Morphofunctional Alterations of the Hypothalamus and Social Behavior in Autism Spectrum Disorders
Abstract
:1. Introduction
2. Literature Search
2.1. Structural MRI Studies
2.2. Functional MRI Studies
3. Discussion
3.1. Hypothalamic Morphological Alterations
3.2. Hypothalamic Functional Alterations
3.3. Relevance of Hypothalamic Alterations in Healthy Carriers of Genetic Risk Variation in OT Receptors
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Maenner, M.J.; Shaw, K.A.; Baio, J.; Washington, A.; Patrick, M.; DiRienzo, M.; Christensen, D.L.; Wiggins, L.D.; Pettygrove, S. Prevalence of Autism Spectrum Disorder Among Children Aged 8 Years—Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2016. MMWR Surveill. Summ. 2020, 69, 1–12. [Google Scholar] [CrossRef]
- Masi, A.; DeMayo, M.M.; Glozier, N.; Guastella, A.J. An Overview of Autism Spectrum Disorder, Heterogeneity and Treatment Options. Neurosci. Bull. 2017, 33, 183–193. [Google Scholar] [CrossRef] [Green Version]
- Sato, W.; Uono, S. The atypical social brain network in autism: Advances in structural and functional MRI studies. Curr. Opin. Neurol. 2019, 32, 617–621. [Google Scholar] [CrossRef] [PubMed]
- Mohammad-Rezazadeh, I.; Frohlich, J.; Loo, S.K.; Jeste, S.S. Brain connectivity in autism spectrum disorder. Curr. Opin. Neurol. 2016, 29, 137–147. [Google Scholar] [CrossRef] [Green Version]
- Hernandez, L.M.; Rudie, J.D.; Green, S.A.; Bookheimer, S.; Dapretto, M. Neural signatures of autism spectrum disorders: Insights into brain network dynamics. Neuropsychopharmacology 2015, 40, 171–189. [Google Scholar] [CrossRef] [Green Version]
- Caria, A.; Venuti, P.; De Falco, S. Functional and dysfunctional brain circuits underlying emotional processing of music in autism spectrum disorders. Cereb. Cortex 2011, 21, 2838–2849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caria, A.; De Falco, S. Anterior insular cortex regulation in autism spectrum disorders. Front. Behav. Neurosci. 2015, 9, 38. [Google Scholar] [CrossRef] [Green Version]
- Meyer-Lindenberg, A.; Domes, G.; Kirsch, P.; Heinrichs, M. Oxytocin and vasopressin in the human brain: Social neuropeptides for translational medicine. Nat. Rev. Neurosci. 2011, 12, 524–538. [Google Scholar] [CrossRef] [PubMed]
- Quattrocki, E.; Friston, K. Autism, oxytocin and interoception. Neurosci. Biobehav. Rev. 2014, 47, 410–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammock, E.; Veenstra-VanderWeele, J.; Yan, Z.; Kerr, T.M.; Morris, M.; Anderson, G.M.; Carter, C.S.; Cook, E.H.; Jacob, S. Examining autism spectrum disorders by biomarkers: Example from the oxytocin and serotonin systems. J. Am. Acad. Child. Adolesc. Psychiatry 2012, 51, 712–721. [Google Scholar] [CrossRef] [Green Version]
- Torres, N.; Martins, D.; Santos, A.J.; Prata, D.; Verissimo, M. How do hypothalamic nonapeptides shape youth’s sociality? A systematic review on oxytocin, vasopressin and human socio-emotional development. Neurosci. Biobehav. Rev. 2018, 90, 309–331. [Google Scholar] [CrossRef]
- Hostinar, C.E.; Sullivan, R.M.; Gunnar, M.R. Psychobiological mechanisms underlying the social buffering of the hypothalamic-pituitary-adrenocortical axis: A review of animal models and human studies across development. Psychol. Bull. 2014, 140, 256–282. [Google Scholar] [CrossRef]
- Storm, E.E.; Tecott, L.H. Social circuits: Peptidergic regulation of mammalian social behavior. Neuron 2005, 47, 483–486. [Google Scholar] [CrossRef] [Green Version]
- Ross, H.E.; Young, L.J. Oxytocin and the neural mechanisms regulating social cognition and affiliative behavior. Front. Neuroendocrinol. 2009, 30, 534–547. [Google Scholar] [CrossRef] [Green Version]
- Neumann, I.D.; Landgraf, R. Balance of brain oxytocin and vasopressin: Implications for anxiety, depression, and social behaviors. Trends Neurosci. 2012, 35, 649–659. [Google Scholar] [CrossRef] [PubMed]
- Grinevich, V.; Desarmenien, M.G.; Chini, B.; Tauber, M.; Muscatelli, F. Ontogenesis of oxytocin pathways in the mammalian brain: Late maturation and psychosocial disorders. Front. Neuroanat. 2014, 8, 164. [Google Scholar] [CrossRef] [Green Version]
- Nakajima, M.; Gorlich, A.; Heintz, N. Oxytocin modulates female sociosexual behavior through a specific class of prefrontal cortical interneurons. Cell 2014, 159, 295–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolen, G.; Darvishzadeh, A.; Huang, K.W.; Malenka, R.C. Social reward requires coordinated activity of nucleus accumbens oxytocin and serotonin. Nature 2013, 501, 179–184. [Google Scholar] [CrossRef] [Green Version]
