Family Income Mediates the Effect of Parental Education on Adolescents’ Hippocampus Activation During an N-Back Memory Task
Abstract
1. Introduction
Aims
2. Methods
2.1. Design and Settings
2.2. Ethical Aspect
2.3. Participants and Sampling
2.4. Functional MRI and Image Acquisition
2.5. ABCD Study Neuroimaging Data
2.6. N-Back Task
2.7. Variables
2.7.1. Outcome
2.7.2. Independent (Predictor) Variable
2.7.3. Mediator
2.7.4. Confounders
2.8. Data Analysis
3. Results
3.1. Descriptives
3.2. Socioeconomic Correlates of Left Hippocampus Function during a Memory Task
3.3. Regressions
3.4. Mediation
3.5. Validation of the Hippocampus during N-Back Memory Task
4. Discussion
4.1. Implications
4.2. Limitations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix B
Income Level | Assigned Code | n | % | Cumulative % |
---|---|---|---|---|
Less than $5000 | 1 | 111 | 3.6 | 3.6 |
$5000 | 2 | 126 | 4.1 | 7.7 |
$12,000 | 3 | 74 | 2.4 | 10.1 |
$16,000 | 4 | 114 | 3.7 | 13.8 |
$25,000 | 5 | 152 | 5.0 | 18.8 |
$35,000 | 6 | 224 | 7.3 | 26.1 |
$50,000 | 7 | 411 | 13.4 | 39.5 |
$75,000 | 8 | 436 | 14.2 | 53.7 |
$100,000 | 9 | 1059 | 34.5 | 88.2 |
$200,000 | 10 | 363 | 11.8 | 100.0 |
Total | 3070 | 100.0 |
References
- Oshri, A.; Hallowell, E.; Liu, S.; MacKillop, J.; Galvan, A.; Kogan, S.M.; Sweet, L.H. Socioeconomic hardship and delayed reward discounting: Associations with working memory and emotional reactivity. Dev. Cogn. Neurosci. 2019, 37, 100642. [Google Scholar] [CrossRef] [PubMed]
- Javanbakht, A.; King, A.P.; Evans, G.W.; Swain, J.E.; Angstadt, M.; Phan, K.L.; Liberzon, I. Childhood Poverty Predicts Adult Amygdala and Frontal Activity and Connectivity in Response to Emotional Faces. Front. Behav. Neurosci. 2015, 9, 154. [Google Scholar] [CrossRef] [PubMed]
- Masten, C.L.; Telzer, E.H.; Eisenberger, N.I. An FMRI investigation of attributing negative social treatment to racial discrimination. J. Cogn. Neurosci. 2011, 23, 1042–1051. [Google Scholar] [CrossRef]
- Wu, X.; Zou, Q.; Hu, J.; Tang, W.; Mao, Y.; Gao, L.; Zhu, J.; Jin, Y.; Wu, X.; Lu, L.; et al. Intrinsic Functional Connectivity Patterns Predict Consciousness Level and Recovery Outcome in Acquired Brain Injury. J. Neurosci. 2015, 35, 12932–12946. [Google Scholar] [CrossRef] [PubMed]
- Oladeji, B.D.; Makanjuola, V.A.; Gureje, O. Family-related adverse childhood experiences as risk factors for psychiatric disorders in Nigeria. Br. J. Psychiatry 2010, 196, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Han, M.; Sun, L.; Zhang, H.; Li, H.J. Family socioeconomic status and emotional adaptation among rural-to-urban migrant adolescents in China: The moderating roles of adolescent’s resilience and parental positive emotion. Int. J. Psychol. 2019, 54, 573–581. [Google Scholar] [CrossRef]
- Leiner, M.; Rescorla, L.; Medina, I.; Blanc, O.; Ortiz, M. Psychometric comparisons of the Pictorial Child Behavior Checklist with the standard version of the instrument. Psychol. Assess. 2010, 22, 618–627. [Google Scholar] [CrossRef]
- Choi, J.K.; Wang, D.; Jackson, A.P. Adverse experiences in early childhood and their longitudinal impact on later behavioral problems of children living in poverty. Child. Abuse. Negl. 2019, 98, 104181. [Google Scholar] [CrossRef]
- Zhou, Q.; Fan, L.; Yin, Z. Association between family socioeconomic status and depressive symptoms among Chinese adolescents: Evidence from a national household survey. Psychiatry Res. 2018, 259, 81–88. [Google Scholar] [CrossRef]
- Valencia, M.L.C.; Tran, B.T.; Lim, M.K.; Choi, K.S.; Oh, J.K. Association Between Socioeconomic Status and Early Initiation of Smoking, Alcohol Drinking, and Sexual Behavior Among Korean Adolescents. Asia Pac. J. Public Health 2019, 31, 443–453. [Google Scholar] [CrossRef]
- Sirin, S.R. Socioeconomic status and academic achievement: A meta-analytic review of research. Rev. Educ. Res. 2005, 75, 417–453. [Google Scholar] [CrossRef]
- Machlin, L.; McLaughlin, K.A.; Sheridan, M.A. Brain structure mediates the association between socioeconomic status and attention-deficit/hyperactivity disorder. Dev. Sci. 2019. [Google Scholar] [CrossRef] [PubMed]
- Assari, S.; Caldwell, C.H. Family Income at Birth and Risk of Attention Deficit Hyperactivity Disorder at Age 15: Racial Differences. Children 2019, 6, 10. [Google Scholar] [CrossRef] [PubMed]
- Jablonska, B.; Kosidou, K.; Ponce de Leon, A.; Wettermark, B.; Magnusson, C.; Dal, H.; Dalman, C. Neighborhood Socioeconomic Characteristics and Utilization of ADHD Medication in Schoolchildren: A Population Multilevel Study in Stockholm County. J. Atten. Disord. 2020, 24, 265–276. [Google Scholar] [CrossRef]
- Collins, K.P.; Cleary, S.D. Racial and ethnic disparities in parent-reported diagnosis of ADHD: National Survey of Children’s Health (2003, 2007, and 2011). J. Clin. Psychiatry 2016, 77, 52–59. [Google Scholar] [CrossRef]
- Palma-Coca, O.; Hernandez-Serrato, M.I.; Villalobos-Hernandez, A.; Unikel-Santoncini, C.; Olaiz-Fernandez, G.; Bojorquez-Chapela, I. Association of socioeconomic status, problem behaviors, and disordered eating in Mexican adolescents: Results of the Mexican National Health and Nutrition Survey 2006. J. Adolesc. Health 2011, 49, 400–406. [Google Scholar] [CrossRef]
- Heshmat, R.; Qorbani, M.; Ghoreshi, B.; Djalalinia, S.; Tabatabaie, O.R.; Safiri, S.; Noroozi, M.; Motlagh, M.E.; Ahadi, Z.; Asayesh, H.; et al. Association of socioeconomic status with psychiatric problems and violent behaviours in a nationally representative sample of Iranian children and adolescents: The CASPIAN-IV study. BMJ Open 2016, 6, e011615. [Google Scholar] [CrossRef]
- Feldstein Ewing, S.W.; Hudson, K.A.; Caouette, J.; Mayer, A.R.; Thayer, R.E.; Ryman, S.G.; Bryan, A.D. Sexual risk-taking and subcortical brain volume in adolescence. Ann. Behav. Med. 2018, 52, 393–405. [Google Scholar] [CrossRef]
- Kaleta, D.; Usidame, B.; Dziankowska-Zaborszczyk, E.; Makowiec-Dabrowska, T. Socioeconomic Disparities in Age of Initiation and Ever Tobacco Smoking: Findings from Romania. Cent. Eur. J. Public Health 2015, 23, 299–305. [Google Scholar] [CrossRef]
