosci. 2002, 3, 728–739. [Google Scholar] [CrossRef] [PubMed]
- Ganguly, K.; Schinder, A.F.; Wong, S.T.; Poo, M.-M. GABA Itself Promotes the Developmental Switch of Neuronal GABAergic Responses from Excitation to Inhibition. Cell 2001, 105, 521–532. [Google Scholar] [CrossRef]
- Zilberter, M. Reality of Inhibitory GABA in Neonatal Brain: Time to Rewrite the Textbooks? J. Neurosci. 2016, 36, 10242–10244. [Google Scholar] [CrossRef] [PubMed]
- Owens, D.F.; Kriegstein, A.R. Is there more to GABA than synaptic inhibition? Nat. Rev. Neurosci. 2002, 3, 715–727. [Google Scholar] [CrossRef] [PubMed]
- Ge, S.; Goh, E.L.K.; Sailor, K.A.; Kitabatake, Y.; Ming, G.-L.; Song, H. GABA regulates synaptic integration of newly generated neurons in the adult brain. Nat. Cell Biol. 2005, 439, 589–593. [Google Scholar] [CrossRef]
- Sernagor, E.; Chabrol, F.; Bony, G.; Cancedda, L. GABAergic control of neurite outgrowth and remodeling during development and adult neurogenesis: General rules and differences in diverse systems. Front. Cell. Neurosci. 2010, 4, 11. [Google Scholar] [CrossRef]
- LoTurco, J.J.; Owens, D.F.; Heath, M.J.; Davis, M.B.; Kriegstein, A.R. GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis. Neuron 1995, 15, 1287–1298. [Google Scholar] [CrossRef]
- Wang, R.D.; Kriegstein, A.R.; Ben-Ari, Y. GABA Regulates Stem Cell Proliferation before Nervous System Formation. Epilepsy Curr. 2008, 8, 137–139. [Google Scholar] [CrossRef] [PubMed]
- Rudolph, U.; Möhler, H. GABAA Receptor Subtypes: Therapeutic Potential in Down Syndrome, Affective Disorders, Schizophrenia, and Autism. Annu. Rev. Pharmacol. Toxicol. 2014, 54, 483–507. [Google Scholar] [CrossRef]
- Krantis, A. GABA in the Mammalian Enteric Nervous System. News Physiol. Sci. Int. J. Physiol. Prod. Jt. Int. Union Physiol. Sci. Am. Physiol. Soc. 2000, 15, 284–290. [Google Scholar] [CrossRef]
- Mayer, E.A. Gut feelings: The emerging biology of gut–brain communication. Nat. Rev. Neurosci. 2011, 12, 453–466. [Google Scholar] [CrossRef]
- Cryan, J.F.; O’Riordan, K.J.; Cowan, C.S.M.; Sandhu, K.V.; Bastiaanssen, T.F.S.; Boehme, M.; Codagnone, M.G.; Cussotto, S.; Fulling, C.; Golubeva, A.V.; et al. The Microbiota-Gut-Brain Axis. Physiol. Rev. 2019, 99, 1877–2013. [Google Scholar] [CrossRef]
- Bravo, J.A.; Forsythe, P.; Chew, M.V.; Escaravage, E.; Savignac, H.M.; Dinan, T.G.; Bienenstock, J.; Cryan, J.F. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. USA 2011, 108, 16050–16055. [Google Scholar] [CrossRef]
- Boonstra, E.; De Kleijn, R.; Colzato, L.S.; Alkemade, A.; Forstmann, B.U.; Nieuwenhuis, S. Neurotransmitters as food supplements: The effects of GABA on brain and behavior. Front. Psychol. 2015, 6, 1520. [Google Scholar] [CrossRef]
- Bessman, S.P.; Rossen, J.; Layne, E.C. γ-AMINOBUTYRIC ACID-GLUTAMIC ACID TRANSAMINATION IN BRAIN. J. Biol. Chem. 1953, 201, 385–391. [Google Scholar] [CrossRef]
- Roberts, E.; Frankel, S. γ-Aminobutyric acid in brain: Its formation from glutamic acid. J. Biol. Chem. 1950, 187, 55–63. [Google Scholar] [CrossRef]
