Does Periodontal Tactile Input Uniquely Increase Cerebral Blood Flow in the Prefrontal Cortex?
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Apparatus
2.3. Task
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Corbetta, M.; Shulman, G.L. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 2002, 3, 201–215. [Google Scholar] [CrossRef] [PubMed]
- Miller, E.K.; Cohen, J.D. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 2001, 24, 167–202. [Google Scholar] [CrossRef] [PubMed]
- Funahashi, S. Working memory in the prefrontal cortex. Brain Sci. 2017, 7, 49. [Google Scholar] [CrossRef] [PubMed]
- Wolters, F.J.; Zonneveld, H.I.; Hofman, A.; van der Lugt, A.; Koudstaal, P.J.; Vernooij, M.W.; Ikram, M.A. Heart-brain connection collaborative research group. Cerebral perfusion and the risk of dementia: A population-based study. Circulation 2017, 136, 719–728. [Google Scholar] [CrossRef]
- Shimazaki, Y.; Soh, I.; Saito, T.; Yamashita, Y.; Koga, T.; Miyazaki, H.; Takehara, T. Influence of dentition status on physical disability, mental impairment, and mortality in institutionalized elderly people. J. Dent. Res. 2001, 80, 340–345. [Google Scholar] [CrossRef]
- Paganini-Hill, A.; White, S.C.; Atchison, K.A. Dentition, dental health habits, and dementia: The Leisure World Cohort Study. J. Am. Geriatr. Soc. 2012, 60, 1556–1563. [Google Scholar] [CrossRef]
- Yamamoto, T.; Kondo, K.; Hirai, H.; Nakade, M.; Aida, J.; Hirata, Y. Association between self-reported dental health status and onset of dementia: A 4-year prospective cohort study of older Japanese adults from the Aichi Gerontological Evaluation Study (AGES) Project. Psychosom. Med. 2012, 74, 241–248. [Google Scholar] [CrossRef]
- Sato, T.; Miles, T.S.; Türker, K.S.; Flavel, S. A simple stimulator for periodontal mechanoreceptors in human subjects. J. Biol. Buccale 1992, 20, 231–234. [Google Scholar]
- Higaki, N.; Goto, T.; Ichikawa, T. Periodontal tactile input activates the prefrontal cortex. Sci. Rep. 2016, 6, 36893. [Google Scholar] [CrossRef]
- Kishimoto, T.; Goto, T.; Ichikawa, T. Prefrontal cortex activity induced by periodontal afferent inputs downregulates occlusal force. Exp. Brain Res. 2019, 237, 2767–2774. [Google Scholar] [CrossRef]
- Albrektsson, T.; Zarb, G.; Worthington, P.; Eriksson, A.R. The long-term efficacy of currently used dental implants: A review and proposed criteria of success. Int. J. Oral Maxillofac. Implants 1986, 1, 11–25. [Google Scholar] [PubMed]
- Brånemark, P.I.; Svensson, B.; van Steenberghe, D. Ten-year survival rates of fixed prostheses on four or six implants ad modum Brånemark in full edentulism. Clin. Oral Implants Res. 1995, 6, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Levin, L.; Halperin-Sternfeld, M. Tooth preservation or implant placement: A systematic review of long-term tooth and implant survival rates. J. Am. Dent. Assoc. 2013, 144, 1119–1133. [Google Scholar] [CrossRef] [PubMed]
- Weiner, S.; Sirois, D.; Ehrenberg, D.; Lehrmann, N.; Simon, B.; Zohn, H. Sensory responses from loading of implants: A pilot study. Int. J. Oral Maxillofac. Implants 1995, 19, 44–51. [Google Scholar]
- Klineberg, I.; Murray, G. Osseoperception: Sensory function and proprioception. Adv. Dent. Res. 1999, 13, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Wada, S.; Kojo, T.; Wang, Y.H.; Ando, H.; Nakanishi, E.; Zhang, M.; Fukuyama, H.; Uchida, Y. Effect of loading on the development of nerve fibers around oral implants in the dog mandible. Clin. Oral Implants Res. 2001, 12, 219–224. [Google Scholar] [CrossRef] [PubMed]
- van Steenberghe, D. From osseointegration to osseoperception. J. Dent. Res. 2000, 79, 1833–1837. [Google Scholar] [CrossRef]