- Barreto, S.M.; de Figueiredo, R.C.; Giatti, L. Socioeconomic inequalities in youth smoking in Brazil. BMJ Open 2013, 3, e003538. [Google Scholar] [CrossRef]
- Moore, G.F.; Littlecott, H.J. School- and family-level socioeconomic status and health behaviors: Multilevel analysis of a national survey in wales, United Kingdom. J. Sch. Health 2015, 85, 267–275. [Google Scholar] [CrossRef]
- Silveira, C.M.; Siu, E.R.; Anthony, J.C.; Saito, L.P.; de Andrade, A.G.; Kutschenko, A.; Viana, M.C.; Wang, Y.P.; Martins, S.S.; Andrade, L.H. Drinking patterns and alcohol use disorders in Sao Paulo, Brazil: The role of neighborhood social deprivation and socioeconomic status. PLoS ONE 2014, 9, e108355. [Google Scholar] [CrossRef]
- Gerra, G.; Benedetti, E.; Resce, G.; Potente, R.; Cutilli, A.; Molinaro, S. Socioeconomic Status, Parental Education, School Connectedness and Individual Socio-Cultural Resources in Vulnerability for Drug Use among Students. Int. J. Environ. Res. Public Health 2020, 17, 1306. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.J.; Davis, E.P.; Sandman, C.A.; Glynn, L.; Sporns, O.; O’Donnell, B.F.; Hetrick, W.P. Childhood poverty and the organization of structural brain connectome. Neuroimage 2019, 184, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Staff, R.T.; Murray, A.D.; Ahearn, T.S.; Mustafa, N.; Fox, H.C.; Whalley, L.J. Childhood socioeconomic status and adult brain size: Childhood socioeconomic status influences adult hippocampal size. Ann. Neurol. 2012, 71, 653–660. [Google Scholar] [CrossRef] [PubMed]
- Lawson, G.M.; Camins, J.S.; Wisse, L.; Wu, J.; Duda, J.T.; Cook, P.A.; Gee, J.C.; Farah, M.J. Childhood socioeconomic status and childhood maltreatment: Distinct associations with brain structure. PLoS ONE 2017, 12, e0175690. [Google Scholar] [CrossRef]
- Noble, K.G.; Houston, S.M.; Kan, E.; Sowell, E.R. Neural correlates of socioeconomic status in the developing human brain. Dev. Sci. 2012, 15, 516–527. [Google Scholar] [CrossRef]
- Baxendale, S.; Heaney, D. Socioeconomic status, cognition, and hippocampal sclerosis. Epilepsy Behav. 2011, 20, 64–67. [Google Scholar] [CrossRef]
- Gerges, N.Z.; Alzoubi, K.H.; Park, C.R.; Diamond, D.M.; Alkadhi, K.A. Adverse effect of the combination of hypothyroidism and chronic psychosocial stress on hippocampus-dependent memory in rats. Behav. Brain Res. 2004, 155, 77–84. [Google Scholar] [CrossRef]
- Hanson, J.L.; Chandra, A.; Wolfe, B.L.; Pollak, S.D. Association between income and the hippocampus. PLoS ONE 2011, 6, e18712. [Google Scholar] [CrossRef]
- Narayanan, R.; Chattarji, S. Computational analysis of the impact of chronic stress on intrinsic and synaptic excitability in the hippocampus. J. Neurophysiol. 2010, 103, 3070–3083. [Google Scholar] [CrossRef] [PubMed]
- Zahodne, L.B.; Schupf, N.; Brickman, A.M. Control beliefs are associated with preserved memory function in the face of low hippocampal volume among diverse older adults. Brain Imaging Behav. 2018, 12, 1112–1120. [Google Scholar] [CrossRef] [PubMed]
- Nelson, E.E.; McClure, E.B.; Monk, C.S.; Zarahn, E.; Leibenluft, E.; Pine, D.S.; Ernst, M. Developmental differences in neuronal engagement during implicit encoding of emotional faces: An event-related fMRI study. J. Child. Psychol. Psychiatry 2003, 44, 1015–1024. [Google Scholar] [CrossRef]
- Fischer, H.; Nyberg, L.; Backman, L. Age-related differences in brain regions supporting successful encoding of emotional faces. Cortex 2010, 46, 490–497. [Google Scholar] [CrossRef]
- Hair, N.L.; Hanson, J.L.; Wolfe, B.L.; Pollak, S.D. Association of Child Poverty, Brain Development, and Academic Achievement. JAMA Pediatr. 2015, 169, 822–829. [Google Scholar] [CrossRef]
- Chozick, B.S. The behavioral effects of lesions of the hippocampus: A review. Int. J. Neurosci. 1983, 22, 63–80. [Google Scholar] [CrossRef]
- Hu, L.; Han, B.; Zhao, X.; Mi, L.; Song, Q.; Wang, J.; Song, T.; Huang, C. Chronic early postnatal scream sound stress induces learning deficits and NMDA receptor changes in the hippocampus of adult mice. NeuroReport 2016, 27, 397–403. [Google Scholar] [CrossRef]
- Magarinos, A.M.; Verdugo, J.M.; McEwen, B.S. Chronic stress alters synaptic terminal structure in hippocampus. Proc. Natl. Acad. Sci. USA 1997, 94, 14002–14008. [Google Scholar] [CrossRef]
- Hanson, J.L.; Nacewicz, B.M.; Sutterer, M.J.; Cayo, A.A.; Schaefer, S.M.; Rudolph, K.D.; Shirtcliff, E.A.; Pollak, S.D.; Davidson, R.J. Behavioral problems after early life stress: Contributions of the hippocampus and amygdala. Biol. Psychiatry 2015, 77, 314–323. [Google Scholar] [CrossRef]
- Hill, M.N.; Patel, S.; Carrier, E.J.; Rademacher, D.J.; Ormerod, B.K.; Hillard, C.J.; Gorzalka, B.B. Downregulation of endocannabinoid signaling in the hippocampus following chronic unpredictable stress. Neuropsychopharmacology 2005, 30, 508–515. [Google Scholar] [CrossRef]
- Coccaro, E.F.; Lee, R.; McCloskey, M.; Csernansky, J.G.; Wang, L. Morphometric analysis of amygdla and hippocampus shape in impulsively aggressive and healthy control subjects. J. Psychiatr. Res. 2015, 69, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Dailey, N.S.; Smith, R.; Vanuk, J.R.; Raikes, A.C.; Killgore, W.D.S. Resting-state functional connectivity as a biomarker of aggression in mild traumatic brain injury. NeuroReport 2018, 29, 1413–1417. [Google Scholar] [CrossRef]
- Chang, C.-H.; Gean, P.-W. The ventral hippocampus controls stress-provoked impulsive aggression through the ventromedial hypothalamus in post-weaning social isolation mice. Cell Rep. 2019, 28, 1195–1205. [Google Scholar] [CrossRef] [PubMed]
- Akiki, T.J.; Averill, C.L.; Wrocklage, K.M.; Schweinsburg, B.; Scott, J.C.; Martini, B.; Averill, L.A.; Southwick, S.M.; Krystal, J.H.; Abdallah, C.G. The Association of PTSD Symptom Severity with Localized Hippocampus and Amygdala Abnormalities. Chronic. Stress 2017, 1. [Google Scholar] [CrossRef] [PubMed]
- Jin, C.; Qi, R.; Yin, Y.; Hu, X.; Duan, L.; Xu, Q.; Zhang, Z.; Zhong, Y.; Feng, B.; Xiang, H.; et al. Abnormalities in whole-brain functional connectivity observed in treatment-naive post-traumatic stress disorder patients following an earthquake. Psychol. Med. 2014, 44, 1927–1936. [Google Scholar] [CrossRef]
