# Movidea: A Software Package for Automatic Video Analysis of Movements in Infants at Risk for Neurodevelopmental Disorders

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Video Database of the NIDA Network

#### 2.2. Movidea Software

#### 2.3. Movement Tracking

_{v}

_{1v2}is the cross-correlation between the velocity v1 and the velocity v2, σ

_{v}

_{1v2}is the covariance of v1 and v2, ${\sigma}_{v1}^{2}$ is the variance of v1, and ${\sigma}_{v2}^{2}$ is the variance of v2.

_{ma})—For both the x and y components of the trajectory of each limb, the moving average was computed over the whole recording by using a window with a size of 30 samples according to the following equation:

_{max}is the area differing from the moving average of the x component and l is the total number of frames of the recording.

_{ma}was calculated for the lower and the upper limbs as the sum of the area differing from the moving average of the two components of the two hands and the two feet, respectively. The A

_{ma}represents an index of the smoothness of the movements and it is a marker of neurodevelopmental disorders in infants [17].

#### 2.4. Image Processing

_{mean}), the standard deviation (Q

_{sd}), and the maximum value (Q

_{max}) are computed [22].

_{xmea}n and C

_{ymean}of C in x and y directions are computed over the recording together with the standard deviations C

_{xsd}and C

_{ysd}[14]. The mean and the standard deviation of the velocity (V

_{mean}, V

_{sd}) and the acceleration (A

_{mean}, A

_{sd}) of the centroid are also computed.

#### 2.5. Software Validation

_{ma}, ${n}_{int}$, $\overline{d}$, and P) as the percentage of the feature computed on z with respect to the sum of the features computed on x, y, and z.