- Guzman, Y.F.; Tronson, N.C.; Sato, K.; Mesic, I.; Guedea, A.L.; Nishimori, K.; Radulovic, J. Role of oxytocin receptors in modulation of fear by social memory. Psychopharmacology 2014, 231, 2097–2105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knobloch, H.S.; Charlet, A.; Hoffmann, L.C.; Eliava, M.; Khrulev, S.; Cetin, A.H.; Osten, P.; Schwarz, M.K.; Seeburg, P.H.; Stoop, R.; et al. Evoked axonal oxytocin release in the central amygdala attenuates fear response. Neuron 2012, 73, 553–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Insel, T.R. The challenge of translation in social neuroscience: A review of oxytocin, vasopressin, and affiliative behavior. Neuron 2010, 65, 768–779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carter, C.S.; Grippo, A.J.; Pournajafi-Nazarloo, H.; Ruscio, M.G.; Porges, S.W. Oxytocin, vasopressin and sociality. Prog. Brain Res. 2008, 170, 331–336. [Google Scholar] [CrossRef]
- Donaldson, Z.R.; Young, L.J. Oxytocin, vasopressin, and the neurogenetics of sociality. Science 2008, 322, 900–904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heinrichs, M.; Domes, G. Neuropeptides and social behaviour: Effects of oxytocin and vasopressin in humans. Prog. Brain Res. 2008, 170, 337–350. [Google Scholar] [CrossRef]
- Heinrichs, M.; Von Dawans, B.; Domes, G. Oxytocin, vasopressin, and human social behavior. Front. Neuroendocrinol. 2009, 30, 548–557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quintana, D.S.; Alvares, G.A.; Hickie, I.B.; Guastella, A.J. Do delivery routes of intranasally administered oxytocin account for observed effects on social cognition and behavior? A two-level model. Neurosci. Biobehav. Rev. 2015, 49, 182–192. [Google Scholar] [CrossRef]
- Harari-Dahan, O.; Bernstein, A. A general approach-avoidance hypothesis of oxytocin: Accounting for social and non-social effects of oxytocin. Neurosci. Biobehav. Rev. 2014, 47, 506–519. [Google Scholar] [CrossRef]
- Goodson, J.L.; Bass, A.H. Social behavior functions and related anatomical characteristics of vasotocin/vasopressin systems in vertebrates. Brain Res. Brain Res. Rev. 2001, 35, 246–265. [Google Scholar] [CrossRef]
- Parker, K.J.; Garner, J.P.; Libove, R.A.; Hyde, S.A.; Hornbeak, K.B.; Carson, D.S.; Liao, C.P.; Phillips, J.M.; Hallmayer, J.F.; Hardan, A.Y. Plasma oxytocin concentrations and OXTR polymorphisms predict social impairments in children with and without autism spectrum disorder. Proc. Natl. Acad. Sci. USA 2014, 111, 12258–12263. [Google Scholar] [CrossRef] [Green Version]
- Baribeau, D.A.; Anagnostou, E. Oxytocin and vasopressin: Linking pituitary neuropeptides and their receptors to social neurocircuits. Front. Neurosci. 2015, 9, 335. [Google Scholar] [CrossRef] [Green Version]
- Andari, E.; Richard, N.; Leboyer, M.; Sirigu, A. Adaptive coding of the value of social cues with oxytocin, an fMRI study in autism spectrum disorder. Cortex 2016, 76, 79–88. [Google Scholar] [CrossRef]
- Aoki, Y.; Yahata, N.; Watanabe, T.; Takano, Y.; Kawakubo, Y.; Kuwabara, H.; Iwashiro, N.; Natsubori, T.; Inoue, H.; Suga, M.; et al. Oxytocin improves behavioural and neural deficits in inferring others’ social emotions in autism. Brain 2014, 137, 3073–3086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aoki, Y.; Yamasue, H. Reply: Does imitation act as an oxytocin nebulizer in autism spectrum disorder? Brain 2015, 138, e361. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, T.; Abe, O.; Kuwabara, H.; Yahata, N.; Takano, Y.; Iwashiro, N.; Natsubori, T.; Aoki, Y.; Takao, H.; Kawakubo, Y.; et al. Mitigation of sociocommunicational deficits of autism through oxytocin-induced recovery of medial prefrontal activity: A randomized trial. JAMA Psychiatry 2014, 71, 166–175. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, T.; Kuroda, M.; Kuwabara, H.; Aoki, Y.; Iwashiro, N.; Tatsunobu, N.; Takao, H.; Nippashi, Y.; Kawakubo, Y.; Kunimatsu, A.; et al. Clinical and neural effects of six-week administration of oxytocin on core symptoms of autism. Brain 2015, 138, 3400–3412. [Google Scholar] [CrossRef] [PubMed]
- Kanat, M.; Spenthof, I.; Riedel, A.; Van Elst, L.T.; Heinrichs, M.; Domes, G. Restoring effects of oxytocin on the attentional preference for faces in autism. Transl. Psychiatry 2017, 7, e1097. [Google Scholar] [CrossRef]
- Rajamani, K.T.; Wagner, S.; Grinevich, V.; Harony-Nicolas, H. Oxytocin as a Modulator of Synaptic Plasticity: Implications for Neurodevelopmental Disorders. Front. Synaptic Neurosci. 2018, 10, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rutigliano, G.; Rocchetti, M.; Paloyelis, Y.; Gilleen, J.; Sardella, A.; Cappucciati, M.; Palombini, E.; Dell’Osso, L.; Caverzasi, E.; Politi, P.; et al. Peripheral oxytocin and vasopressin: Biomarkers of psychiatric disorders? A comprehensive systematic review and preliminary meta-analysis. Psychiatry Res. 2016, 241, 207–220. [Google Scholar] [CrossRef]
- Pow, D.V.; Morris, J.F. Dendrites of hypothalamic magnocellular neurons release neurohypophysial peptides by exocytosis. Neuroscience 1989, 32, 435–439. [Google Scholar] [CrossRef]
- Castel, M.; Morris, J.F. The neurophysin-containing innervation of the forebrain of the mouse. Neuroscience 1988, 24, 937–966. [Google Scholar] [CrossRef]