- Morey, R.A.; Haswell, C.C.; Hooper, S.R.; De Bellis, M.D. Amygdala, Hippocampus, and Ventral Medial Prefrontal Cortex Volumes Differ in Maltreated Youth with and without Chronic Posttraumatic Stress Disorder. Neuropsychopharmacology 2016, 41, 791–801. [Google Scholar] [CrossRef]
- Lindauer, R.J.; Olff, M.; van Meijel, E.P.; Carlier, I.V.; Gersons, B.P. Cortisol, learning, memory, and attention in relation to smaller hippocampal volume in police officers with posttraumatic stress disorder. Biol. Psychiatry 2006, 59, 171–177. [Google Scholar] [CrossRef]
- Ahmed-Leitao, F.; Rosenstein, D.; Marx, M.; Young, S.; Korte, K.; Seedat, S. Posttraumatic stress disorder, social anxiety disorder and childhood trauma: Differences in hippocampal subfield volume. Psychiatry Res. Neuroimaging 2019, 284, 45–52. [Google Scholar] [CrossRef]
- Lindauer, R.J.; Vlieger, E.J.; Jalink, M.; Olff, M.; Carlier, I.V.; Majoie, C.B.; den Heeten, G.J.; Gersons, B.P. Smaller hippocampal volume in Dutch police officers with posttraumatic stress disorder. Biol. Psychiatry 2004, 56, 356–363. [Google Scholar] [CrossRef]
- Kim, E.J.; Pellman, B.; Kim, J.J. Stress effects on the hippocampus: A critical review. Learn. Mem 2015, 22, 411–416. [Google Scholar] [CrossRef]
- Filipovic, B.R.; Djurovic, B.; Marinkovic, S.; Stijak, L.; Aksic, M.; Nikolic, V.; Starcevic, A.; Radonjic, V. Volume changes of corpus striatum, thalamus, hippocampus and lateral ventricles in posttraumatic stress disorder (PTSD) patients suffering from headaches and without therapy. Cent. Eur. Neurosur. 2011, 72, 133–137. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Ho, C.S.; McIntyre, R.S.; Wang, W.; Ho, R.C. Effects of vortioxetine and fluoxetine on the level of Brain Derived Neurotrophic Factors (BDNF) in the hippocampus of chronic unpredictable mild stress-induced depressive rats. Brain Res. Bull. 2018, 142, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Andrus, B.M.; Blizinsky, K.; Vedell, P.T.; Dennis, K.; Shukla, P.K.; Schaffer, D.J.; Radulovic, J.; Churchill, G.A.; Redei, E.E. Gene expression patterns in the hippocampus and amygdala of endogenous depression and chronic stress models. Mol. Psychiatry 2012, 17, 49–61. [Google Scholar] [CrossRef] [PubMed]
- Dore, B.P.; Rodrik, O.; Boccagno, C.; Hubbard, A.; Weber, J.; Stanley, B.; Oquendo, M.A.; Miller, J.M.; Sublette, M.E.; Mann, J.J.; et al. Negative Autobiographical Memory in Depression Reflects Elevated Amygdala-Hippocampal Reactivity and Hippocampally Associated Emotion Regulation. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2018, 3, 358–366. [Google Scholar] [CrossRef] [PubMed]
- Summa, K.C.; Jiang, P.; Fitzpatrick, K.; Voigt, R.M.; Bowers, S.J.; Forsyth, C.B.; Vitaterna, M.H.; Keshavarzian, A.; Turek, F.W. Chronic Alcohol Exposure and the Circadian Clock Mutation Exert Tissue-Specific Effects on Gene Expression in Mouse Hippocampus, Liver, and Proximal Colon. Alcohol Clin. Exp. Res. 2015, 39, 1917–1929. [Google Scholar] [CrossRef] [PubMed]
- Gomez, R.; Schneider, R., Jr.; Quinteros, D.; Santos, C.F.; Bandiera, S.; Thiesen, F.V.; Coitinho, A.S.; Fernandes Mda, C.; Wieczorek, M.G. Effect of Alcohol and Tobacco Smoke on Long-Term Memory and Cell Proliferation in the Hippocampus of Rats. Nicotine Tob. Res. 2015, 17, 1442–1448. [Google Scholar] [CrossRef] [PubMed]
- Gomez, G.I.; Falcon, R.V.; Maturana, C.J.; Labra, V.C.; Salgado, N.; Rojas, C.A.; Oyarzun, J.E.; Cerpa, W.; Quintanilla, R.A.; Orellana, J.A. Heavy Alcohol Exposure Activates Astroglial Hemichannels and Pannexons in the Hippocampus of Adolescent Rats: Effects on Neuroinflammation and Astrocyte Arborization. Front. Cell. Neurosci. 2018, 12, 472. [Google Scholar] [CrossRef]
- Wang, L.; Wu, L.; Wang, X.; Deng, J.; Ma, Z.; Fan, W.; He, W.; Deng, J. Prenatal alcohol exposure inducing the apoptosis of mossy cells in hippocampus of SMS2-/- mice. Environ. Toxicol. Pharmacol. 2015, 40, 975–982. [Google Scholar] [CrossRef]
- Hablitz, J.J. Prenatal exposure to alcohol alters short-term plasticity in hippocampus. Exp. Neurol. 1986, 93, 423–427. [Google Scholar] [CrossRef]
- Pagliaccio, D.; Luby, J.L.; Bogdan, R.; Agrawal, A.; Gaffrey, M.S. Stress-system genes and life stress predict cortisol levels and amygdala and hippocampal volumes in children. Neuropsychopharmacology 2014, 39, 1245–1253. [Google Scholar] [CrossRef]
- McEwen, B.S.; Gianaros, P.J. Central role of the brain in stress and adaptation: Links to socioeconomic status, health, and disease. Ann. N.Y. Acad. Sci. 2010, 1186, 190–222. [Google Scholar] [CrossRef] [PubMed]
- Suchy-Dicey, A.; Shibata, D.; Cholerton, B.; Nelson, L.; Calhoun, D.; Ali, T.; Montine, T.J.; Longstreth, W.T.; Buchwald, D.; Verney, S.P. Cognitive Correlates of MRI-defined Cerebral Vascular Injury and Atrophy in Elderly American Indians: The Strong Heart Study. J. Int. Neuropsychol. Soc. 2019, 1–13. [Google Scholar] [CrossRef] [PubMed]
- McLean, J.; Krishnadas, R.; Batty, G.D.; Burns, H.; Deans, K.A.; Ford, I.; McConnachie, A.; McGinty, A.; McLean, J.S.; Millar, K.; et al. Early life socioeconomic status, chronic physiological stress and hippocampal N-acetyl aspartate concentrations. Behav. Brain Res. 2012, 235, 225–230. [Google Scholar] [CrossRef] [PubMed]
- Noble, K.G.; Houston, S.M.; Brito, N.H.; Bartsch, H.; Kan, E.; Kuperman, J.M.; Akshoomoff, N.; Amaral, D.G.; Bloss, C.S.; Libiger, O.; et al. Family income, parental education and brain structure in children and adolescents. Nat. Neurosci. 2015, 18, 773–778. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.B.; Riis, J.L.; Noble, K.G. State of the Art Review: Poverty and the Developing Brain. Pediatr. 2016, 137. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, L.M.; Chiang, J.J.; Vause, K.; Hoffer, L.; Alpert, K.; Parrish, T.B.; Wang, L.; Miller, G.E. Subcortical structural variations associated with low socioeconomic status in adolescents. Hum. Brain Mapp. 2020, 41, 162–171. [Google Scholar] [CrossRef]
- Luby, J.L. Poverty’s most insidious damage: The developing brain. JAMA Pediatrics 2015, 169, 810–811. [Google Scholar] [CrossRef]
