Epigenetics in Families: Covariance between Mother and Child Methylation Patterns
Abstract
:1. Introduction
2. Method
2.1. Participants
2.2. Measures
2.2.1. Methylation Procedure
2.2.2. Recent Stress
2.2.3. Procedure
3. Plan of the Analysis
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Measure | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
1. 5HTT | 1 | |||||||
2. NR3C1 | 0.61 ** | 1 | ||||||
3. FKBP5 | 0.31 ** | 0.34 ** | 1 | |||||
4. BDNF | 0.39 ** | 0.51 ** | 0.30 ** | 1 | ||||
5. 5HTTmother | 0.20 * | 0.33 * | 0.10 | 0.14 | 1 | |||
6. NR3C1mother | 0.29 ** | 0.34 ** | 0.18 * | 0.13 | 0.74 ** | 1 | ||
7. FKBP5mother | 0.27 ** | 0.42 ** | 0.16 * | 0.19 * | 0.63 ** | 0.65 ** | 1 | |
8. BDNFmother | 0.24 ** | 0.44 ** | 0.05 | 0.16 * | 0.68 ** | 0.70 ** | 0.58 ** | 1 |
M | 1.89 | 0.26 | 0.46 | 1.67 | 2.08 | 0.31 | 0.48 | 1.70 |
SD | 1.18 | 0.72 | 0.70 | 0.90 | 1.16 | 0.75 | 0.73 | 0.91 |
Mother Stress | Child Stress | |
---|---|---|
1. 5HTT | −0.06 | 0.06 |
2. NR3C1 | −0.05 | 0.04 |
3. FKBP5 | −0.05 | 0.07 |
4. BDNF | −0.08 | 0.18 * |
5. Methylation component scores | −0.07 | 0.11 |
References
- Weinhold, B. Epigenetics: The science of change. Environ. Heal. Perspect. 2006, 114, A160–A167. [Google Scholar] [CrossRef] [Green Version]
- Maccoby, E.E. Parenting and its effects on children: On reading and misreading behavior genetics. Annu. Rev. Psychol. 2000, 51, 1–27. [Google Scholar] [CrossRef]
- Szyf, M.; Tang, Y.-Y.; Hill, K.G.; Musci, R. The dynamic epigenome and its implications for behavioral interventions: A role for epigenetics to inform disorder prevention and health promotion. Transl. Behav. Med. 2016, 6, 55–62. [Google Scholar] [CrossRef]
- Szyf, M.; McGowan, P.; Meaney, M.J. The social environment and the epigenome. Environ. Mol. Mutagen. 2008, 49, 46–60. [Google Scholar] [CrossRef]
- Kadayifci, F.Z.; Zheng, S.; Pan, Y.-X. Molecular mechanisms underlying the link between diet and DNA methylation. Int. J. Mol. Sci. 2018, 19, 4055. [Google Scholar] [CrossRef] [Green Version]
- Baumeister, R.F.; Vohs, K.D. (Eds.) Handbook of Self-Regulation: Research, Theory, and Applications; The Guilford Press: New York, NY, USA, 2004. [Google Scholar]
- Rutherford, H.J.; Wallace, N.S.; Laurent, H.K.; Mayes, L.C. Emotion regulation in parenthood. Dev. Rev. 2015, 36, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Trentacosta, C.J.; Shaw, D.S. Emotional self-regulation, peer rejection, and antisocial behavior: Developmental associations from early childhood to early adolescence. J. Appl. Dev. Psychol. 2009, 30, 356–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinquart, M. Associations of parenting dimensions and styles with externalizing problems of children and adolescents: An updated meta-analysis. Dev. Psychol. 2017, 53, 873–932. [Google Scholar] [CrossRef] [PubMed]
- Kile, M.L.; Baccarelli, A.; Tarantini, L.; Hoffman, E.; Wright, R.O.; Christiani, D.C. Correlation of global and Gene-Specific DNA methylation in maternal-infant pairs. PLoS ONE 2010, 5, e13730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perera, F.P.; Herbstman, J. Prenatal environmental exposures, epigenetics, and disease. Reprod. Toxicol. 2011, 31, 363–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, I.Y.; Lin, X.; Karnani, N. Implications of genotype and environment on variation in DNA methylation. In Handbook of Nutrition, Diet, and Epigenetics; Springer Nature: Berlin/Heidelberg, Germany, 2017; pp. 1–20. [Google Scholar]
- Guerrero-Bosagna, C. Transgenerational Epigenetic Inheritance. In The Epigenome and Developmental Origins of Health and Disease; Elsevier BV: Amsterdam, The Netherlands, 2016; pp. 425–437. [Google Scholar]