- Ludwig, M.; Leng, G. Dendritic peptide release and peptide-dependent behaviours. Nat. Rev. Neurosci. 2006, 7, 126–136. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, M. Dendritic release of vasopressin and oxytocin. J. Neuroendocrinol. 1998, 10, 881–895. [Google Scholar] [CrossRef] [PubMed]
- Veenema, A.H.; Neumann, I.D. Central vasopressin and oxytocin release: Regulation of complex social behaviours. Prog. Brain Res. 2008, 170, 261–276. [Google Scholar] [CrossRef]
- Boccia, M.L.; Petrusz, P.; Suzuki, K.; Marson, L.; Pedersen, C.A. Immunohistochemical localization of oxytocin receptors in human brain. Neuroscience 2013, 253, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Landgraf, R.; Neumann, I.D. Vasopressin and oxytocin release within the brain: A dynamic concept of multiple and variable modes of neuropeptide communication. Front. Neuroendocrinol. 2004, 25, 150–176. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, M.; Sabatier, N.; Bull, P.M.; Landgraf, R.; Dayanithi, G.; Leng, G. Intracellular calcium stores regulate activity-dependent neuropeptide release from dendrites. Nature 2002, 418, 85–89. [Google Scholar] [CrossRef]
- Leng, G.; Caquineau, C.; Sabatier, N. Regulation of oxytocin secretion. Vitam. Horm. 2005, 71, 27–58. [Google Scholar] [CrossRef]
- Giustina, A.; Braunstein, G.D. Hypothalamic syndromes. In Endocrinology: Adult and Pediatric; Elsevier: Amsterdam, The Netherlands, 2016; pp. 174–187. [Google Scholar]
- Wheatley, M.C. The hypothalamus and affective behavior in cats. Arch. Neur. Psych. (Chicago). 1944, 52, 296–316. [Google Scholar] [CrossRef]
- Reeves, A.G.; Plum, F. Hyperphagia, rage, and dementia accompanying a ventromedial hypothalamic neoplasam. Arch. Neur. 1969, 20, 616–624. [Google Scholar] [CrossRef]
- Herman, B.H.; Panksepp, J. Ascending endorphin inhibition of distress vocalization. Science 1981, 211, 1060–1062. [Google Scholar] [CrossRef]
- Gorman, D.G.; Cummings, J.L. Hypersexuality following septal injury. Arch. Neurol. 1992, 49, 308–310. [Google Scholar] [CrossRef] [PubMed]
- Andy, O.J.; Stephan, H. The septum in the human brain. J. Comp. Neurol. 1968, 133, 383–410. [Google Scholar] [CrossRef] [PubMed]
- Bishop, M.P.; Elder, S.T.; Heath, R.G. Intracranial self-stimulation in man. Science 1963, 140, 394–396. [Google Scholar] [CrossRef]
- Barbosa, D.A.N.; De Oliveira-Souza, R.; Monte Santo, F.; de Oliveira Faria, A.C.; Gorgulho, A.A.; De Salles, A.A.F. The hypothalamus at the crossroads of psychopathology and neurosurgery. Neurosurg. Focus 2017, 43, E15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harms, M.B.; Martin, A.; Wallace, G.L. Facial emotion recognition in autism spectrum disorders: A review of behavioral and neuroimaging studies. Neuropsychol. Rev. 2010, 20, 290–322. [Google Scholar] [CrossRef]
- Kana, R.K.; Libero, L.E.; Hu, C.P.; Deshpande, H.D.; Colburn, J.S. Functional brain networks and white matter underlying theory-of-mind in autism. Soc. Cogn. Affect. Neurosci. 2014, 9, 98–105. [Google Scholar] [CrossRef] [Green Version]
- Dalton, K.M.; Nacewicz, B.M.; Johnstone, T.; Schaefer, H.S.; Gernsbacher, M.A.; Goldsmith, H.H.; Alexander, A.L.; Davidson, R.J. Gaze fixation and the neural circuitry of face processing in autism. Nat. Neurosci. 2005, 8, 519–526. [Google Scholar] [CrossRef] [Green Version]
- Dichter, G.S.; Richey, J.A.; Rittenberg, A.M.; Sabatino, A.; Bodfish, J.W. Reward circuitry function in autism during face anticipation and outcomes. J. Autism Dev. Disord. 2012, 42, 147–160. [Google Scholar] [CrossRef]
- Dichter, G.S.; Felder, J.N.; Green, S.R.; Rittenberg, A.M.; Sasson, N.J.; Bodfish, J.W. Reward circuitry function in autism spectrum disorders. Soc. Cogn. Affect. Neurosci. 2012, 7, 160–172. [Google Scholar] [CrossRef] [Green Version]
- Chevallier, C.; Kohls, G.; Troiani, V.; Brodkin, E.S.; Schultz, R.T. The social motivation theory of autism. Trends Cogn. Sci. 2012, 16, 231–239. [Google Scholar] [CrossRef] [Green Version]
- Assaf, M.; Hyatt, C.J.; Wong, C.G.; Johnson, M.R.; Schultz, R.T.; Hendler, T.; Pearlson, G.D. Mentalizing and motivation neural function during social interactions in autism spectrum disorders. Neuroimage Clin. 2013, 3, 321–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigues, S.M.; Saslow, L.R.; Garcia, N.; John, O.P.; Keltner, D. Oxytocin receptor genetic variation relates to empathy and stress reactivity in humans. Proc. Natl. Acad. Sci. USA 2009, 106, 21437–21441. [Google Scholar] [CrossRef] [Green Version]
- Tost, H.; Kolachana, B.; Hakimi, S.; Lemaitre, H.; Verchinski, B.A.; Mattay, V.S.; Weinberger, D.R.; Meyer-Lindenberg, A. A common allele in the oxytocin receptor gene (OXTR) impacts prosocial temperament and human hypothalamic-limbic structure and function. Proc. Natl. Acad. Sci. USA 2010, 107, 13936–13941. [Google Scholar] [CrossRef] [Green Version]