- Evans, G.W.; Swain, J.E.; King, A.P.; Wang, X.; Javanbakht, A.; Ho, S.S.; Angstadt, M.; Phan, K.L.; Xie, H.; Liberzon, I. Childhood Cumulative Risk Exposure and Adult Amygdala Volume and Function. J. Neurosci. Res. 2016, 94, 535–543. [Google Scholar] [CrossRef]
- Javanbakht, A.; Kim, P.; Swain, J.E.; Evans, G.W.; Phan, K.L.; Liberzon, I. Sex-Specific Effects of Childhood Poverty on Neurocircuitry of Processing of Emotional Cues: A Neuroimaging Study. Behav. Sci. 2016, 6, 28. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, L.; Kong, X.; Hong, Y.; Cheon, B.; Liu, J. Pathway to neural resilience: Self-esteem buffers against deleterious effects of poverty on the hippocampus. Hum. Brain Mapp. 2016, 37, 3757–3766. [Google Scholar] [CrossRef]
- Spera, C.; Wentzel, K.R.; Matto, H.C. Parental aspirations for their children’s educational attainment: Relations to ethnicity, parental education, children’s academic performance, and parental perceptions of school climate. J. Youth Adolesc. 2009, 38, 1140–1152. [Google Scholar] [CrossRef] [PubMed]
- Goodman, E.; Slap, G.B.; Huang, B. The public health impact of socioeconomic status on adolescent depression and obesity. Am. J. Public Health 2003, 93, 1844–1850. [Google Scholar] [CrossRef] [PubMed]
- Morris, A.S.; Silk, J.S.; Steinberg, L.; Myers, S.S.; Robinson, L.R. The role of the family context in the development of emotion regulation. Soc. Dev. 2007, 16, 361–388. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Holloway, S.D. No parent left behind: Predicting parental involvement in adolescents’ education within a sociodemographically diverse population. J. Educ. Res. 2013, 106, 105–119. [Google Scholar] [CrossRef]
- Pabayo, R.; Molnar, B.E.; Kawachi, I. The role of neighborhood income inequality in adolescent aggression and violence. J. Adolesc. Health 2014, 55, 571–579. [Google Scholar] [CrossRef]
- Wills, T.A.; McNamara, G.; Vaccaro, D. Parental education related to adolescent stress-coping and substance use: Development of a mediational model. Health Psychol. 1995, 14, 464. [Google Scholar] [CrossRef]
- Assari, S.; Boyce, S.; Bazargan, M.; Caldwell, C.H. African Americans’ Diminished Returns of Parental Education on Adolescents’ Depression and Suicide in the Adolescent Brain Cognitive Development (ABCD) Study. Eur. J. Investig. Health Psychol. Educ. 2020, 10, 656–668. [Google Scholar] [CrossRef]
- Assari, S. Parental Education on Youth Inhibitory Control in the Adolescent Brain Cognitive Development (ABCD) Study: Blacks’ Diminished Returns. Brain Sci. 2020, 10, 312. [Google Scholar] [CrossRef]
- Assari, S.; Boyce, S.; Akhlaghipour, G.; Bazargan, M.; Caldwell, C.H. Reward Responsiveness in the Adolescent Brain Cognitive Development (ABCD) Study: African Americans’ Diminished Returns of Parental Education. Brain Sci. 2020, 10, 391. [Google Scholar] [CrossRef]
- Willis, A.W.; Schootman, M.; Kung, N.; Wang, X.Y.; Perlmutter, J.S.; Racette, B.A. Disparities in deep brain stimulation surgery among insured elders with Parkinson disease. Neurology 2014, 82, 163–171. [Google Scholar] [CrossRef]
- Parker, N.; Wong, A.P.; Leonard, G.; Perron, M.; Pike, B.; Richer, L.; Veillette, S.; Pausova, Z.; Paus, T. Income inequality, gene expression, and brain maturation during adolescence. Sci. Rep. 2017, 7, 7397. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, J.S.; Cooper, R.S.; McGee, D.L. Socioeconomic status and health in blacks and whites: The problem of residual confounding and the resiliency of race. Epidemiology 1997, 621–628. [Google Scholar] [CrossRef]
- Assari, S. Parental Educational Attainment and Mental Well-Being of College Students; Diminished Returns of Blacks. Brain Sci. 2018, 8, 193. [Google Scholar] [CrossRef] [PubMed]
- Mirowsky, J.; Ross, C.E. Education, Health, and the Default American Lifestyle. J. Health Soc. Behav. 2015, 56, 297–306. [Google Scholar] [CrossRef]
- Ross, C.E.; Mirowsky, J. Refining the association between education and health: The effects of quantity, credential, and selectivity. Demography 1999, 36, 445–460. [Google Scholar] [CrossRef]
- Schulz, A.J.; Mentz, G.; Lachance, L.; Johnson, J.; Gaines, C.; Israel, B.A. Associations between socioeconomic status and allostatic load: Effects of neighborhood poverty and tests of mediating pathways. Am. J. Public Health 2012, 102, 1706–1714. [Google Scholar] [CrossRef]
- Domenech-Abella, J.; Mundo, J.; Miret, M.; Ayuso-Mateos, J.L.; Sanchez-Niubo, A.; Abduljabbar, A.S.; Haro, J.M.; Olaya, B. From childhood financial hardship to late-life depression: Socioeconomic pathways. Aging Ment. Health 2019, 1–8. [Google Scholar] [CrossRef]
- Assari, S.; Lankarani, M.M. Income Gradient in Renal Disease Mortality in the United States. Front. Med. 2017, 4, 190. [Google Scholar] [CrossRef]
- Ursache, A.; Merz, E.C.; Melvin, S.; Meyer, J.; Noble, K.G. Socioeconomic status, hair cortisol and internalizing symptoms in parents and children. Psychoneuroendocrinology 2017, 78, 142–150. [Google Scholar] [CrossRef]
- Samuel, L.J.; Roth, D.L.; Schwartz, B.S.; Thorpe, R.J.; Glass, T.A. Socioeconomic Status, Race/Ethnicity, and Diurnal Cortisol Trajectories in Middle-Aged and Older Adults. J. Gerontol. B Psychol. Sci. Soc. Sci. 2018, 73, 468–476. [Google Scholar] [CrossRef]
- Assari, S. Blacks’ Diminished Return of Education Attainment on Subjective Health; Mediating Effect of Income. Brain Sci. 2018, 8, 176. [Google Scholar] [CrossRef] [PubMed]
- Assari, S. Distal, intermediate, and proximal mediators of racial disparities in renal disease mortality in the United States. J. Nephropathol. 2016, 5, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Martinelli, K.G.; Santos Neto, E.T.; Gama, S.G.; Oliveira, A.E. Access to prenatal care: Inequalities in a region with high maternal mortality in southeastern Brazil. Cien Saude Colet 2016, 21, 1647–1658. [Google Scholar] [CrossRef]
- Assari, S. Unequal Gain of Equal Resources across Racial Groups. Int. J. Health Policy Manag. 2018, 7, 1–9. [Google Scholar] [CrossRef]
- ASEBA® Web-Link™ ASEBA Overview. Available online: https://aseba.org/aseba-web/ (accessed on 8 January 2020).