- Bown, A.W.; Shelp, B.J. The Metabolism and Functions of [gamma]-Aminobutyric Acid. Plant Physiol. 1997, 115, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Kuriyama, K.; Sze, P. Blood-brain barrier to H3-γ-aminobutyric acid in normal and amino oxyacetic acid-treated animals. Neuropharmacology 1971, 10, 103–108. [Google Scholar] [CrossRef]
- Fenalti, G.; Law, R.H.P.; Buckle, A.M.; Langendorf, C.; Tuck, K.; Rosado, C.J.; Faux, N.G.; Mahmood, K.; Hampe, C.S.; Banga, J.P.; et al. GABA production by glutamic acid decarboxylase is regulated by a dynamic catalytic loop. Nat. Struct. Mol. Biol. 2007, 14, 280–286. [Google Scholar] [CrossRef] [PubMed]
- Ueno, H. Enzymatic and structural aspects on glutamate decarboxylase. J. Mol. Catal. B Enzym. 2000, 10, 67–79. [Google Scholar] [CrossRef]
- Erlander, M.G.; Tillakaratne, N.J.; Feldblum, S.; Patel, N.; Tobin, A.J. Two genes encode distinct glutamate decarboxylases. Neuron 1991, 7, 91–100. [Google Scholar] [CrossRef]
- Jin, H.; Wu, H.; Osterhaus, G.; Wei, J.; Davis, K.; Sha, D.; Floor, E.; Hsu, C.-C.; Kopke, R.D.; Wu, J.-Y. Demonstration of functional coupling between γ-aminobutyric acid (GABA) synthesis and vesicular GABA transport into synaptic vesicles. Proc. Natl. Acad. Sci. USA 2003, 100, 4293–4298. [Google Scholar] [CrossRef] [PubMed]
- Sukhareva, B.S.; Mamaeva, O.K. Glutamate decarboxylase: Computer studies of enzyme evolution. Biochemistry 2002, 67, 1180–1188. [Google Scholar] [CrossRef] [PubMed]
- Cockcroft, V.B.; Osguthorpe, D.J.; Barnard, E.A.; Friday, A.E.; Lunt, G.G. Ligand-gated ion channels. Mol. Neurobiol. 1990, 4, 129–169. [Google Scholar] [CrossRef]
- Ramoino, P.; Gallus, L.; Paluzzi, S.; Raiteri, L.; Diaspro, A.; Fato, M.M.; Bonanno, G.; Tagliafierro, G.; Ferretti, C.; Manconi, R. The GABAergic-like system in the marine demosponge Chondrilla nucula. Microsc. Res. Tech. 2007, 70, 944–951. [Google Scholar] [CrossRef] [PubMed]
- Leys, S.P.; Mah, J.L.; McGill, P.R.; Hamonic, L.; De Leo, F.C.; Kahn, A.S. Sponge Behavior and the Chemical Basis of Responses: A Post-Genomic View. Integr. Comp. Biol. 2019, 59, 751–764. [Google Scholar] [CrossRef]
- Martin, V.J. Photoreceptors of cubozoan jellyfish. Hydrobiologia 2004, 530, 135–144. [Google Scholar] [CrossRef]
- Marlow, H.Q.; Srivastava, M.; Matus, D.Q.; Rokhsar, D.; Martindale, M.Q. Anatomy and development of the nervous system of Nematostella vectensis, an anthozoan cnidarian. Dev. Neurobiol. 2009, 69, 235–254. [Google Scholar] [CrossRef] [PubMed]
- Delgado, L.M.; Couve, E.; Schmachtenberg, O. GABA and glutamate immunoreactivity in tentacles of the sea anemone Phymactis papillosa (LESSON 1830). J. Morphol. 2010, 271, 845–852. [Google Scholar] [CrossRef]