- Dannlowski, U.; Kugel, H.; Grotegerd, D.; Redlich, R.; Opel, N.; Dohm, K.; Zaremba, D.; Grogler, A.; Schwieren, J.; Suslow, T.; et al. Disadvantage of Social Sensitivity: Interaction of Oxytocin Receptor Genotype and Child Maltreatment on Brain Structure. Biol. Psychiatry 2016, 80, 398–405. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, C.; Dannlowski, U.; Brauer, D.; Stevens, S.; Laeger, I.; Wittmann, H.; Kugel, H.; Dobel, C.; Hurlemann, R.; Reif, A.; et al. Oxytocin receptor gene methylation: Converging multilevel evidence for a role in social anxiety. Neuropsychopharmacology 2015, 40, 1528–1538. [Google Scholar] [CrossRef] [PubMed]
- McDonald, N.M.; Baker, J.K.; Messinger, D.S. Oxytocin and parent-child interaction in the development of empathy among children at risk for autism. Dev. Psychol. 2016, 52, 735–745. [Google Scholar] [CrossRef]
- Schneider-Hassloff, H.; Straube, B.; Jansen, A.; Nuscheler, B.; Wemken, G.; Witt, S.H.; Rietschel, M.; Kircher, T. Oxytocin receptor polymorphism and childhood social experiences shape adult personality, brain structure and neural correlates of mentalizing. Neuroimage 2016, 134, 671–684. [Google Scholar] [CrossRef]
- Smith, K.E.; Porges, E.C.; Norman, G.J.; Connelly, J.J.; Decety, J. Oxytocin receptor gene variation predicts empathic concern and autonomic arousal while perceiving harm to others. Soc. Neurosci. 2014, 9, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Uzefovsky, F.; Shalev, I.; Israel, S.; Edelman, S.; Raz, Y.; Mankuta, D.; Knafo-Noam, A.; Ebstein, R.P. Oxytocin receptor and vasopressin receptor 1a genes are respectively associated with emotional and cognitive empathy. Horm. Behav. 2015, 67, 60–65. [Google Scholar] [CrossRef]
- Wu, N.; Li, Z.; Su, Y. The association between oxytocin receptor gene polymorphism (OXTR) and trait empathy. J. Affect. Disord. 2012, 138, 468–472. [Google Scholar] [CrossRef]
- Kurth, F.; Narr, K.L.; Woods, R.P.; O’Neill, J.; Alger, J.R.; Caplan, R.; McCracken, J.T.; Toga, A.W.; Levitt, J.G. Diminished gray matter within the hypothalamus in autism disorder: A potential link to hormonal effects? Biol. Psychiatry 2011, 70, 278–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolfe, F.H.; Auzias, G.; Deruelle, C.; Chaminade, T. Focal atrophy of the hypothalamus associated with third ventricle enlargement in autism spectrum disorder. Neuroreport 2015, 26, 1017–1022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shou, X.J.; Xu, X.J.; Zeng, X.Z.; Liu, Y.; Yuan, H.S.; Xing, Y.; Jia, M.X.; Wei, Q.Y.; Han, S.P.; Zhang, R.; et al. A Volumetric and Functional Connectivity MRI Study of Brain Arginine-Vasopressin Pathways in Autistic Children. Neurosci. Bull. 2017, 33, 130–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucht, M.J.; Barnow, S.; Sonnenfeld, C.; Rosenberger, A.; Grabe, H.J.; Schroeder, W.; Volzke, H.; Freyberger, H.J.; Herrmann, F.H.; Kroemer, H.; et al. Associations between the oxytocin receptor gene (OXTR) and affect, loneliness and intelligence in normal subjects. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2009, 33, 860–866. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Jia, M.; Ruan, Y.; Liu, J.; Guo, Y.; Shuang, M.; Gong, X.; Zhang, Y.; Yang, X.; Zhang, D. Positive association of the oxytocin receptor gene (OXTR) with autism in the Chinese Han population. Biol. Psychiatry 2005, 58, 74–77. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Kawamura, Y.; Shimada, T.; Otowa, T.; Koishi, S.; Sugiyama, T.; Nishida, H.; Hashimoto, O.; Nakagami, R.; Tochigi, M.; et al. Association of the oxytocin receptor (OXTR) gene polymorphisms with autism spectrum disorder (ASD) in the Japanese population. J. Hum. Genet. 2010, 55, 137–141. [Google Scholar] [CrossRef] [Green Version]
- Yamasue, H. Function and structure in social brain regions can link oxytocin-receptor genes with autistic social behavior. Brain Dev. 2013, 35, 111–118. [Google Scholar] [CrossRef] [PubMed]
- LoParo, D.; Waldman, I.D. The oxytocin receptor gene (OXTR) is associated with autism spectrum disorder: A meta-analysis. Mol. Psychiatry 2015, 20, 640–646. [Google Scholar] [CrossRef] [PubMed]
- Baribeau, D.A.; Dupuis, A.; Paton, T.A.; Scherer, S.W.; Schachar, R.J.; Arnold, P.D.; Szatmari, P.; Nicolson, R.; Georgiades, S.; Crosbie, J.; et al. Oxytocin Receptor Polymorphisms are Differentially Associated with Social Abilities across Neurodevelopmental Disorders. Sci. Rep. 2017, 7, 11618. [Google Scholar] [CrossRef] [Green Version]
- Tost, H.; Kolachana, B.; Verchinski, B.A.; Bilek, E.; Goldman, A.L.; Mattay, V.S.; Weinberger, D.R.; Meyer-Lindenberg, A. Neurogenetic effects of OXTR rs2254298 in the extended limbic system of healthy Caucasian adults. Biol. Psychiatry 2011, 70, e37–e39. [Google Scholar] [CrossRef] [PubMed]