- Achenbach, T.M.; Ruffle, T.M. The Child Behavior Checklist and related forms for assessing behavioral/emotional problems and competencies. Pediatr. Rev. 2000, 21, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Albrecht, G.; Veerman, J.W.; Damen, H.; Kroes, G. The Child Behavior Checklist for group care workers: A study regarding the factor structure. J. Abnorm. Child Psychol. 2001, 29, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Al-Khotani, A.; Gjelset, M.; Naimi-Akbar, A.; Hedenberg-Magnusson, B.; Ernberg, M.; Christidis, N. Using the child behavior checklist to determine associations between psychosocial aspects and TMD-related pain in children and adolescents. J. Headache Pain 2018, 19, 88. [Google Scholar] [CrossRef] [PubMed]
- Allison Bender, H.; Auciello, D.; Morrison, C.E.; MacAllister, W.S.; Zaroff, C.M. Comparing the convergent validity and clinical utility of the Behavior Assessment System for Children-Parent Rating Scales and Child Behavior Checklist in children with epilepsy. Epilepsy Behav. 2008, 13, 237–242. [Google Scholar] [CrossRef]
- Bordin, I.A.; Rocha, M.M.; Paula, C.S.; Teixeira, M.C.; Achenbach, T.M.; Rescorla, L.A.; Silvares, E.F. Child Behavior Checklist (CBCL),Youth Self-Report (YSR) and Teacher’s Report Form(TRF): An overview of the development of the original and Brazilian versions. Cadernos de Saúde Pública 2013, 29, 13–28. [Google Scholar] [CrossRef]
- Alcohol Research: Current Reviews Editorial, S. NIH’s Adolescent Brain Cognitive Development (ABCD) Study. Alcohol. Res. 2018, 39, 97. [Google Scholar]
- Casey, B.J.; Cannonier, T.; Conley, M.I.; Cohen, A.O.; Barch, D.M.; Heitzeg, M.M.; Soules, M.E.; Teslovich, T.; Dellarco, D.V.; Garavan, H.; et al. The Adolescent Brain Cognitive Development (ABCD) study: Imaging acquisition across 21 sites. Dev. Cogn. Neurosci. 2018, 32, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Karcher, N.R.; O’Brien, K.J.; Kandala, S.; Barch, D.M. Resting-State Functional Connectivity and Psychotic-like Experiences in Childhood: Results From the Adolescent Brain Cognitive Development Study. Biol. Psychiatry 2019, 86, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Lisdahl, K.M.; Sher, K.J.; Conway, K.P.; Gonzalez, R.; Feldstein Ewing, S.W.; Nixon, S.J.; Tapert, S.; Bartsch, H.; Goldstein, R.Z.; Heitzeg, M. Adolescent brain cognitive development (ABCD) study: Overview of substance use assessment methods. Dev. Cogn. Neurosci. 2018, 32, 80–96. [Google Scholar] [CrossRef] [PubMed]
- Luciana, M.; Bjork, J.M.; Nagel, B.J.; Barch, D.M.; Gonzalez, R.; Nixon, S.J.; Banich, M.T. Adolescent neurocognitive development and impacts of substance use: Overview of the adolescent brain cognitive development (ABCD) baseline neurocognition battery. Dev. Cogn. Neurosci. 2018, 32, 67–79. [Google Scholar] [CrossRef] [PubMed]
- Auchter, A.M.; Hernandez Mejia, M.; Heyser, C.J.; Shilling, P.D.; Jernigan, T.L.; Brown, S.A.; Tapert, S.F.; Dowling, G.J. A description of the ABCD organizational structure and communication framework. Dev. Cogn. Neurosci. 2018, 32, 8–15. [Google Scholar] [CrossRef]
- Garavan, H.; Bartsch, H.; Conway, K.; Decastro, A.; Goldstein, R.Z.; Heeringa, S.; Jernigan, T.; Potter, A.; Thompson, W.; Zahs, D. Recruiting the ABCD sample: Design considerations and procedures. Dev. Cogn. Neurosci. 2018, 32, 16–22. [Google Scholar] [CrossRef]
- Hagler, D.J., Jr.; Hatton, S.; Cornejo, M.D.; Makowski, C.; Fair, D.A.; Dick, A.S.; Sutherland, M.T.; Casey, B.J.; Barch, D.M.; Harms, M.P.; et al. Image processing and analysis methods for the Adolescent Brain Cognitive Development Study. NeuroImage 2019. [Google Scholar] [CrossRef]
- Gordon, E.M.; Laumann, T.O.; Adeyemo, B.; Huckins, J.F.; Kelley, W.M.; Petersen, S.E. Generation and Evaluation of a Cortical Area Parcellation from Resting-State Correlations. Cereb. Cortex 2016, 26, 288–303. [Google Scholar] [CrossRef]
- Barch, D.; Pagliaccio, D.; Belden, A.; Harms, M.P.; Gaffrey, M.; Sylvester, C.M.; Tillman, R.; Luby, J. Effect of Hippocampal and Amygdala Connectivity on the Relationship Between Preschool Poverty and School-Age Depression. Am. J. Psychiatry 2016, 173, 625–634. [Google Scholar] [CrossRef]
- Luby, J.; Belden, A.; Botteron, K.; Marrus, N.; Harms, M.P.; Babb, C.; Nishino, T.; Barch, D. The effects of poverty on childhood brain development: The mediating effect of caregiving and stressful life events. JAMA Pediatr. 2013, 167, 1135–1142. [Google Scholar] [CrossRef]
- Calem, M.; Bromis, K.; McGuire, P.; Morgan, C.; Kempton, M.J. Meta-analysis of associations between childhood adversity and hippocampus and amygdala volume in non-clinical and general population samples. NeuroImage Clin. 2017, 14, 471–479. [Google Scholar] [CrossRef] [PubMed]
- Duran, A.C.; Diez Roux, A.V.; Latorre Mdo, R.; Jaime, P.C. Neighborhood socioeconomic characteristics and differences in the availability of healthy food stores and restaurants in Sao Paulo, Brazil. Health Place 2013, 23, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Linetzky, B.; Mejia, R.; Ferrante, D.; De Maio, F.G.; Diez Roux, A.V. Socioeconomic status and tobacco consumption among adolescents: A multilevel analysis of Argentina’s Global Youth Tobacco Survey. Nicotine Tob. Res. 2012, 14, 1092–1099. [Google Scholar] [CrossRef]
- Kim, D.; Diez Roux, A.V.; Kiefe, C.I.; Kawachi, I.; Liu, K. Do neighborhood socioeconomic deprivation and low social cohesion predict coronary calcification? The CARDIA study. Am. J. Epidemiol. 2010, 172, 288–298. [Google Scholar] [CrossRef] [PubMed]
- Nordstrom, C.K.; Diez Roux, A.V.; Jackson, S.A.; Gardin, J.M.; Cardiovascular Health, S. The association of personal and neighborhood socioeconomic indicators with subclinical cardiovascular disease in an elderly cohort. The cardiovascular health study. Soc. Sci. Med. 2004, 59, 2139–2147. [Google Scholar] [CrossRef] [PubMed]
- Association, A.P. Diagnostic and Statistical Manual of Mental Disorders (DSM-5®); American Psychiatric Pub: Washington, DC, USA, 2013. [Google Scholar]
- Achenbach, T.M.; Rescorla, L. Manual for the ASEBA School-Age Forms & Profiles: An Integrated System of Multi-Informant Assessment; Aseba: Burlington, VT, USA, 2001. [Google Scholar]
- Suzuki, K.; Nishimura, K.; Sugihara, G.; Nakamura, K.; Tsuchiya, K.J.; Matsumoto, K.; Takebayashi, K.; Isoda, H.; Sakahara, H.; Sugiyama, T. Metabolite alterations in the hippocampus of high-functioning adult subjects with autism. Int. J. Neuropsychopharmacol. 2010, 13, 529–534. [Google Scholar] [CrossRef]
- Zhou, Q.; Wu, H.; Zhou, H.; Liu, M.; Lee, H.; Liu, X.; Devkota, S.; Ro, E.; Zhu, D.; Suh, H. Reactivation of Tert in the medial prefrontal cortex and hippocampus rescues aggression and depression of Tert−/− mice. Transl. Psychiatry 2016, 6, e836. [Google Scholar] [CrossRef]
- Guillot, P.-V.; Roubertoux, P.L.; Crusio, W.E. Hippocampal mossy fiber distributions and intermale aggression in seven inbred mouse strains. Brain Res. 1994, 660, 167–169. [Google Scholar] [CrossRef]
- Kenny, D. Med Power. Sample Size Calculation for Mediation Analysis. Available online: https://davidakenny.shinyapps.io/MedPower/ (accessed on 8 January 2020).
