Analysis of Selected Risk Factors Depending on the Type of Cerebral Palsy
Abstract
:1. Introduction
- -
- pre-conception (concerning the broadly defined health and living conditions of the mother) and prenatal (related to the course of pregnancy),
- -
2. Materials and Methods
2.1. Study Group
2.2. Potential Risk Factors for CP Type
- -
- preconception and prenatal risk factors (mother’s age, mother’s systemic diseases, burdened obstetric history, family history of epilepsy, the order of pregnancy, multiple pregnancy prevalence, bleedings from the genital tract during gestation, arterial hypertension in pregnancy, infections during pregnancy, premature contractions, maintained pregnancy, premature placental abruption, premature rupture of the membranes, and others)
- -
- perinatal, neonatal, and infant-related risk factors (mode of delivery, birth weight, Apgar score at the first and fifth minute, neonatal convulsions, respiratory failure, intracranial bleedings, and infections in neonatal/infant period).
2.3. Statistical Analysis
3. Results
3.1. Characteristic of the Study Group
3.2. The Frequency of Preconception and Prenatal Risk Factors Depending on the Type of CP
3.3. The Frequency of Perinatal, Neonatal and Infant-Related Risk Factors Depending on CP Type
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cans, C. Surveillance of Cerebral Palsy in Europe. Surveillance of cerebral palsy in Europe: A collaboration of cerebral palsy surveys and registers. Dev. Med. Child Neurol. 2000, 42, 816–824. [Google Scholar] [CrossRef]
- Platt, M.J.; Cans, C.; Johnson, A.; Surman, G.; Topp, M.; Torrioli, M.G.; Krageloh-Mann, I. Trends in cerebral palsy among infants of very low birthweight (<1500 g) or born prematurely (<32 weeks) in 16 European centres: A database study. Lancet 2007, 6, 43–50. [Google Scholar]
- Oskoui, M.; Coutinho, F.; Dykeman, J.; Jette, N.; Pringsheim, T. An update on the prevalence of cerebral palsy: A systematic review and meta-analysis. Dev. Med. Child Neurol. 2013, 55, 509–519. [Google Scholar] [CrossRef] [PubMed]
- Reddihough, D.; Collins, K.J. The epidemiology and causes of cerebral palsy. Aust. J. Physiother. 2003, 49, 7–12. [Google Scholar] [CrossRef] [Green Version]
- McIntyre, S.; Taitz, D.; Koegh, J.; Goldsmith, S.; Badawi, N.; Blair, E. A systematic review of risk factors for cerebral palsy in children born at term in developed countries. Dev. Med. Child Neurol. 2013, 55, 499–508. [Google Scholar] [CrossRef] [PubMed]
- Trabacca, A.; Vespino, T.; Di Liddo, A.; Russo, L. Multidisciplinary rehabilitation for patients with cerebral palsy: Improving long-term care. J. Multidiscip. Healthc. 2016, 9, 455–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bax, M.; Goldstein, M.; Rosenbaum, P.; Leviton, A.; Paneth, N.; Dan, B.; Jacobsson, B.; Damiano, D. Executive Committee for the Definition of Cerebral Palsy. Proposed definition and classification of cerebral palsy. Dev. Med. Child Neurol. 2005, 47, 571–576. [Google Scholar] [CrossRef] [PubMed]
- Rosenbaum, P.; Paneth, N.; Leviton, A.; Goldstein, M.; Bax, M.; Damiano, D.; Dan, B.; Jacobsson, B. A report: The definition and classification of cerebral palsy April 2006. Dev. Med. Child Neurol. 2007, 109, 8–14. [Google Scholar]