- Kochunov, P.; Glahn, D.C.; Lancaster, J.; Thompson, P.M.; Kochunov, V.; Rogers, B.; Fox, P.; Blangero, J.; Williamson, D.E. Fractional anisotropy of cerebral white matter and thickness of cortical gray matter across the lifespan. Neuroimage 2011, 58, 41–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Y.; Chen, Z.J.; Evans, A.C. Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb. Cortex 2007, 17, 2407–2419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inoue, H.; Yamasue, H.; Tochigi, M.; Abe, O.; Liu, X.; Kawamura, Y.; Takei, K.; Suga, M.; Yamada, H.; Rogers, M.A.; et al. Association between the oxytocin receptor gene and amygdalar volume in healthy adults. Biol. Psychiatry 2010, 68, 1066–1072. [Google Scholar] [CrossRef]
- Yamasue, H.; Suga, M.; Yahata, N.; Inoue, H.; Tochigi, M.; Abe, A.; Liu, X.; Kawamura, Y.; Rogers, M.A.; Takei, K.; et al. Reply to: Neurogenetic effects of OXTR rs2254298 in the extended limbic system of healthy Caucasian adults. Biol. Psychiatry 2011, 70, E41–E42. [Google Scholar] [CrossRef]
- Aoki, Y.; Cortese, S.; Tansella, M. Neural bases of atypical emotional face processing in autism: A meta-analysis of fMRI studies. World J. Biol. Psychiatry J. World Fed. Soc. Biol. Psychiatry 2015, 16, 291–300. [Google Scholar] [CrossRef]
- Cremers, H.R.; Wager, T.D.; Yarkoni, T. The relation between statistical power and inference in fMRI. PLoS ONE 2017, 12, e0184923. [Google Scholar] [CrossRef] [Green Version]
- Chaminade, T.; Da Fonseca, D.; Rosset, D.; Cheng, G.; Deruelle, C. Atypical modulation of hypothalamic activity by social context in ASD. Res. Autism Spectr. Disord. 2015, 10, 41–50. [Google Scholar] [CrossRef]
- Baron-Cohen, S.; Wheelwright, S.; Skinner, R.; Martin, J.; Clubley, E. The autism-spectrum quotient (AQ): Evidence from Asperger syndrome/high-functioning autism, males and females, scientists and mathematicians. J. Autism Dev. Disord. 2001, 31, 5–17. [Google Scholar] [CrossRef]
- Wang, J.; Qin, W.; Liu, B.; Wang, D.; Zhang, Y.; Jiang, T.; Yu, C. Variant in OXTR gene and functional connectivity of the hypothalamus in normal subjects. Neuroimage 2013, 81, 199–204. [Google Scholar] [CrossRef]
- Dumais, K.M.; Veenema, A.H. Vasopressin and oxytocin receptor systems in the brain: Sex differences and sex-specific regulation of social behavior. Front. Neuroendocrinol. 2016, 40, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Miller, M.; Bales, K.L.; Taylor, S.L.; Yoon, J.; Hostetler, C.M.; Carter, C.S.; Solomon, M. Oxytocin and vasopressin in children and adolescents with autism spectrum disorders: Sex differences and associations with symptoms. Autism Res. J. Int. Soc. Autism Res. 2013, 6, 91–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hines, M. Sex-related variation in human behavior and the brain. Trends Cogn. Sci. 2010, 14, 448–456. [Google Scholar] [CrossRef] [Green Version]
- Loomes, R.; Hull, L.; Mandy, W.P.L. What Is the Male-to-Female Ratio in Autism Spectrum Disorder? A Systematic Review and Meta-Analysis. J. Am. Acad. Child. Adolesc. Psychiatry 2017, 56, 466–474. [Google Scholar] [CrossRef] [PubMed]
- Nickl-Jockschat, T.; Habel, U.; Michel, T.M.; Manning, J.; Laird, A.R.; Fox, P.T.; Schneider, F.; Eickhoff, S.B. Brain structure anomalies in autism spectrum disorder—A meta-analysis of VBM studies using anatomic likelihood estimation. Hum. Brain Mapp. 2012, 33, 1470–1489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duerden, E.G.; Mak-Fan, K.M.; Taylor, M.J.; Roberts, S.W. Regional differences in grey and white matter in children and adults with autism spectrum disorders: An activation likelihood estimate (ALE) meta-analysis. Autism Res. J. Int. Soc. Autism Res. 2012, 5, 49–66. [Google Scholar] [CrossRef] [PubMed]
- DeRamus, T.P.; Kana, R.K. Anatomical likelihood estimation meta-analysis of grey and white matter anomalies in autism spectrum disorders. Neuroimage Clin. 2015, 7, 525–536. [Google Scholar] [CrossRef] [Green Version]
- McAlonan, G.M.; Cheung, V.; Cheung, C.; Suckling, J.; Lam, G.Y.; Tai, K.S.; Yip, L.; Murphy, D.G.; Chua, S.E. Mapping the brain in autism. A voxel-based MRI study of volumetric differences and intercorrelations in autism. Brain 2005, 128, 268–276. [Google Scholar] [CrossRef]
- Cauda, F.; Costa, T.; Palermo, S.; D’Agata, F.; Diano, M.; Bianco, F.; Duca, S.; Keller, R. Concordance of white matter and gray matter abnormalities in autism spectrum disorders: A voxel-based meta-analysis study. Hum. Brain Mapp. 2014, 35, 2073–2098. [Google Scholar] [CrossRef]
- Sato, W.; Kochiyama, T.; Uono, S.; Yoshimura, S.; Kubota, Y.; Sawada, R.; Sakihama, M.; Toichi, M. Reduced Gray Matter Volume in the Social Brain Network in Adults with Autism Spectrum Disorder. Front. Hum. Neurosci. 2017, 11, 395. [Google Scholar] [CrossRef] [Green Version]
- Varghese, M.; Keshav, N.; Jacot-Descombes, S.; Warda, T.; Wicinski, B.; Dickstein, D.L.; Harony-Nicolas, H.; De Rubeis, S.; Drapeau, E.; Buxbaum, J.D.; et al. Autism spectrum disorder: Neuropathology and animal models. Acta Neuropathol. 2017, 134, 537–566. [Google Scholar] [CrossRef]