- Probst, A.V.; Dunleavy, E.; Almouzni, G. Epigenetic inheritance during the cell cycle. Nat. Rev. Mol. Cell Biol. 2009, 10, 192–206. [Google Scholar] [CrossRef]
- Bohacek, J.; Gapp, K.; Saab, B.J.; Mansuy, I.M. Transgenerational epigenetic effects on brain functions. Biol. Psychiatry 2013, 73, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Yehuda, R.; Daskalakis, N.P.; Bierer, L.M.; Bader, H.N.; Klengel, T.; Holsboer, F.; Binder, E.B. Holocaust Exposure Induced Intergenerational Effects on FKBP5 Methylation. Biol. Psychiatry 2016, 80, 372–380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herman, J.P.; McKlveen, J.M.; Ghosal, S.; Kopp, B.; Wulsin, A.; Makinson, R.; Scheimann, J.; Myers, B. Regulation of the hypothalamic-pituitary-adrenocortical stress response. In Comprehensive Physiology; Terjung, R., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016; pp. 603–621. ISBN 9780470650714. [Google Scholar]
- Meaney, M.J.; Szyf, M. Environmental programming of stress responses through DNA methylation: Life at the interface between a dynamic environment and a fixed genome. Dialog-Clin. Neurosci. 2005, 7, 103–123. [Google Scholar]
- Roy, B.; Shelton, R.C.; Dwivedi, Y. DNA methylation and expression of stress related genes in PBMC of MDD patients with and without serious suicidal ideation. J. Psychiatr. Res. 2017, 89, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Kuzelova, H.; Ptacek, R.; Macek, M. The serotonin transporter gene (5-HTT) variant and psychiatric disorders: Review of current literature. Neuro Endocrinol. Lett. 2010, 31, 4–10. [Google Scholar] [PubMed]
- Palma-Gudiel, H.; Córdova-Palomera, A.; Leza, J.C.; Fañanás, L. Glucocorticoid receptor gene (NR3C1) methylation processes as mediators of early adversity in stress-related disorders causality: A critical review. Neurosci. Biobehav. Rev. 2015, 55, 520–535. [Google Scholar] [CrossRef] [Green Version]
- Zannas, A.S.; Wiechmann, T.; Gassen, N.C.; Binder, E.B. Gene–Stress–Epigenetic regulation of fkbp5: Clinical and translational Implications. Neuropsychopharmacology 2016, 41, 261–274. [Google Scholar] [CrossRef] [Green Version]
- Givalois, L.; Arancibia, S.; Alonso, G.; Tapia-Arancibia, L. Expression of Brain-derived neurotrophic factor and its receptors in the median eminence cells with sensitivity to stress. Endocrinology 2004, 145, 4737–4747. [Google Scholar] [CrossRef] [Green Version]
- Marmigère, F.; Givalois, L.; Rage, F.; Arancibia, S.; Tapia-Arancibia, L. Rapid induction of BDNF expression in the hippocampus during immobilization stress challenge in adult rats. Hippocampus 2003, 13, 646–655. [Google Scholar] [CrossRef]
- Rage, F.; Givalois, L.; Marmigère, F.; Tapia-Arancibia, L.; Arancibia, S. Immobilization stress rapidly modulates BDNF mRNA expression in the hypothalamus of adult male rats. Neurosci. 2002, 112, 309–318. [Google Scholar] [CrossRef]
- Kular, L.; Kular, S. Epigenetics applied to psychiatry: Clinical opportunities and future challenges. Psychiatry Clin. Neurosci. 2018, 72, 195–211. [Google Scholar] [CrossRef] [PubMed]
- Hankin, B.L.; Young, J.F.; Abela, J.R.Z.; Smolen, A.; Jenness, J.L.; Gulley, L.D.; Technow, J.R.; Gottlieb, A.B.; Cohen, J.R.; Oppenheimer, C.W. Depression from childhood into late adolescence: Influence of gender, development, genetic susceptibility, and peer stress. J. Abnorm. Psychol. 2015, 124, 803–816. [Google Scholar] [CrossRef] [PubMed]