- Cans, C.; Dolk, H.; Platt, M.J.; Colver, A.; Prasauskiene, A.; Krageloh-Mann, I.; SCPE Collaborative Group. Recommendations from the SCPE collaborative group for defining and classifying cerebral palsy. Dev. Med. Child Neurol. 2007, 109, 35–38. [Google Scholar] [CrossRef]
- Mutch, L.; Alberman, E.; Hagberg, B.; Kodama, K.; Perat, M.V. Cerebral palsy epidemiology: Where are we now and where are we going? Dev. Med. Child Neurol. 1992, 34, 547–551. [Google Scholar] [CrossRef]
- Kułak, W.; Sobaniec, W.; Okurowska-Zawada, B.; Sienkiewicz, D.; Paszko-Patej, G. Antenatal, intrapartum and neonatal risk factors for cerebral palsy in children in Podlaskie Province. Neurol Dziec 2009, 18, 19–24. [Google Scholar]
- Linsell, L.; Malouf, R.; Morris, J.; Kurinczuk, J.J.; Marlow, N. Prognostic factors for cerebral palsy and motor impairment in children born very preterm or very low birthweight: A systematic review. Dev. Med. Child Neurol. 2016, 58, 554–569. [Google Scholar] [CrossRef] [Green Version]
- Ahlin, K.; Himmelmann, K.; Hagberg, G.; Kacerovsky, M.; Cobo, T.; Wennerholm, U.-B.; Jacobsson, B. Non-infectious risk factors for different types of cerebral palsy in term-born babies: A population-based, case-control study. BJOG Int. J. Obstet. Gynaecol. 2013, 120, 724–731. [Google Scholar] [CrossRef] [PubMed]
- Goldsmith, S.; McIntyre, S.; Badawi, N.; Hansen, M. Cerebral palsy after assisted reproductive technology: A cohort study. Dev. Med. Child Neurol. 2018, 60, 73–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadowska, M.; Sarecka-Hujar, B.; Kopyta, I. Cerebral Palsy: Current Opinions on Definition, Epidemiology, Risk Factors, Classification and Treatment Options. Neuropsychiatr. Dis. Treat. 2020, 16, 1505–1518. [Google Scholar] [CrossRef] [PubMed]
- Tita, A.T.; Andrews, W.W. Diagnosis and management of clinical chorioamnionitis. Clin. Perinatol. 2010, 37, 339–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, J.; Wang, J.; Ma, J.; Zhu, D.; Zhang, Z.; Li, J. Paediatric cerebral palsy prevalence and high-risk factors in Henan province, Central China. J. Rehabil. Med. 2019, 51, 47–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Himmelmann, K.; Ahlin, K.; Jacobsson, B.; Cans, C.; Thorsen, P. Risk factors for cerebral palsy in children born at term. Acta Obstet. Gynecol. Scand. 2011, 90, 1070–1081. [Google Scholar] [CrossRef] [PubMed]
- Ortgies, T.; Rullmann, M.; Ziegelhöfer, D.; Bläser, A.; Thome, U.H. The role of early-onset-sepsis in the neurodevelopment of very low birth weight infants. BMC Pediatr. 2021, 21, 289. [Google Scholar] [CrossRef] [PubMed]
- Jöud, A.; Sehlstedt, A.; Källén, K.; Westbom, L.; Rylander, L. Associations between antenatal and perinatal risk factors and cerebral palsy: A Swedish cohort study. BMJ Open 2020, 10, e038453. [Google Scholar] [CrossRef] [PubMed]
- Thygesen, S.K.; Olsen, M.; Østergaard, J.R.; Sørensen, H.T. Respiratory distress syndrome in moderately late and late preterm infants and risk of cerebral palsy: A population-based cohort study. BMJ Open 2016, 6, e011643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Q.; Ni, Y.; Wang, J.; Yin, H.; Zhang, Q.; Zhang, L.; Bian, W.; Liang, B.; Kong, L.; Xuan, L.; et al. Identification of pathways and genes associated with cerebral palsy. Genes Genom. 2018, 40, 1339–1349. [Google Scholar] [CrossRef]