- Noble, K.G.; Grieve, S.M.; Korgaonkar, M.S.; Engelhardt, L.E.; Griffith, E.Y.; Williams, L.M.; Brickman, A.M. Hippocampal volume varies with educational attainment across the life-span. Front. Hum. Neurosci. 2012, 6, 307. [Google Scholar] [CrossRef]
- Daun, K.A.; Fuchigami, T.; Koyama, N.; Maruta, N.; Ikenaka, K.; Hitoshi, S. Early Maternal and Social Deprivation Expands Neural Stem Cell Population Size and Reduces Hippocampus/Amygdala-Dependent Fear Memory. Front. Neurosci. 2020, 14, 22. [Google Scholar] [CrossRef]
- Dzyuba, B.; Van Look, K.J.; Cliffe, A.; Koldewey, H.J.; Holt, W.V. Effect of parental age and associated size on fecundity, growth and survival in the yellow seahorse Hippocampus kuda. J. Exp. Biol. 2006, 209, 3055–3061. [Google Scholar] [CrossRef] [PubMed]
- Mattle, B.; Wilson, A.B. Body size preferences in the pot-bellied seahorse Hippocampus abdominalis: Choosy males and indiscriminate females. Behav. Ecol. Socio. Biol. 2009, 63, 1403–1410. [Google Scholar] [CrossRef] [PubMed]
- Golub, Y.; Kaltwasser, S.F.; Mauch, C.P.; Herrmann, L.; Schmidt, U.; Holsboer, F.; Czisch, M.; Wotjak, C.T. Reduced hippocampus volume in the mouse model of Posttraumatic Stress Disorder. J. Psychiatr. Res. 2011, 45, 650–659. [Google Scholar] [CrossRef] [PubMed]
- Gurvits, T.V.; Shenton, M.E.; Hokama, H.; Ohta, H.; Lasko, N.B.; Gilbertson, M.W.; Orr, S.P.; Kikinis, R.; Jolesz, F.A.; McCarley, R.W. Magnetic resonance imaging study of hippocampal volume in chronic, combat-related posttraumatic stress disorder. Biol. Psychiatry 1996, 40, 1091–1099. [Google Scholar] [CrossRef]
- Czéh, B.; Michaelis, T.; Watanabe, T.; Frahm, J.; De Biurrun, G.; Van Kampen, M.; Bartolomucci, A.; Fuchs, E. Stress-induced changes in cerebral metabolites, hippocampal volume, and cell proliferation are prevented by antidepressant treatment with tianeptine. Proc. Natl. Acad. Sci. USA 2001, 98, 12796–12801. [Google Scholar] [CrossRef]
- Gianaros, P.J.; Jennings, J.R.; Sheu, L.K.; Greer, P.J.; Kuller, L.H.; Matthews, K.A. Prospective reports of chronic life stress predict decreased grey matter volume in the hippocampus. Neuroimage 2007, 35, 795–803. [Google Scholar] [CrossRef]
- Duval, E.R.; Garfinkel, S.N.; Swain, J.E.; Evans, G.W.; Blackburn, E.K.; Angstadt, M.; Sripada, C.S.; Liberzon, I. Childhood poverty is associated with altered hippocampal function and visuospatial memory in adulthood. Dev. Cogn. Neurosci. 2017, 23, 39–44. [Google Scholar] [CrossRef]
- Jednorog, K.; Altarelli, I.; Monzalvo, K.; Fluss, J.; Dubois, J.; Billard, C.; Dehaene-Lambertz, G.; Ramus, F. The influence of socioeconomic status on children’s brain structure. PLoS ONE 2012, 7, e42486. [Google Scholar] [CrossRef]
- Yaple, Z.A.; Yu, R. Functional and Structural Brain Correlates of Socioeconomic Status. Cereb. Cortex 2019. [Google Scholar] [CrossRef]
- Perkins, S.C.; Finegood, E.D.; Swain, J.E. Poverty and language development: Roles of parenting and stress. Innov. Clin. Neurosci. 2013, 10, 10–19. [Google Scholar]
- Woods-Jaeger, B.A.; Cho, B.; Sexton, C.C.; Slagel, L.; Goggin, K. Promoting Resilience: Breaking the Intergenerational Cycle of Adverse Childhood Experiences. Health Educ. Behav. 2018, 45, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Emmen, R.A.; Malda, M.; Mesman, J.; van Ijzendoorn, M.H.; Prevoo, M.J.; Yeniad, N. Socioeconomic status and parenting in ethnic minority families: Testing a minority family stress model. J. Fam. Psychol. 2013, 27, 896–904. [Google Scholar] [CrossRef] [PubMed]
- Anton, M.T.; Jones, D.J.; Youngstrom, E.A. Socioeconomic status, parenting, and externalizing problems in African American single-mother homes: A person-oriented approach. J. Fam. Psychol. 2015, 29, 405–415. [Google Scholar] [CrossRef] [PubMed]
- Kiang, L.; Andrews, K.; Stein, G.L.; Supple, A.J.; Gonzalez, L.M. Socioeconomic stress and academic adjustment among Asian American adolescents: The protective role of family obligation. J. Youth Adolesc. 2013, 42, 837–847. [Google Scholar] [CrossRef]
- Danese, A.; Moffitt, T.E.; Harrington, H.; Milne, B.J.; Polanczyk, G.; Pariante, C.M.; Poulton, R.; Caspi, A. Adverse childhood experiences and adult risk factors for age-related disease: Depression, inflammation, and clustering of metabolic risk markers. Arch. Pediatr. Adolesc. Med. 2009, 163, 1135–1143. [Google Scholar] [CrossRef]