- Schumann, C.M.; Amaral, D.G. Stereological analysis of amygdala neuron number in autism. J. Neurosci. 2006, 26, 7674–7679. [Google Scholar] [CrossRef]
- Van Kooten, I.A.; Palmen, S.J.; Von Cappeln, P.; Steinbusch, H.W.; Korr, H.; Heinsen, H.; Hof, P.R.; Van Engeland, H.; Schmitz, C. Neurons in the fusiform gyrus are fewer and smaller in autism. Brain 2008, 131, 987–999. [Google Scholar] [CrossRef] [Green Version]
- Wegiel, J.; Flory, M.; Kuchna, I.; Nowicki, K.; Ma, S.Y.; Imaki, H.; Wegiel, J.; Cohen, I.L.; London, E.; Wisniewski, T.; et al. Stereological study of the neuronal number and volume of 38 brain subdivisions of subjects diagnosed with autism reveals significant alterations restricted to the striatum, amygdala and cerebellum. Acta Neuropathol. Commun. 2014, 2, 141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simms, M.L.; Kemper, T.L.; Timbie, C.M.; Bauman, M.L.; Blatt, G.J. The anterior cingulate cortex in autism: Heterogeneity of qualitative and quantitative cytoarchitectonic features suggests possible subgroups. Acta Neuropathol. 2009, 118, 673–684. [Google Scholar] [CrossRef] [PubMed]
- Dodero, L.; Damiano, M.; Galbusera, A.; Bifone, A.; Tsaftsaris, S.A.; Scattoni, M.L.; Gozzi, A. Neuroimaging evidence of major morpho-anatomical and functional abnormalities in the BTBR T+TF/J mouse model of autism. PLoS ONE 2013, 8, e76655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pagani, M.; Damiano, M.; Galbusera, A.; Tsaftaris, S.A.; Gozzi, A. Semi-automated registration-based anatomical labelling, voxel based morphometry and cortical thickness mapping of the mouse brain. J. Neurosci. Methods 2016, 267, 62–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellegood, J.; Anagnostou, E.; Babineau, B.A.; Crawley, J.N.; Lin, L.; Genestine, M.; DiCicco-Bloom, E.; Lai, J.K.; Foster, J.A.; Penagarikano, O.; et al. Clustering autism: Using neuroanatomical differences in 26 mouse models to gain insight into the heterogeneity. Mol. Psychiatry 2015, 20, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Penagarikano, O.; Lazaro, M.T.; Lu, X.H.; Gordon, A.; Dong, H.; Lam, H.A.; Peles, E.; Maidment, N.T.; Murphy, N.P.; Yang, X.W.; et al. Exogenous and evoked oxytocin restores social behavior in the Cntnap2 mouse model of autism. Sci. Transl. Med. 2015, 7, 271–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brunner, D.; Kabitzke, P.; He, D.; Cox, K.; Thiede, L.; Hanania, T.; Sabath, E.; Alexandrov, V.; Saxe, M.; Peles, E.; et al. Comprehensive Analysis of the 16p11.2 Deletion and Null Cntnap2 Mouse Models of Autism Spectrum Disorder. PLoS ONE 2015, 10, e0134572. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.F.; Dai, Y.C.; Wu, J.; Jia, M.X.; Zhang, J.S.; Shou, X.J.; Han, S.P.; Zhang, R.; Han, J.S. Plasma Oxytocin and Arginine-Vasopressin Levels in Children with Autism Spectrum Disorder in China: Associations with Symptoms. Neurosci. Bull. 2016, 32, 423–432. [Google Scholar] [CrossRef] [Green Version]
- Lefevre, A.; Mottolese, R.; Dirheimer, M.; Mottolese, C.; Duhamel, J.R.; Sirigu, A. A comparison of methods to measure central and peripheral oxytocin concentrations in human and non-human primates. Sci. Rep. 2017, 7, 17222. [Google Scholar] [CrossRef] [Green Version]
- Logothetis, N.K.; Panzeri, S. Local field potential, relationship to BOLD signal. In Encyclopedia Computational Neuroscience; Springer Science+Business Media: New York, NY, USA, 2014; pp. 1–11. [Google Scholar]
- Van den Pol, A.N. Neuropeptide transmission in brain circuits. Neuron 2012, 76, 98–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsurugizawa, T.; Tamada, K.; Ono, N.; Karakawa, S.; Kodama, Y.; Debacker, C.; Hata, J.; Okano, H.; Kitamura, A.; Zalesky, A.; et al. Awake functional MRI detects neural circuit dysfunction in a mouse model of autism. Sci. Adv. 2020, 6, eaav4520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, H.; Kim, C.H.; Knight, E.Q.; Oh, H.W.; Park, B.; Kim, D.G.; Park, H.J. Changes in brain metabolic connectivity underlie autistic-like social deficits in a rat model of autism spectrum disorder. Sci. Rep. 2017, 7, 13213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holsen, L.M.; Lawson, E.A.; Blum, J.; Ko, E.; Makris, N.; Fazeli, P.K.; Klibanski, A.; Goldstein, J.M. Food motivation circuitry hypoactivation related to hedonic and nonhedonic aspects of hunger and satiety in women with active anorexia nervosa and weight-restored women with anorexia nervosa. J. Psychiatry Neurosci. 2012, 37, 322–332. [Google Scholar] [CrossRef] [Green Version]
- Lawson, E.A.; Holsen, L.M.; Santin, M.; Meenaghan, E.; Eddy, K.T.; Becker, A.E.; Herzog, D.B.; Goldstein, J.M.; Klibanski, A. Oxytocin secretion is associated with severity of disordered eating psychopathology and insular cortex hypoactivation in anorexia nervosa. J. Clin. Endocrinol. Metab. 2012, 97, E1898–E1908. [Google Scholar] [CrossRef] [Green Version]