- McMichael, G.; Bainbridge, M.N.; Haan, E.; Corbett, M.; Gardner, A.; Thompson, S.; van Bon, B.W.; van Eyk, C.L.; Broadbent, J.; Reynolds, C.; et al. Whole-exome sequencing points to considerable genetic heterogeneity of cerebral palsy. Mol. Psychiatry 2015, 20, 176–182. [Google Scholar] [CrossRef]
- Oldenburg, K.S.; O’Shea, T.M.; Fry, R.C. Genetic and epigenetic factors and early life inflammation as predictors of neurodevelopmental outcomes. Semin. Fetal Neonatal Med. 2020, 25, 101115. [Google Scholar] [CrossRef]
- Mynarek, M.; Bjellmo, S.; Lydersen, S.; Stran, K.M.; Afset, J.E.; Andersen, G.L.; Vik, T. Prelabor rupture of membranes and the association with cerebral palsy in term born children: A national registry-based cohort study. BMC Pregnancy Childbirth 2020, 20, 67. [Google Scholar] [CrossRef]
- Ichizuka, K.; Toyokawa, S.; Ikenoue, T.; Satoh, S.; Hasegawa, J.; Ikeda, T.; Tamiya, N.; Nakai, A.; Fujimori, K.; Maeda, T.; et al. Risk factors for cerebral palsy in neonates due to placental abruption. J. Obstet. Gynaecol. Res. 2021, 47, 159–166. [Google Scholar] [CrossRef]
- Yanni, D.; Korzeniewski, S.J.; Allred, E.N.; Fichorova, R.N.; O’Shea, T.M.; Kuban, K.; Dammann, O.; Leviton, A. Both antenatal and postnatal inflammation contribute information about the risk of brain damage in extremely preterm newborns. Pediatr. Res. 2017, 82, 691–696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuban, K.C.; O’Shea, T.M.; Allred, E.N.; Paneth, N.; Hirtz, D.; Fichorova, R.N.; Leviton, A. ELGAN Study Investigators. Systemic inflammation and cerebral palsy risk in extremely preterm infants. J. Child Neurol. 2014, 29, 1692–1698. [Google Scholar] [CrossRef] [Green Version]
- Ahlin, K.; Himmelmann, K.; Hagberg, G.; Kacerovsky, M.; Cobo, T.; Wennerholm, U.B.; Jacobsson, B. Cerebral palsy and perinatal infection in children born at term. Obstet. Gynecol. 2013, 122, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Bear, J.J.; Wu, Y.W. Maternal Infections During Pregnancy and Cerebral Palsy in the Child. Pediatr Neurol. 2016, 57, 74–79. [Google Scholar] [CrossRef] [Green Version]
- van Lieshout, P.; Candundo, H.; Martino, R.; Shin, S.; Barakat-Haddad, C. Onset factors in cerebral palsy: A systematic review. Neurotoxicology 2017, 61, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Mieszczanek, T. Selected epidemiologic aspects of cerebral palsy in the population of children and adolescents in west-east Poland [In Polish]. Neurol Dziec 2003, 12, 13–22. [Google Scholar]
- Balf, C.L.; Ingram, T.T.S. Problems in the classification of cerebral palsy in childhood. Br. Med. J. 1955, 16, 163–166. [Google Scholar] [CrossRef] [Green Version]
- Hagberg, G.; Hagberg, B.; Olow, I. The changing panorama of cerebral palsy in Sweden 1954-1970. III. The importance of fetal deprivation of supply. Acta Paediatr. Scand. 1976, 65, 403–408. [Google Scholar] [CrossRef] [PubMed]
- Sadowska, M.; Sarecka-Hujar, B.; Kopyta, I. Evaluation of Risk Factors for Epilepsy in Pediatric Patients with Cerebral Palsy. Brain Sci. 2020, 10, 481. [Google Scholar] [CrossRef] [PubMed]