- Brakensiek, K.; Wingen, L.U.; Laänger, F.; Kreipe, H.; Lehmann, U. Quantitative high-resolution CPG island mapping with Pyrosequencing™ reveals disease-specific methylation patterns of the cdkn2b gene in myelodysplastic syndrome and myeloid leukemia. Clin. Chem. 2007, 53, 17–23. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Lozupone, C.; Hamady, M.; Bushman, F.D.; Knight, R. Short pyrosequencing reads suffice for accurate microbial community analysis. Nucleic Acids Res. 2007, 35, e120. [Google Scholar] [CrossRef] [Green Version]
- England, R.; Pettersson, M. Pyro Q-CpG™: Quantitative analysis of methylation in multiple CpG sites by Pyrosequencing®. Nat. Chem. Biol. 2005, 2, i–ii. [Google Scholar] [CrossRef]
- Rudolph, K.D.; Flynn, M. Childhood adversity and youth depression: Influence of gender and pubertal status. Dev. Psychopathol. 2007, 19, 497–521. [Google Scholar] [CrossRef] [Green Version]
- Conley, C.S.; Rudolph, K.D. The emerging sex difference in adolescent depression: Interacting contributions of puberty and peer stress. Dev. Psychopathol. 2009, 21, 593–620. [Google Scholar] [CrossRef] [Green Version]
- Hankin, B.L.; Abramson, L.Y. Measuring cognitive vulnerability to depression in adolescence. J. Clin. Child Adolesc. Psychol. 2002, 31, 491–504. [Google Scholar] [CrossRef]
- Calvete, E. Temporal relationships between inferential style and depressive symptoms in adolescents. Int. J. Cogn. Ther. 2011, 4, 438–457. [Google Scholar] [CrossRef]
- Hankin, B.L. Stability of cognitive vulnerabilities to depression: A short-term prospective multiwave study. J. Abnorm. Psychol. 2008, 117, 324–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hankin, B.L.; Stone, L.; Wright, P.A. Corumination, interpersonal stress generation, and internalizing symptoms: Accumulating effects and transactional influences in a multiwave study of adolescents. Dev. Psychopathol. 2010, 22, 217–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayes, A.F. Introduction to Mediation, Moderation, and Conditional Process Analysis: A Regression-Based Approach; Guilford Press: New York, NY, USA, 2013; p. 507. [Google Scholar]
- Ricceri, F.; Trevisan, M.; Fiano, V.; Grasso, C.; Fasanelli, F.; Scoccianti, C.; De Marco, L.; Tos, A.P.D.; Vineis, P.; Sacerdote, C. Seasonality modifies methylation profiles in healthy people. PLoS ONE 2014, 9, e106846. [Google Scholar] [CrossRef] [PubMed]
- Rijlaarsdam, J.; Pappa, I.; Walton, E.; Bakermans-Kranenburg, M.J.; Mileva-Seitz, V.R.; Rippe, R.C.; Roza, S.J.; Jaddoe, V.W.; Verhulst, F.C.; Felix, J.F.; et al. An epigenome-wide association meta-analysis of prenatal maternal stress in neonates: A model approach for replication. Epigenetics 2016, 11, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Martin, E.M.; Fry, R.C. Environmental Influences on the Epigenome: Exposure- Associated DNA Methylation in Human Populations. Annu. Rev. Public Heal. 2018, 39, 309–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murgatroyd, C.; Spengler, D. Epigenetics of Early Child Development. Front. Psychiatry 2011, 2, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suarez, A.; Lahti, J.; Czamara, D.; Lahti-Pulkkinen, M.; Girchenko, P.; Andersson, S.; Strandberg, T.E.; Reynolds, R.M.; Kajantie, E.; Binder, E.B.; et al. The epigenetic clock and pubertal, neuroendocrine, psychiatric, and cognitive outcomes in adolescents. Clin. Epigenetics 2018, 10, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Heindel, J.J.; Vandenberg, L.N. Developmental origins of health and disease. Curr. Opin. Pediatr. 2015, 27, 248–253. [Google Scholar] [CrossRef] [Green Version]
- Heard, E.; Martienssen, R.A. Transgenerational Epigenetic Inheritance: Myths and Mechanisms. Cell 2014, 157, 95–109. [Google Scholar] [CrossRef] [Green Version]
- Nagy, C.; Turecki, G. Sensitive periods in epigenetics: Bringing us closer to complex behavioral phenotypes. Epigenomics 2012, 4, 445–457. [Google Scholar] [CrossRef] [Green Version]