- Levy, S.; Brekhman, V.; Bakhman, A.; Malik, A.; Sebé-Pedrós, A.; Kosloff, M.; Lotan, T. Ectopic activation of GABAB receptors inhibits neurogenesis and metamorphosis in the cnidarian Nematostella vectensis. Nat. Ecol. Evol. 2021, 5, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Girosi, L.; Ferrando, S.; Beltrame, F.; Ciarcia, G.; Diaspro, A.; Fato, M.; Magnone, M.; Raiteri, L.; Ramoino, P.; Tagliafierro, G. Gamma-aminobutyric acid and related molecules in the sea fan Eunicella cavolini (Cnidaria: Octocorallia): A biochemical and immunohistochemical approach. Cell Tissue Res. 2007, 329, 187–196. [Google Scholar] [CrossRef]
- Cotter, P.D.; Hill, C. Surviving the Acid Test: Responses of Gram-Positive Bacteria to Low pH. Mol. Biol. Rev. 2003, 67, 429–453. [Google Scholar] [CrossRef]
- Corringer, P.J.; Baaden, M.; Bocquet, N.; Delarue, M.; Dufresne, V.; Nury, H.; Prevost, M.; Van Renterghem, C. Atomic structure and dynamics of pentameric Ligand-gated Ion Channels: New insight from bacterial homologues to its membrane environment. J. Physiol. 2010, 588, 565–572. [Google Scholar] [CrossRef]
- Elliott, G.R.D.; Leys, S.P. Evidence for glutamate, GABA, and NO in coordinating behaviour in the sponge, Ephydatia muelleri (Demospongiae, Spongillidae). J. Exp. Biol. 2010, 213, 2310–2321. [Google Scholar] [CrossRef] [PubMed]
- Kass-Simon, G.; Pierobon, P. Cnidarian chemical neurotransmission, an updated overview. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2007, 146, 9–25. [Google Scholar] [CrossRef]
- Anctil, M. Neurotransmission-Evolving Systems. In The Wiley Handbook of Evolutionary Neuroscience; Wiley: Hoboken, NJ, USA,, 2016; pp. 279–306. [Google Scholar]
- Concas, A.; Pierobon, P.; Mostallino, M.; Mariño, G.; Minei, R.; Biggio, G. Modulation of γ-aminobutyric acid (GABA) receptors and the feeding response by neurosteroids in Hydra vulgaris. Neuroscience 1998, 85, 979–988. [Google Scholar] [CrossRef]
- Kass-Simon, G.; Pannaccione, A.; Pierobon, P. GABA and glutamate receptors are involved in modulating pacemaker activity in hydra. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2003, 136, 329–342. [Google Scholar] [CrossRef]
- Scappaticci, A.; Kass-Simon, G. NMDA and GABAB receptors are involved in controlling nematocyst discharge in hydra. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2008, 150, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Hufnagel, L.A.; Kass-Simon, G. The two nerve rings of the hypostomal nervous system of Hydra vulgaris—an immunohistochemical analysis. Cell Tissue Res. 2016, 366, 255–269. [Google Scholar] [CrossRef]
- Pierobon, P. Regional modulation of the response to glutathione in Hydra vulgaris. J. Exp. Biol. 2015, 218, 2226–2232. [Google Scholar] [CrossRef]
- Concas, A.; Imperatore, R.; Santoru, F.; Locci, A.; Porcu, P.; Cristino, L.; Pierobon, P. Immunochemical Localization of GABAA Receptor Subunits in the Freshwater Polyp Hydra vulgaris (Cnidaria, Hydrozoa). Neurochem. Res. 2016, 41, 2914–2922. [Google Scholar] [CrossRef]
- Bosch, T.C.G.; Guillemin, K.; McFall-Ngai, M. Evolutionary “Experiments” in Symbiosis: The Study of Model Animals Provides Insights into the Mechanisms Underlying the Diversity of Host–Microbe Interactions. BioEssays 2019, 41, e1800256. [Google Scholar] [CrossRef] [PubMed]