## 3. Results

## 4. Discussion

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Ismail, F.Y.; Fatemi, A.; Johnston, M.V. Cerebral plasticity: Windows of opportunity in the developing brain. Eur. J. Paediatr. Neurol.
**2017**, 21, 23–48. [Google Scholar] [CrossRef] - Ghassabian, A.; Sundaram, R.; Bell, E.; Bello, S.C.; Kus, C.; Yeung, E. Gross motor milestones and subsequent development. Pediatrics
**2016**, 138, 1–8. [Google Scholar] [CrossRef] [PubMed][Green Version] - Van Batenburg-Eddes, T.; Henrichs, J.; Schenk, J.J.; Sincer, I.; De Groot, L.; Hofman, A.; Jaddoe, V.W.V.; Verhulst, F.C.; Tiemeier, H. Early infant neuromotor assessment is associated with language and nonverbal cognitive function in toddlers: The generation R study. J. Dev. Behav. Pediatr.
**2013**, 34, 326–334. [Google Scholar] [CrossRef] - Brown, T.; Lalor, A. The Movement Assessment Battery for Children—Second edition (MABC-2): A review and critique. Phys. Occup. Ther. Pediatr.
**2009**, 29, 86–103. [Google Scholar] [CrossRef] [PubMed] - Kakebeeke, T.H.; Chaouch, A.; Knaier, E.; Caflisch, J.; Rousson, V.; Largo, R.H.; Jenni, O.G. A quick and qualitative assessment of gross motor development in preschool children. Eur. J. Pediatr.
**2019**, 178, 565–573. [Google Scholar] [CrossRef] [PubMed] - Kjølbye, C.B.; Bo Drivsholm, T.; Ertmann, R.K.; Lykke, K.; Køster-Rasmussen, R. Motor function tests for 0-2-year-old children—A systematic review. Dan. Med. J.
**2018**, 65, 1–8. [Google Scholar] - Prechtl, H.F.R. Qualitative changes of spontaneous movements in fetus and preterm infant are a marker of neurological dysfunction. Early Hum. Dev.
**1990**, 23, 151–158. [Google Scholar] [CrossRef] - Hadders-Algra, M. Neural substrate and clinical significance of general movements: An update. Dev. Med. Child Neurol.
**2018**, 60, 39–46. [Google Scholar] [CrossRef][Green Version] - Einspieler, C.; Sigafoos, J.; Bartl-Pokorny, K.D.; Landa, R.; Marschik, P.B.; Bölte, S. Highlighting the first 5 months of life: General movements in infants later diagnosed with autism spectrum disorder or Rett syndrome. Res. Autism Spectr. Disord.
**2014**, 8, 286–291. [Google Scholar] [CrossRef][Green Version] - Hadders-Algra, M. Putative neural substrate of normal and abnormal general movements. Neurosci. Biobehav. Rev.
**2007**, 31, 1181–1190. [Google Scholar] [CrossRef] - Einspieler, C.; Bos, A.F.; Libertus, M.E.; Marschik, P.B. The general movement assessment helps us to identify preterm infants at risk for cognitive dysfunction. Front. Psychol.
**2016**, 7, 406. [Google Scholar] [CrossRef] - Einspieler, C.; Prechtl, H.F.R.; Ferrari, F.; Cioni, G.; Bos, A.F. The qualitative assessment of general movements in preterm, term and young infants—Review of the methodology. Early Hum. Dev.
**1997**, 50, 47–60. [Google Scholar] [CrossRef] - Adde, L.; Rygg, M.; Lossius, K.; Øberg, G.K.; Støen, R. General movement assessment: Predicting cerebral palsy in clinical practise. Early Hum. Dev.
**2007**, 83, 13–18. [Google Scholar] [CrossRef] [PubMed] - Adde, L.; Helbostad, J.L.; Jensenius, A.R.; Taraldsen, G.; Støen, R. Using computer-based video analysis in the study of fidgety movements. Early Hum. Dev.
**2009**, 85, 541–547. [Google Scholar] [CrossRef] [PubMed] - Waldmeier, S.; Grunt, S.; Delgado-Eckert, E.; Latzin, P.; Steinlin, M.; Fuhrer, K.; Frey, U. Correlation properties of spontaneous motor activity in healthy infants: A new computer-assisted method to evaluate neurological maturation. Exp. Brain Res.
**2013**, 227, 433–446. [Google Scholar] [CrossRef] [PubMed][Green Version] - Karch, D.; Kim, K.S.; Wochner, K.; Pietz, J.; Dickhaus, H.; Philippi, H. Quantification of the segmental kinematics of spontaneous infant movements. J. Biomech.
**2008**, 41, 2860–2867. [Google Scholar] [CrossRef] - Breitbach-Faller, N.; Rau, G.; Damen, R.; Meinecke, L.; Bartz, C.; Disselhorst-Klug, C. Movement analysis in the early detection of newborns at risk for developing spasticity due to infantile cerebral palsy. Hum. Mov. Sci.
**2006**, 25, 125–144. [Google Scholar] - Ouss, L.; Le Normand, M.T.; Bailly, K.; Gille, M.L.; Gosme, C.; Simas, R.; Wenke, J.; Jeudon, X.; Thepot, S.; Da Silva, T.; et al. Developmental trajectories of hand movements in typical infants and those at risk of developmental disorders: An observational study of kinematics during the first year of life. Front. Psychol.
**2018**, 9, 1–15. [Google Scholar] [CrossRef][Green Version] - Hesse, N.; Pujades, S.; Black, M.; Arens, M.; Hofmann, U.; Schroeder, S. Learning and Tracking the 3D Body Shape of Freely Moving Infants from RGB-D sequences. IEEE Trans. Pattern Anal. Mach. Intell.
**2019**, 14, 1. [Google Scholar] [CrossRef][Green Version] - Marcroft, C.; Khan, A.; Embleton, N.D.; Trenell, M.; Plötz, T. Movement recognition technology as a method of assessing spontaneous general movements in high risk infants. Front. Neurol.
**2015**, 6, 284. [Google Scholar] [CrossRef] - Lucas, B.D.; Kanade, T. An Iterative Image Registration Technique with an Application to Stereo Vision. In Proceedings of the 7th International Joint Conference on Artificial Intelligence, University of British Columbia, Vancouver, BC, Canada, 24–28 August 1981. [Google Scholar]
- Adde, L.; Helbostad, J.L.; Jensenius, A.R.; Taraldsen, G.; Grunewaldt, K.H.; StØen, R. Early prediction of cerebral palsy by computer-based video analysis of general movements: A feasibility study. Dev. Med. Child Neurol.
**2010**, 52, 773–778. [Google Scholar] [CrossRef] [PubMed] - McGraw, K.O.; Wong, S.P. Forming Inferences about Some Intraclass Correlation Coefficients. Psychol. Methods
**1996**, 1, 30. [Google Scholar] [CrossRef] - Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med.
**2016**, 15, 155–163. [Google Scholar] [CrossRef][Green Version] - Cicchetti, D.V. Guidelines, Criteria, and Rules of Thumb for Evaluating Normed and Standardized Assessment Instruments in Psychology. Psychol. Assess.
**1994**, 6, 284–290. [Google Scholar] [CrossRef] - Garrido, D.; Petrova, D.; Watson, L.R.; Garcia-Retamero, R.; Carballo, G. Language and motor skills in siblings of children with autism spectrum disorder: A meta-analytic review. Autism. Res.
**2017**, 10, 1737–1750. [Google Scholar] [CrossRef] [PubMed] - Marchi, V.; Hakala, A.; Knight, A.; D’Acunto, F.; Scattoni, M.L.; Guzzetta, A.; Vanhatalo, S. Automated pose estimation captures key aspects of General Movements at eight to 17 weeks from conventional videos. Acta Paediatr.
**2019**, 108, 1817–1824. [Google Scholar] [CrossRef][Green Version] - Orlandi, S.; Guzzetta, A.; Bandini, A.; Belmonti, V.; Barbagallo, S.D.; Tealdi, G.; Mazzotti, S.; Scattoni, M.L.; Manfredi, C. AVIM—A contactless system for infant data acquisition and analysis: Software architecture and first results. Biomed. Signal Process. Control
**2015**, 20, 85–99. [Google Scholar] [CrossRef]