- Himpens, E.; Van den Broeck, C.; Oostra, A.; Calders, P.; Vanhaesebrouck, P. Prevalence, type, distribution and severity of cerebral palsy in relation to gestational age: A meta-analytic review. Dev. Med. Child Neurol. 2008, 50, 334–340. [Google Scholar] [CrossRef]
- Sellier, E.; Platt, M.J.; Andersen, G.L.; Krageloh-Mann, I.; De La Cruz, J.; Cans, C.; on behalf of Surveillance of Cerebral Palsy Network. Decreasing prevalence in cerebral palsy: A multi- site European population-based study, 1980 to 2003. Dev. Med. Child Neurol. 2016, 58, 85–92. [Google Scholar] [CrossRef]
- Blair, E.; Watson, L.; Australian Cerebral Palsy Register Group. Cerebral palsy and perinatal mortality after pregnancy-induced hypertension across the gestational age spectrum: Observations of a reconstructed total population cohort. Dev. Med. Child Neurol. 2016, 58 (Suppl. 2), 76–81. [Google Scholar] [CrossRef]
- Minocha, P.; Sitaraman, S.; Sachdeva, P. Clinical Spectrum, Comorbidities, and Risk Factor Profile of Cerebral Palsy Children: A Prospective Study. J. Pediatr. Neurosci. 2017, 12, 15–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kułak, W.; Sobaniec, W.; Śmigielska-Kuzia, J.; Kubas, B.; Walecki, J. A Comparison of Spastic Diplegic and Tetraplegic Cerebral Palsy. Pediatr. Neurol. 2005, 32, 311–317. [Google Scholar] [CrossRef]
- Apgar, V. A Proposal for a New Method of Evaluation of the Newborn Infant. Anesth. Analg. 2015, 120, 1056–1059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, K.B.; Ellenberg, J.H. Apgar scores as predictors of chronic neurologic disability. Pediatrics 1981, 68, 36–44. [Google Scholar] [PubMed]
- Moster, D.; Lie, R.T.; Irgens, L.M.; Bjerkedal, T.; Markestad, T. The association of Apgar score with subsequent death and cerebral palsy: A population-based study in term infants. J. Pediatr. 2001, 138, 798–803. [Google Scholar] [CrossRef]
- Lie, K.K.; Groholt, E.K.; Eskild, A. Association of cerebral palsy with Apgar score in low and normal birthweight infants: Population-based cohort study. BMJ 2010, 341, c4990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salustiano, E.M.; Campos, J.A.; Ibidi, S.M.; Ruano, R.; Zugaib, M. Low Apgar scores at 5 minutes in a low risk population: Maternal and obstetrical factors and postnatal outcome. Rev. Assoc. Med. Bras. 2012, 58, 587–593. [Google Scholar] [CrossRef] [PubMed]
- Persson, M.; Razaz, N.; Tedroff, K.; Joseph, K.S.; Cnattingius, S. Five and 10 minute Apgar scores and risks of cerebral palsy and epilepsy: Population based cohort study in Sweden. BMJ 2018, 360, k207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Inclusion Criteria | Exclusion Criteria |
---|---|
Age between 4 and 17 years | Clinical features of progressive encephalopathies |
The diagnosis of cerebral palsy verified by an experienced pediatric neurologist | |
Available neuroimaging: magnetic resonance imaging (MRI) or computed tomography (CT) results | Metabolic inborn errors |
Total Group | Hemiplegia | Diplegia | Tetraplegia | Mixed Form | Extrapyramidal Form | Ataxic Form | p | |
---|---|---|---|---|---|---|---|---|
n = 181 | n = 39 | n = 44 | n = 57 | n = 25 | n = 10 | n = 6 | ||