- Klimovich, A.; Giacomello, S.; Björklund, Å.; Faure, L.; Kaucka, M.; Giez, C.; Murillo-Rincon, A.P.; Matt, A.-S.; Willoweit-Ohl, D.; Crupi, G.; et al. Prototypical pacemaker neurons interact with the resident microbiota. Proc. Natl. Acad. Sci. USA 2020, 117, 17854–17863. [Google Scholar] [CrossRef]
- Murillo-Rincon, A.P.; Klimovich, A.; Pemöller, E.; Taubenheim, J.; Mortzfeld, B.; Augustin, R.; Bosch, T.C.G. Spontaneous body contractions are modulated by the microbiome of Hydra. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef]
- Scott, E.M.; Jakoby, W.B. Soluble γ-Aminobutyric-Glutamic Transaminase from Pseudomonas fluorescens. J. Biol. Chem. 1959, 234, 932–936. [Google Scholar] [CrossRef]
- Anctil, M. Chemical transmission in the sea anemone Nematostella vectensis: A genomic perspective. Comp. Biochem. Physiol. Part D Genom. Proteom. 2009, 4, 268–289. [Google Scholar] [CrossRef]
- Wong, W.Y.; Simakov, O.; Bridge, D.M.; Cartwright, P.; Bellantuono, A.J.; Kuhn, A.; Holstein, T.W.; David, C.N.; Steele, R.E.; Martínez, D.E. Expansion of a single transposable element family is associated with genome-size increase and radiation in the genus Hydra. Proc. Natl. Acad. Sci. USA 2019, 116, 22915–22917. [Google Scholar] [CrossRef] [PubMed]
- Eisthen, H.L.; Theis, K.R. Animal–microbe interactions and the evolution of nervous systems. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150052. [Google Scholar] [CrossRef]
Bacteria | Sponges | Cnidaria | |
---|---|---|---|
GABA metabolism | GAD, GAD genes GABA-T | GAD, GAD genes GABA-T | GAD GABA-T |
GABA sensors | GABA transporters GLIC, ELIC receptors | GABA transporters GABAB receptors | VGAT GABA receptors |
plcGABA production and cellular localization | GABA | GABA choanocytes, pinacocytes | GABA Sensory neurons Nerve fibers |
Physiological role(s) | The GAD system contributes to survival in acidic environments by increase in internal pH and alkalinization of external fluids | GABAergic inhibitory regulation of water flow, body contraction, and feeding in response to external signals | Neuronal signaling Photic perception Regulation of nematocyst discharge Modulation of neurogenesis, development |
References | [36,37] | [38,39,40,41,42] | |
Additional references | [43,44] | [45] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pierobon, P. An Interesting Molecule: γ-Aminobutyric Acid. What Can We Learn from Hydra Polyps? Brain Sci. 2021, 11, 437. https://doi.org/10.3390/brainsci11040437
Pierobon P. An Interesting Molecule: γ-Aminobutyric Acid. What Can We Learn from Hydra Polyps? Brain Sciences. 2021; 11(4):437. https://doi.org/10.3390/brainsci11040437
Chicago/Turabian StylePierobon, Paola. 2021. "An Interesting Molecule: γ-Aminobutyric Acid. What Can We Learn from Hydra Polyps?" Brain Sciences 11, no. 4: 437. https://doi.org/10.3390/brainsci11040437
APA StylePierobon, P. (2021). An Interesting Molecule: γ-Aminobutyric Acid. What Can We Learn from Hydra Polyps? Brain Sciences, 11(4), 437. https://doi.org/10.3390/brainsci11040437