- Spann, S.J.; Gillespie, C.F.; Davis, J.S.; Brown, A.; Schwartz, A.; Wingo, A.; Habib, L.; Ressler, K.J. The association between childhood trauma and lipid levels in an adult low-income, minority population. Gen. Hosp. Psychiatry 2014, 36, 150–155. [Google Scholar] [CrossRef]
- Subic-Wrana, C.; Tschan, R.; Michal, M.; Zwerenz, R.; Beutel, M.; Wiltink, J. Childhood trauma and its relation to diagnoses and psychic complaints in patients of an psychosomatic university ambulance. Psychothe.r Psychosom. Med. Psychol. 2011, 61, 54–61. [Google Scholar] [CrossRef]
- Ladebauche, P. Childhood trauma-When to suspect abuse. RN 1997, 60, 38–42. [Google Scholar]
- Assari, S.; Bazargan, M. Unequal Associations between Educational Attainment and Occupational Stress across Racial and Ethnic Groups. Int. J. Environ. Res. Public Health 2019, 16, 3539. [Google Scholar] [CrossRef]
- Chassin, L.; Presson, C.C.; Sherman, S.J.; Edwards, D.A. Parent educational attainment and adolescent cigarette smoking. J. Subst Abuse. 1992, 4, 219–234. [Google Scholar] [CrossRef]
- Kocaoglu, B.; Moschonis, G.; Dimitriou, M.; Kolotourou, M.; Keskin, Y.; Sur, H.; Hayran, O.; Manios, Y. Parental educational level and cardiovascular disease risk factors in schoolchildren in large urban areas of Turkey: Directions for public health policy. BMC Public Health 2005, 5, 13. [Google Scholar] [CrossRef]
- Padilla-Moledo, C.; Ruiz, J.R.; Castro-Pinero, J. Parental educational level and psychological positive health and health complaints in Spanish children and adolescents. Child. Care Health Dev. 2016, 42, 534–543. [Google Scholar] [CrossRef]
- Barbarin, O.; Bryant, D.; McCandies, T.; Burchinal, M.; Early, D.; Clifford, R.; Pianta, R.; Howes, C. Children enrolled in public pre-K: The relation of family life, neighborhood quality, and socioeconomic resources to early competence. Am. J. Orthopsychiatry 2006, 76, 265–276. [Google Scholar] [CrossRef] [PubMed]
- Assari, S.; Caldwell, C.H.; Bazargan, M. Association Between Parental Educational Attainment and Youth Outcomes and Role of Race/Ethnicity. JAMA Netw. Open 2019, 2, e1916018. [Google Scholar] [CrossRef] [PubMed]
- Assari, S.; Boyce, S.; Bazargan, M.; Caldwell, C.H. Diminished Returns of Parental Education in Terms of Youth School Performance: Ruling out Regression Toward the Mean. Children 2020, 7, 74. [Google Scholar] [CrossRef] [PubMed]
- Darvishi, E.; Assari, M.J.; Farhadian, M.; Chavoshi, E.; Ehsani, H.R. Occupational exposure to mercury vapor in a compact fluorescent lamp factory: Evaluation of personal, ambient air, and biological monitoring. Toxicol. Ind. Health 2019, 35, 304–313. [Google Scholar] [CrossRef] [PubMed]
- Assari, S.; Caldwell, C.H. Parental Educational Attainment Differentially Boosts School Performance of American Adolescents: Minorities’ Diminished Returns. J. Fam. Reprod. Health 2019, 13, 7–13. [Google Scholar] [CrossRef]
- Yavas, E.; Gonzalez, S.; Fanselow, M.S. Interactions between the hippocampus, prefrontal cortex, and amygdala support complex learning and memory. F1000Ressearch 2019, 8. [Google Scholar] [CrossRef]
- Montagrin, A.; Saiote, C.; Schiller, D. The social hippocampus. Hippocampus 2018, 28, 672–679. [Google Scholar] [CrossRef]
- Gershoff, E.T.; Ansari, A.; Purtell, K.M.; Sexton, H.R. Changes in parents’ spanking and reading as mechanisms for Head Start impacts on children. J. Fam. Psychol. 2016, 30, 480. [Google Scholar] [CrossRef]
- Neville, H.J.; Stevens, C.; Pakulak, E.; Bell, T.A.; Fanning, J.; Klein, S.; Isbell, E. Family-based training program improves brain function, cognition, and behavior in lower socioeconomic status preschoolers. Proc. Natl. Acad. Sci. USA 2013, 110, 12138–12143. [Google Scholar] [CrossRef] [PubMed]
- Garces, E.; Thomas, D.; Currie, J. Longer-term effects of Head Start. Am. Econ. Rev. 2002, 92, 999–1012. [Google Scholar] [CrossRef]
- Zigler, E.; Valentine, J. Project Head Start: A Legacy of the War on Poverty; 1979. Available online: https://eric.ed.gov/?id=ED183266 (accessed on 8 January 2020).