- Bookheimer, S.Y.; Wang, A.T.; Scott, A.; Sigman, M.; Dapretto, M. Frontal contributions to face processing differences in autism: Evidence from fMRI of inverted face processing. J. Int. Neuropsychol. Soc. 2008, 14, 922–932. [Google Scholar] [CrossRef] [Green Version]
- Hadjikhani, N.; Joseph, R.M.; Snyder, J.; Tager-Flusberg, H. Abnormal activation of the social brain during face perception in autism. Hum. Brain Mapp. 2007, 28, 441–449. [Google Scholar] [CrossRef]
- Dalton, K.M.; Nacewicz, B.M.; Alexander, A.L.; Davidson, R.J. Gaze-fixation, brain activation, and amygdala volume in unaffected siblings of individuals with autism. Biol. Psychiatry 2007, 61, 512–520. [Google Scholar] [CrossRef]
- Herrington, J.D.; Miller, J.S.; Pandey, J.; Schultz, R.T. Anxiety and social deficits have distinct relationships with amygdala function in autism spectrum disorder. Soc. Cogn. Affect. Neurosci. 2016, 11, 907–914. [Google Scholar] [CrossRef] [Green Version]
- LeDoux, J.E. Emotion circuits in the brain. Annu. Rev. Neurosci. 2000, 23, 155–184. [Google Scholar] [CrossRef]
- Janak, P.H.; Tye, K.M. From circuits to behaviour in the amygdala. Nature 2015, 517, 284–292. [Google Scholar] [CrossRef] [Green Version]
- Viviani, D.; Charlet, A.; Van den Burg, E.; Robinet, C.; Hurni, N.; Abatis, M.; Magara, F.; Stoop, R. Oxytocin selectively gates fear responses through distinct outputs from the central amygdala. Science 2011, 333, 104–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krueger, F.; McCabe, K.; Moll, J.; Kriegeskorte, N.; Zahn, R.; Strenziok, M.; Heinecke, A.; Grafman, J. Neural correlates of trust. Proc. Natl. Acad. Sci. USA 2007, 104, 20084–20089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartels, A.; Zeki, S. The neural correlates of maternal and romantic love. Neuroimage 2004, 21, 1155–1166. [Google Scholar] [CrossRef] [Green Version]
- Strathearn, L.; Fonagy, P.; Amico, J.; Montague, P.R. Adult attachment predicts maternal brain and oxytocin response to infant cues. Neuropsychopharmacology 2009, 34, 2655–2666. [Google Scholar] [CrossRef] [PubMed]
- Acevedo, B.P.; Aron, A.; Fisher, H.E.; Brown, L.L. Neural correlates of long-term intense romantic love. Soc. Cogn. Affect. Neurosci. 2012, 7, 145–159. [Google Scholar] [CrossRef] [Green Version]
- Mercado, E.; Hibel, L.C. I love you from the bottom of my hypothalamus: The role of stress physiology in romantic pair bond formation and maintenance. Soc. Pers. Psychol. Compass 2017, 11. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, F.H.; Deruelle, C.; Chaminade, T. Are friends really the family we choose? Local variations of hypothalamus activity when viewing personally known faces. Soc. Neurosci. 2018, 13, 289–300. [Google Scholar] [CrossRef]
- Shamay-Tsoory, S.G.; Abu-Akel, A. The Social Salience Hypothesis of Oxytocin. Biol. Psychiatry 2016, 79, 194–202. [Google Scholar] [CrossRef]
- Wittfoth-Schardt, D.; Grunding, J.; Wittfoth, M.; Lanfermann, H.; Heinrichs, M.; Domes, G.; Buchheim, A.; Gundel, H.; Waller, C. Oxytocin modulates neural reactivity to children’s faces as a function of social salience. Neuropsychopharmacology 2012, 37, 1799–1807. [Google Scholar] [CrossRef]
- Huber, D.; Veinante, P.; Stoop, R. Vasopressin and oxytocin excite distinct neuronal populations in the central amygdala. Science 2005, 308, 245–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wild, B.; Erb, M.; Eyb, M.; Bartels, M.; Grodd, W. Why are smiles contagious? An fMRI study of the interaction between perception of facial affect and facial movements. Psychiatry Res. 2003, 123, 17–36. [Google Scholar] [CrossRef]
- Hikosaka, O.; Bromberg-Martin, E.; Hong, S.; Matsumoto, M. New insights on the subcortical representation of reward. Curr. Opin. Neurobiol. 2008, 18, 203–208. [Google Scholar] [CrossRef] [Green Version]
- Herman, J.P.; Cullinan, W.E. Neurocircuitry of stress: Central control of the hypothalamo-pituitary-adrenocortical axis. Trends Neurosci. 1997, 20, 78–84. [Google Scholar] [CrossRef]
- Price, J.L. Comparative aspects of amygdala connectivity. Ann. N.Y. Acad. Sci. 2003, 985, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Ongur, D.; An, X.; Price, J.L. Prefrontal cortical projections to the hypothalamus in macaque monkeys. J. Comp. Neurol. 1998, 401, 480–505. [Google Scholar] [CrossRef]
- Johansen-Berg, H.; Gutman, D.A.; Behrens, T.E.; Matthews, P.M.; Rushworth, M.F.; Katz, E.; Lozano, A.M.; Mayberg, H.S. Anatomical connectivity of the subgenual cingulate region targeted with deep brain stimulation for treatment-resistant depression. Cereb. Cortex 2008, 18, 1374–1383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baumgartner, T.; Heinrichs, M.; Vonlanthen, A.; Fischbacher, U.; Fehr, E. Oxytocin shapes the neural circuitry of trust and trust adaptation in humans. Neuron 2008, 58, 639–650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krueger, F.; Barbey, A.K.; Grafman, J. The medial prefrontal cortex mediates social event knowledge. Trends Cogn. Sci. 2009, 13, 103–109. [Google Scholar] [CrossRef]