Mother’s age, (years), M ± SD | 27.9 ± 6.3 | 28.2 ± 5.7 | 27.1 ± 6.4 | 28.4 ± 6.6 | 26.7 ± 7.2 | 30.9 ± 5.4 | 27.2 ± 2.9 | 0.525 |
Mother’s age, n (%) (missing data n = 14) | 0.648 | |||||||
<20 years old | 13 (7.8) | 0 (0.0) | 5 (12.2) | 5 (9.3) | 3 (13.0) | 0 (0.0) | 0 (0.0) | |
20–34 years old | 123 (73.6) | 28 (82.3) | 30 (73.2) | 38 (70.4) | 15 (65.2) | 7 (70.0) | 5 (100.0) | |
≥35 years old | 31 (18.6) | 6 (17.6) | 6 (14.6) | 11 (20.4) | 5 (21.7) | 3 (30.0) | 0 (0.0) | |
Mother’s systemic diseases *, n (%) (missing data n = 9) | 24 (13.9) | 7 (18.4) | 7 (17.5) | 6 (10.9) | 1 (4.2) | 2 (20.0) | 1 (20.0) | 0.575 |
Burdened obstetric history, n (%) (missing data n = 6) | 42 (24.0) | 10 (27.0) | 7 (17.1) | 15 (26.3) | 7 (29.2) | 2 (20.0) | 1 (16. 7) | 0.821 |
Family history of epilepsy, n (%) (missing data n = 5) | 10 (5.7) | 0 (0.0) | 1 (2.4) | 4 (7.0) | 3 (12.0) | 2 (20.0) | 0 (0.0) | 0.100 |
The order of pregnancy, n (%) | 0.292 | |||||||
(missing data n = 5) | ||||||||
I | 78 (44.3) | 14 (36.8) | 15 (35.7) | 28 (50.0) | 14 (56.0) | 4 (40.0) | 3 (60.0) | |
II | 45 (25.6) | 9 (23.7) | 11 (26.2) | 13 (23.2) | 7 (28.0) | 3 (30.0) | 2 (40.0) | |
III | 30 (17.0) | 9 (23.7) | 11 (26.2) | 9 (16.1) | 0 (0.0) | 1 (10.0) | 0 (0.0) | |
IV | 12 (6.8) | 3 (7.9) | 2 (4.8) | 3 (5.4) | 3 (12.0) | 1 (10.0) | 0 (0.0) | |
V–VIII | 11 (6.2) | 3 (7.9) | 3 (7.1) | 3 (5.4) | 1 (4.0) | 1 (10.0) | 0 (0.0) | |
Multiple pregnancy, n (%) | 0.908 | |||||||
(missing data n = 2) | 14 (7.8) | 3 (7. 9) | 4 (9.1) | 5 (8.9) | 2 (8.0) | 0 (0.0) | 0 (0.0) | |
Duration of pregnancy (full weeks), M ± SD | 35.1 ± 4.8 | 37.5 ± 3.4 | 31.9 ± 4.4 | 35.2 ± 4.5 | 36.4 ± 5.1 | 34.5 ± 5.5 | 36.8 ± 5.8 | <0.001 |
Duration of pregnancy, n (%) | <0.001 | |||||||
(missing data n = 3) | ||||||||
<28 weeks | 14 (7.9) | 0 (0.0) | 6 (13.6) | 3 (5.4) | 2 (8.3) | 2 (20.0) | 1 (16.7) | |
28–<32 weeks | 35 (19.7) | 3 (7.9) | 19 (43.2) | 11 (19.6) | 2 (8.3) | 0 (0.0) | 0 (0.0) | |
32–<37 weeks | 46 (25.8) | 9 (23.7) | 9 (20.4) | 20 (35.7) | 4 (16. 7) | 4 (40.0) | 0 (0.0) | |
37–<42 weeks | 80 (44.9) | 25 (65.8) | 10 (22.7) | 20 (35.7) | 16 (66. 7) | 4 (40.0) | 5 (83.3) | |
≥42 weeks | 3 (1.7) | 1 (2.6) | 0 (0.0) | 2 (3.6) | 0 (0.0) | 0 (0.0) | 0 (0.0) | |
The course of pregnancy, n (%) (missing data n = 11) | ||||||||
Hypertension | 15 (8.8) | 3 (9.8) | 4 (9.8) | 7 (12.3) | 1 (4.3) | 0 (0.0) | 0 (0.0) | 0.716 |
Genital tract bleeding | 24 (14.1) | 3 (8.8) | 9 (21.9) | 8 (14.0) | 2 (8.7) | 2 (20.0) | 0 (0.0) | 0.48 |
Infections | 33 (19.4) | 7 (20.6) | 8 (19.5) | 10 (17.5) | 5 (21.7) | 1 (10.0) | 2 (40.0) | 0.829 |
Maintained pregnancy | 37 (21.8) | 6 (17.6) | 12 (21.0) | 12 (21.0) | 4 (17.4) | 2 (20.0) | 1 (20.0) | 0.851 |
Premature contractions | 30 (17.6) | 1 (2.9) | 12 (29.3) | 14 (24.6) | 1 (4.3) | 1 (10.0) | 1 (20.0) | 0.016 |
Premature placental abruption | 18 (10.6) | 2 (5.9) | 6 (14.6) | 9 (15.8) | 0 (0.0) | 1 (10.0) | 0 (0.0) | 0.268 |
Premature rupture of the membranes | 28 (16.5) | 3 (8.8) | 11 (26.8) | 6 (10.5) | 5 (21.7) | 3 (30.0) | 0 (0.0) | 0.116 |
Others | 45 (26.5) | 8 (23.5) | 16 (39.0) | 13 (22.8) | 3 (13.0) | 4 (40.0) | 1 (20.0) | 0.221 |
Total Group | Hemiplegia | Diplegia | Tetraplegia | Mixed Form | Extrapyramidal Form | Ataxic Form | p | |