- Higaki, N.; Goto, T.; Ishida, Y.; Watanabe, M.; Tomotake, Y.; Ichikawa, T. Do sensation differences exist between dental implants and natural teeth?: A meta-analysis. Clin. Oral Implants Res. 2014, 25, 1307–1310. [Google Scholar] [CrossRef]
- Friedlander, A.H.; Friedlander, I.K.; Gallas, M.; Velasco, E. Late-life depression: Its oral health significance. Int. Dent. J. 2003, 53, 41–50. [Google Scholar] [CrossRef]
- Baddely, A.D. Working memory: Looking back and looking forward. Nat. Rev. Neurosci. 2003, 4, 829–839. [Google Scholar] [CrossRef]
- Sato, K.; Taki, Y.; Fukuda, H.; Kawashima, R. Neuroanatomical database of normal Japanese brains. Neural Netw. 2003, 16, 1301–1310. [Google Scholar] [CrossRef] [PubMed]
- Kalpouzos, G.; Chételat, G.; Baron, J.C.; Landeau, B.; Mevel, K.; Godeau, C.; Barré, L.; Constans, J.M.; Viader, F.; Eustache, F.; et al. Voxel-based mapping of brain gray matter volume and glucose metabolism profiles in normal aging. Neurobiol. Aging 2009, 30, 112–124. [Google Scholar] [CrossRef] [PubMed]
- Middleton, F.A.; Strick, P.L. Basal ganglia and cerebellar loops: Motor and cognitive circuits. Brain Res. Brain Res. Rev. 2000, 31, 236–250. [Google Scholar] [CrossRef]
- Alexander, G.E.; DeLong, M.R.; Strick, P.L. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci. 1986, 9, 357–381. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, H.J.; Cruickshanks, K.J.; Davis, B. Perspectives on population-based epidemiological studies of olfactory and taste impairment. Ann. N. Y. Acad. Sci. 2009, 1170, 514–530. [Google Scholar] [CrossRef]
- Büchel, C.; Friston, K.J. Modulation of connectivity in visual pathways by attention: Cortical interactions evaluated with structural equation modelling and fMRI. Cereb. Cortex 1997, 7, 768–778. [Google Scholar] [CrossRef]
- Desimone, R.; Duncan, J. Neural mechanisms of selective visual attention. Annu. Rev. Neurosci. 1997, 18, 193–222. [Google Scholar] [CrossRef]
- Ninomiya, T.; Sawamura, H.; Inoue, K.; Takada, M. Segregated pathways carrying frontally derived top-down signals to visual areas MT and V4 in macaques. J. Neurosci. 2012, 16, 6851–6858. [Google Scholar] [CrossRef]
- Kuyper, P. The cocktail party effect. Audiology 1972, 11, 277–282. [Google Scholar] [CrossRef]
- Maddox, J. Cocktail party effect made tolerable. Nature 1994, 16, 517. [Google Scholar] [CrossRef]
- Goldberg, E.; Harner, R.; Lovell, M.; Podell, K.; Riggio, S. Cognitive bias, functional cortical geometry, and the frontal lobes: Laterality, sex, and handedness. J. Cogn. Neurosci. 1994, 6, 276–296. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goto, T.; Higaki, N.; Kishimoto, T.; Tomotake, Y.; Ichikawa, T. Does Periodontal Tactile Input Uniquely Increase Cerebral Blood Flow in the Prefrontal Cortex? Brain Sci. 2020, 10, 482. https://doi.org/10.3390/brainsci10080482
Goto T, Higaki N, Kishimoto T, Tomotake Y, Ichikawa T. Does Periodontal Tactile Input Uniquely Increase Cerebral Blood Flow in the Prefrontal Cortex? Brain Sciences. 2020; 10(8):482. https://doi.org/10.3390/brainsci10080482
Chicago/Turabian StyleGoto, Takaharu, Nobuaki Higaki, Takahiro Kishimoto, Yoritoki Tomotake, and Tetsuo Ichikawa. 2020. "Does Periodontal Tactile Input Uniquely Increase Cerebral Blood Flow in the Prefrontal Cortex?" Brain Sciences 10, no. 8: 482. https://doi.org/10.3390/brainsci10080482
APA StyleGoto, T., Higaki, N., Kishimoto, T., Tomotake, Y., & Ichikawa, T. (2020). Does Periodontal Tactile Input Uniquely Increase Cerebral Blood Flow in the Prefrontal Cortex? Brain Sciences, 10(8), 482. https://doi.org/10.3390/brainsci10080482