- Apps, M.A.J.; Sallet, J. Social Learning in the Medial Prefrontal Cortex. Trends Cogn. Sci. 2017, 21, 151–152. [Google Scholar] [CrossRef] [PubMed]
- Apps, M.A.; Rushworth, M.F.; Chang, S.W. The Anterior Cingulate Gyrus and Social Cognition: Tracking the Motivation of Others. Neuron 2016, 90, 692–707. [Google Scholar] [CrossRef] [Green Version]
- Barrett, L.F. The theory of constructed emotion: An active inference account of interoception and categorization. Soc. Cogn. Affect. Neurosci. 2017, 12, 1833. [Google Scholar] [CrossRef]
- Ondobaka, S.; Kilner, J.; Friston, K. The role of interoceptive inference in theory of mind. Brain Cogn. 2017, 112, 64–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balsters, J.H.; Apps, M.A.; Bolis, D.; Lehner, R.; Gallagher, L.; Wenderoth, N. Disrupted prediction errors index social deficits in autism spectrum disorder. Brain 2017, 140, 235–246. [Google Scholar] [CrossRef]
- Wermter, A.K.; Kamp-Becker, I.; Hesse, P.; Schulte-Korne, G.; Strauch, K.; Remschmidt, H. Evidence for the involvement of genetic variation in the oxytocin receptor gene (OXTR) in the etiology of autistic disorders on high-functioning level. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. Publ. Int. Soc. Psychiatr. Genet. 2010, 153B, 629–639. [Google Scholar] [CrossRef] [PubMed]
- Montag, C.; Sindermann, C.; Melchers, M.; Jung, S.; Luo, R.; Becker, B.; Xie, J.; Xu, W.; Guastella, A.J.; Kendrick, K.M. A functional polymorphism of the OXTR gene is associated with autistic traits in Caucasian and Asian populations. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. Publ. Int. Soc. Psychiatr. Genet. 2017, 174, 808–816. [Google Scholar] [CrossRef] [PubMed]
- Conner, T.S.; McFarlane, K.G.; Choukri, M.; Riordan, B.C.; Flett, J.A.M.; Phipps-Green, A.J.; Topless, R.K.; Merriman, M.E.; Merriman, T.R. The Oxytocin Receptor Gene (OXTR) Variant rs53576 Is Not Related to Emotional Traits or States in Young Adults. Front. Psychol. 2018, 9, 2548. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhao, Y.; Li, R.; Broster, L.S.; Zhou, C.; Yang, S. Association of Oxytocin Receptor Gene (OXTR) rs53576 Polymorphism with Sociality: A Meta-Analysis. PLoS ONE 2015, 10, e0131820. [Google Scholar] [CrossRef]
- Rao, V.V.; Loffler, C.; Battey, J.; Hansmann, I. The human gene for oxytocin-neurophysin I (OXT) is physically mapped to chromosome 20p13 by in situ hybridization. Cytogenet. Cell Genet. 1992, 61, 271–273. [Google Scholar] [CrossRef]
- Feldman, R.; Monakhov, M.; Pratt, M.; Ebstein, R.P. Oxytocin Pathway Genes: Evolutionary Ancient System Impacting on Human Affiliation, Sociality, and Psychopathology. Biol. Psychiatry 2016, 79, 174–184. [Google Scholar] [CrossRef] [PubMed]
- Quintana, D.S.; Rokicki, J.; Van der Meer, D.; Alnaes, D.; Kaufmann, T.; Cordova-Palomera, A.; Dieset, I.; Andreassen, O.A.; Westlye, L.T. Oxytocin pathway gene networks in the human brain. Nat. Commun. 2019, 10, 668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schindler, S.; Schonknecht, P.; Schmidt, L.; Anwander, A.; Strauss, M.; Trampel, R.; Bazin, P.L.; Moller, H.E.; Hegerl, U.; Turner, R.; et al. Development and evaluation of an algorithm for the computer-assisted segmentation of the human hypothalamus on 7-Tesla magnetic resonance images. PLoS ONE 2013, 8, e66394. [Google Scholar] [CrossRef] [PubMed]
- Schindler, S.; Schreiber, J.; Bazin, P.L.; Trampel, R.; Anwander, A.; Geyer, S.; Schonknecht, P. Intensity standardisation of 7T MR images for intensity-based segmentation of the human hypothalamus. PLoS ONE 2017, 12, e0173344. [Google Scholar] [CrossRef]
- Schulte, L.H.; Allers, A.; May, A. Hypothalamus as a mediator of chronic migraine: Evidence from high-resolution fMRI. Neurology 2017, 88, 2011–2016. [Google Scholar] [CrossRef]
- Schulte, L.H.; Sprenger, C.; May, A. Physiological brainstem mechanisms of trigeminal nociception: An fMRI study at 3T. Neuroimage 2016, 124, 518–525. [Google Scholar] [CrossRef]
- Bakos, J.; Zatkova, M.; Bacova, Z.; Ostatnikova, D. The Role of Hypothalamic Neuropeptides in Neurogenesis and Neuritogenesis. Neural Plast. 2016, 2016, 3276383. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caria, A.; Ciringione, L.; de Falco, S. Morphofunctional Alterations of the Hypothalamus and Social Behavior in Autism Spectrum Disorders. Brain Sci. 2020, 10, 435. https://doi.org/10.3390/brainsci10070435
Caria A, Ciringione L, de Falco S. Morphofunctional Alterations of the Hypothalamus and Social Behavior in Autism Spectrum Disorders. Brain Sciences. 2020; 10(7):435. https://doi.org/10.3390/brainsci10070435
Chicago/Turabian StyleCaria, Andrea, Luciana Ciringione, and Simona de Falco. 2020. "Morphofunctional Alterations of the Hypothalamus and Social Behavior in Autism Spectrum Disorders" Brain Sciences 10, no. 7: 435. https://doi.org/10.3390/brainsci10070435