---|---|---|---|---|---|---|---|---|
n = 181 | n = 39 | n = 44 | n = 57 | n = 25 | n = 10 | n = 6 | ||
Mode of delivery, n (%) | 0.648 | |||||||
(missing data n = 5) | ||||||||
Normal vaginal delivery | 93 (52.8) | 23 (60.5) | 21 (48.8) | 27 (48.2) | 15 (62.5) | 4 (40.0) | 3 (60.0) | |
Caesarean section | 83 (47.2) | 15 (39.5) | 22 (51.2) | 29 (52.7) | 9 (39.1) | 6 (60.0) | 2 (40.0) | |
Birth weight (kg), M ± SD | 2.4 ± 1.0 | 3.0 ± 0.7 | 1.9 ± 0.9 | 2.3 ± 0.9 | 2.7 ± 1.0 | 2.4 ± 1.2 | 2.8 ± 1.2 | <0.001 |
Birth weight, n (%) | <0.001 | |||||||
(missing data n = 4) | ||||||||
<1000 g, ELBW | 16 (9.0) | 0 (0.0) | 5 (11.4) | 5 (8.8) | 3 (12.5) | 2 (20.0) | 1 (16.7) | |
1000–1499 g, VLBW | 25 (14.1) | 1 (2. 8) | 15 (34.1) | 9 (15.8) | 0 (0.0) | 0 (0.0) | 0 (0.0) | |
1500–2499 g, LBW | 45 (25.4) | 6 (16.7) | 14 (31.8) | 17 (29.8) | 4 (16.7) | 3 (30.0) | 1 (16.7) | |
2500–4000 g, | 85 (48.0) | 28 (77. 8) | 9 (20.4) | 26 (45.6) | 15 (62.5) | 4 (40.0) | 3 (50.0) | |
>4000 g | 6 (3.4) | 1 (2. 8) | 1 (2.3) | 0 (0.0) | 2 (8.3) | 1 (10.0) | 1 (16.7) | |
Apgar score at 1st minute, | 0.001 | |||||||
n (%) (missing data n = 5) | ||||||||
0–3 | 42 (23.9) | 4 (11.1) | 8 (18.2) | 18 (32.1) | 6 (25.0) | 5 (50.0) | 1 (16.7) | |
4–7 | 58 (32.9) | 5 (13.9) | 23 (52.3) | 19 (33.9) | 6 (25.0) | 3 (30.0) | 2 (33.3) | |
8–10 | 76 (43.2) | 27 (75. 0) | 13 (29.5) | 19 (33.9) | 12 (50.0) | 2 (20.0) | 3 (50.0) | |
Apgar score at 5th minute, | 0.047 | |||||||
n (%) (missing data n = 50) | ||||||||
0–3 | 17 (13.0) | 2 (6.9) | 1 (3.3) | 5 (12.5) | 6 (33.3) | 2 (25.0) | 1 (16.7) | |
4–7 | 48 (36.6) | 6 (20.7) | 16 (53.3) | 18 (45.0) | 4 (22.2) | 4 (50.0) | 0 (0.0) | |
8–10 | 66 (50.4) | 21 (72.4) | 13 (43.3) | 17 (42.5) | 8 (44.4) | 2 (25.0) | 5 (83.3) | |
Respiratory failure, | 112 (69.1) | 11 (34.4) | 34 (82.9) | 44 (81.5) | 13 (65.0) | 7 (70.0) | 3 (60.0) | <0.001 |
n (%) (missing data n = 19) | ||||||||
Infections, n (%) | 103 (63.2) | 14 (42.4) | 27 (65.8) | 40 (74.1) | 15 (75.0) | 4 (40.0) | 3 (60.0) | 0.029 |
(missing data n = 18) | ||||||||
Intraventricular bleeding, | 95 (58.6) | 7 (21.9) | 32 (78.0) | 39 (72.2) | 10 (50.0) | 6 (60.0) | 1 (20.0) | <0.001 |
n (%) (missing data n = 19) | ||||||||
Neonatal convulsions, | 46 (26.9) | 0 (0.0) | 8 (19.0) | 25 (47.2) | 8 (34.8) | 3 (30.0) | 2 (33.3) | <0.001 |
n (%) (missing data n = 10) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadowska, M.; Sarecka-Hujar, B.; Kopyta, I. Analysis of Selected Risk Factors Depending on the Type of Cerebral Palsy. Brain Sci. 2021, 11, 1448. https://doi.org/10.3390/brainsci11111448
Sadowska M, Sarecka-Hujar B, Kopyta I. Analysis of Selected Risk Factors Depending on the Type of Cerebral Palsy. Brain Sciences. 2021; 11(11):1448. https://doi.org/10.3390/brainsci11111448
Chicago/Turabian StyleSadowska, Małgorzata, Beata Sarecka-Hujar, and Ilona Kopyta. 2021. "Analysis of Selected Risk Factors Depending on the Type of Cerebral Palsy" Brain Sciences 11, no. 11: 1448. https://doi.org/10.3390/brainsci11111448
APA StyleSadowska, M., Sarecka-Hujar, B., & Kopyta, I. (2021). Analysis of Selected Risk Factors Depending on the Type of Cerebral Palsy. Brain Sciences, 11(11), 1448. https://doi.org/10.3390/brainsci11111448