- Finn, A.S.; Minas, J.E.; Leonard, J.A.; Mackey, A.P.; Salvatore, J.; Goetz, C.; West, M.R.; Gabrieli, C.F.O.; Gabrieli, J.D.E. Functional brain organization of working memory in adolescents varies in relation to family income and academic achievement. Dev. Sci. 2017, 20. [Google Scholar] [CrossRef] [PubMed]
- Brody, G.H.; Yu, T.; Nusslock, R.; Barton, A.W.; Miller, G.E.; Chen, E.; Holmes, C.; McCormick, M.; Sweet, L.H. The Protective Effects of Supportive Parenting on the Relationship between Adolescent Poverty and Resting-State Functional Brain Connectivity During Adulthood. Psychol. Sci. 2019. [Google Scholar] [CrossRef] [PubMed]
- Moadab, G.; Bliss-Moreau, E.; Bauman, M.D.; Amaral, D.G. Early amygdala or hippocampus damage influences adolescent female social behavior during group formation. Behav. Neurosci. 2017, 131, 68–82. [Google Scholar] [CrossRef]
- Thames, A.D.; Kuhn, T.P.; Mahmood, Z.; Bilder, R.M.; Williamson, T.J.; Singer, E.J.; Arentoft, A. Effects of social adversity and HIV on subcortical shape and neurocognitive function. Brain Imaging Behav. 2018, 12, 96–108. [Google Scholar] [CrossRef]
- Tottenham, N.; Sheridan, M.A. A review of adversity, the amygdala and the hippocampus: A consideration of developmental timing. Front. Hum. Neurosci. 2009, 3, 68. [Google Scholar] [CrossRef]
- Clark, U.S.; Miller, E.R.; Hegde, R.R. Experiences of Discrimination Are Associated With Greater Resting Amygdala Activity and Functional Connectivity. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2018, 3, 367–378. [Google Scholar] [CrossRef]
- Altman, J.; Brunner, R.L.; Bayer, S.A. The hippocampus and behavioral maturation. Behav. Biol. 1973, 8, 557–596. [Google Scholar] [CrossRef]
- Yu, Q.; Daugherty, A.M.; Anderson, D.M.; Nishimura, M.; Brush, D.; Hardwick, A.; Lacey, W.; Raz, S.; Ofen, N. Socioeconomic status and hippocampal volume in children and young adults. Dev. Sci. 2018, 21, e12561. [Google Scholar] [CrossRef]
- Chang, C.H.; Hsiao, Y.H.; Chen, Y.W.; Yu, Y.J.; Gean, P.W. Social isolation-induced increase in NMDA receptors in the hippocampus exacerbates emotional dysregulation in mice. Hippocampus 2015, 25, 474–485. [Google Scholar] [CrossRef] [PubMed]
- Leroy, F.; Park, J.; Asok, A.; Brann, D.H.; Meira, T.; Boyle, L.M.; Buss, E.W.; Kandel, E.R.; Siegelbaum, S.A. A circuit from hippocampal CA2 to lateral septum disinhibits social aggression. Nature 2018, 564, 213–218. [Google Scholar] [CrossRef] [PubMed]
- Laakso, M.P.; Vaurio, O.; Koivisto, E.; Savolainen, L.; Eronen, M.; Aronen, H.J.; Hakola, P.; Repo, E.; Soininen, H.; Tiihonen, J. Psychopathy and the posterior hippocampus. Behav. Brain Res. 2001, 118, 187–193. [Google Scholar] [CrossRef]
n | % | |
---|---|---|
Race | ||
White | 2527 | 71.2 |
Black | 1023 | 28.8 |
Sex | ||
Male | 1712 | 48.2 |
Female | 1838 | 51.8 |
Marital status | ||
Not-Married | 1141 | 32.1 |
Married | 2409 | 67.9 |
Mean | SD | |
Age (Year) | 9.45 | 0.51 |
Parental Education | 16.87 | 2.44 |
Family Income | 0.78 | 0.36 |
Neighborhood Median Income | 7.37 | 2.43 |
Activation of the left hippocampus | –0.06 | 0.34 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1 Race (Black) | 1.00 | 0.02 | 0.02 | −0.52 ** | −0.42 ** | −0.50 ** | −0.52 ** | 0.06 ** |
2 Sex (Male) | 1.00 | 0.03 | 0.01 | 0.00 | 0.00 | 0.01 | 0.00 | |
3 Age (Year) | 1.00 | −0.02 | −0.05 ** | 0.00 | −0.02 | −0.01 | ||
4 Family marital status (Maried) | 1.00 | 0.41 ** | 0.40 ** | 0.58 ** | −0.04 * | |||
5 Parental educational attainment | 1.00 | 0.50 ** | 0.62 ** | −0.06 ** | ||||
6 Family income | 1.00 | 0.62 ** | −0.05 ** | |||||
7 Neighborhood income | 1.00 | −0.05 ** | ||||||
8 Left hippocampus function | 1.00 |
Model 1 Main Effect | Model 2 Mediation | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Beta | b | SE | 95% CI | t | p | Beta | b | SE | 95% CI | t | p | |||
Race (Black) | 0.02 | 0.01 | 0.02 | −0.02 | 0.04 | 0.96 | 0.338 | 0.00 | 0.00 | 0.02 | −0.03 | 0.03 | −0.01 | 0.996 |
Sex (Male) | 0.00 | 0.00 | 0.01 | −0.02 | 0.02 | −0.06 | 0.949 | 0.01 | 0.01 | 0.01 | −0.02 | 0.03 | 0.56 | 0.574 |
Age | 0.00 | 0.00 | 0.01 | −0.02 | 0.02 | −0.07 | 0.947 | −0.01 | 0.00 | 0.01 | −0.03 | 0.02 | −0.31 | 0.759 |
Married | 0.01 | 0.01 | 0.01 | −0.02 | 0.04 | 0.46 | 0.643 | 0.02 | 0.01 | 0.02 | −0.02 | 0.05 | 0.79 | 0.428 |
Parental education | −0.04 | −0.01 | 0.00 | −0.01 | 0.00 | −2.10 | 0.036 | −0.01 | 0.00 | 0.00 | −0.01 | 0.01 | −0.25 | 0.799 |
Family income | - | - | - | - | - | - | - | 0.02 | 0.02 | 0.02 | −0.02 | 0.06 | 1.00 | 0.318 |
Neighborhood income | - | - | - | - | - | - | - | −0.09 | −0.01 | 0.00 | −0.02 | 0.00 | −2.93 | 0.003 |
Constant | 0.03 | 0.12 | −0.20 | 0.26 | 0.27 | 0.785 | 0.04 | 0.13 | −0.20 | 0.29 | 0.34 | 0.731 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|
1 Activation of the left hippocampus | 1 | 0.00 | 0.01 | −0.01 | 0.03 ** | 0.01 | 0.04 ** | 0.02 | 0.03 ** | 0.02 * |
2 CBCL-Anxious and depressed mood (0–26) | 1 | 0.58 ** | 0.47 ** | 0.62 ** | 0.60 ** | 0.41 ** | 0.57 ** | 0.58 ** | 0.77 ** | |
3 CBCL-Withdrawn and depressed affect (0–14) | 1 | 0.40 ** | 0.56 ** | 0.51 ** | 0.39 ** | 0.49 ** | 0.52 ** | 0.67 ** | ||
4 CBCL-Somatic complaints (0–16) | 1 | 0.42 ** | 0.44 ** | 0.28 ** | 0.44 ** | 0.39 ** | 0.58 ** | |||
5 CBCL-Social and interpersonal problems (0–18) | 1 | 0.62 ** | 0.55 ** | 0.69 ** | 0.67 ** | 0.82 ** | ||||
6 CBCL-Thought problems (0–18) | 1 | 0.51 ** | 0.73 ** | 0.63 ** | 0.81 ** | |||||
7 CBCL-Rule-breaking behaviors (0–20) | 1 | 0.65 ** | 0.74 ** | 0.73 ** | ||||||
8 CBCL-Attention problems (0–38) | 1 | 0.76 ** | 0.90 ** | |||||||
9 CBCL-Violent and aggressive behaviors (0–38) | 1 | 0.88 ** | ||||||||
10 CBCL Total | 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Assari, S.; Boyce, S.; Bazargan, M.; Caldwell, C.H. Family Income Mediates the Effect of Parental Education on Adolescents’ Hippocampus Activation During an N-Back Memory Task. Brain Sci. 2020, 10, 520. https://doi.org/10.3390/brainsci10080520
Assari S, Boyce S, Bazargan M, Caldwell CH. Family Income Mediates the Effect of Parental Education on Adolescents’ Hippocampus Activation During an N-Back Memory Task. Brain Sciences. 2020; 10(8):520. https://doi.org/10.3390/brainsci10080520
Chicago/Turabian StyleAssari, Shervin, Shanika Boyce, Mohsen Bazargan, and Cleopatra H. Caldwell. 2020. "Family Income Mediates the Effect of Parental Education on Adolescents’ Hippocampus Activation During an N-Back Memory Task" Brain Sciences 10, no. 8: 520. https://doi.org/10.3390/brainsci10080520
APA StyleAssari, S., Boyce, S., Bazargan, M., & Caldwell, C. H. (2020). Family Income Mediates the Effect of Parental Education on Adolescents’ Hippocampus Activation During an N-Back Memory Task. Brain Sciences, 10(8), 520. https://doi.org/10.3390/brainsci10080520