- Bos, P.A. The endocrinology of human caregiving and its intergenerational transmission. Dev. Psychopathol. 2017, 29, 971–999. [Google Scholar] [CrossRef]
- Cao-Lei, L.; De Rooij, S.R.; King, S.; Matthews, S.; Metz, G.A.; Roseboom, T.J.; Szyf, M. Prenatal stress and epigenetics. Neurosci. Biobehav. Rev. 2020, 117, 198–210. [Google Scholar] [CrossRef] [PubMed]
- Dadds, M.R.; Moul, C.; Cauchi, A.; Dobson-Stone, C.; Hawes, D.J.; Brennan, J.; Ebstein, R.E. Methylation of the oxytocin receptor gene and oxytocin blood levels in the development of psychopathy. Dev. Psychopathol. 2013, 26, 33–40. [Google Scholar] [CrossRef] [PubMed]
- King, L.; Robins, S.; Chen, G.; Yerko, V.; Zhou, Y.; Nagy, C.; Feeley, N.; Gold, I.; Hayton, B.; Turecki, G.; et al. Perinatal depression and DNA methylation of oxytocin-related genes: A study of mothers and their children. Horm. Behav. 2017, 96, 84–94. [Google Scholar] [CrossRef] [PubMed]
- Ramo-Fernández, L.; Boeck, C.; Bach, A.M.; Schury, K.; Binder, E.B.; Gündel, H.; Fegert, J.M.; Karabatsiakis, A.; Kolassa, I.-T. The effects of childhood maltreatment on epigenetic regulation of stress-response associated genes: An intergenerational approach. Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romens, S.E.; McDonald, J.; Svaren, J.; Pollak, S.D. Associations between Early Life Stress and Gene Methylation in Children. Child Dev. 2014, 86, 303–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yehuda, R.; Daskalakis, N.P.; Lehrner, A.; Desarnaud, F.; Bader, H.N.; Makotkine, I.; Flory, J.D.; Bierer, L.M.; Meaney, M.J. Influences of maternal and paternal PTSD on epigenetic gene in Holocaust survivor offspring. Am. J. Psychiatry 2014, 171, 872–880. [Google Scholar] [CrossRef]
- Capaldi, D.M.; Rothbart, M.K. Development and validation of an early adolescent temperament measure. J. Early Adolesc. 1992, 12, 153–173. [Google Scholar] [CrossRef]
- Sroufe, L.A. Psychopathology as an outcome of development. Dev. Psychopathol. 1997, 9, 251–268. [Google Scholar] [CrossRef]
- Thompson, R.A. Emotion and emotion regulation: Two sides of the developing coin. Emot. Rev. 2011, 3, 53–61. [Google Scholar] [CrossRef]
- Scaramella, L.V.; Conger, R.D. Intergenerational continuity of hostile parenting and its consequences: The moderating influence of children’s negative emotional reactivity. Soc. Dev. 2003, 12, 420–439. [Google Scholar] [CrossRef]
- Carr, A. Evidence-based practice in family therapy and systemic consultation. J. Fam. Ther. 2000, 22, 29–60. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Van Aswegen, T.; Bosmans, G.; Goossens, L.; Van Leeuwen, K.; Claes, S.; Van Den Noortgate, W.; Hankin, B.L. Epigenetics in Families: Covariance between Mother and Child Methylation Patterns. Brain Sci. 2021, 11, 190. https://doi.org/10.3390/brainsci11020190
Van Aswegen T, Bosmans G, Goossens L, Van Leeuwen K, Claes S, Van Den Noortgate W, Hankin BL. Epigenetics in Families: Covariance between Mother and Child Methylation Patterns. Brain Sciences. 2021; 11(2):190. https://doi.org/10.3390/brainsci11020190
Chicago/Turabian StyleVan Aswegen, Tanya, Guy Bosmans, Luc Goossens, Karla Van Leeuwen, Stephan Claes, Wim Van Den Noortgate, and Benjamin L. Hankin. 2021. "Epigenetics in Families: Covariance between Mother and Child Methylation Patterns" Brain Sciences 11, no. 2: 190. https://doi.org/10.3390/brainsci11020190
APA StyleVan Aswegen, T., Bosmans, G., Goossens, L., Van Leeuwen, K., Claes, S., Van Den Noortgate, W., & Hankin, B. L. (2021). Epigenetics in Families: Covariance between Mother and Child Methylation Patterns. Brain Sciences, 11(2), 190. https://doi.org/10.3390/brainsci11020190