**Figure 2.**Head length line drawing. The red line connecting the forehead to the chin represents the head length measure taken by the operator.

**Figure 3.**Body central line drawing. The red line connecting the clavicle-line mid-point to the inferior margin of the pelvis represents the body symmetry line taken by the operator.

**Figure 4.**Trajectories represented here by lines of the four limbs tracked during an acquisition. Blue line = right hand; red line = left hand; yellow line = right foot; purple line = left foot; central green line = body symmetry line.

Subjects | Age of Recording | |||||
---|---|---|---|---|---|---|

Risk | Sex | 10 days | 6 weeks | 12 weeks | 18 weeks | 24 weeks |

n | n | n | n | n | ||

Low risk | M | 14 | 23 | 22 | 20 | 18 |

F | 8 | 15 | 16 | 9 | 11 | |

High risk | M | 13 | 14 | 16 | 16 | 13 |

F | 13 | 14 | 16 | 16 | 13 |

Subject | Risk | Sex | Age of Recording |
---|---|---|---|

1 | Low risk | F | 12 weeks |

1 | Low risk | F | 18 weeks |

1 | Low risk | F | 24 weeks |

2 | Low risk | M | 12 weeks |

2 | Low risk | M | 24 weeks |

**Table 3.**Trajectories’ correlation coefficients. For each axis of each limb, the mean ± SD of the correlation coefficients computed between the trajectories obtained by the two operators in each analyzed video is reported.

Limb | Axis | Correlation Coefficient |
---|---|---|

Right Hand | x | 0.991 ± 0.004 |

y | 0.990 ± 0.005 | |

Left Hand | x | 0.992 ± 0.003 |

y | 0.980 ± 0.035 | |

Fight Foot | x | 0.989 ± 0.005 |

y | 0.966 ± 0.037 | |

Left Foot | x | 0.973 ± 0.028 |

y | 0.964 ± 0.034 |

**Table 4.**Intraclass correlation coefficients (ICCs) for the features extracted from the tracked trajectories. The ICC coefficients were computed using the features extracted from a set of five videos analyzed by two operators.

Feature | ICC |
---|---|

Mean velocity | 0.98 |

Mean acceleration | 0.99 |

Area from moving average | 0.97 |

Cross-correlation coefficient | 0.96 |

Intersections mean distance | 0.87 |

Total number of intersections | 0.94 |

Periodicity | 0.97 |

**Table 5.**Contribution of z-axis to the total. For each feature, the mean ± SD contribution of the z-axis to the feature value is reported.

Feature | Name | z Contribution (%) |
---|---|---|

A_{marh} | Area from moving average right hand | 36.7 ± 3.4 |

A_{malh} | Area from moving average left hand | 41.6 ± 5.5 |

A_{marf} | Area from moving average right foot | 37.9 ± 4.4 |

A_{malf} | Area from moving average left foot | 35.7 ± 1.4 |

${\overline{d}}_{rh}$ | Intersections mean distance right hand | 16.8 ± 6.9 |

${\overline{d}}_{lh}$ | Intersections mean distance left hand | 11.3 ± 1.1 |

${\overline{d}}_{rf}$ | Intersections mean distance right foot | 16.5 ± 6.2 |

${\overline{d}}_{lh}$ | Intersections mean distance left foot | 18.0 ± 4.3 |

$Ti{n}_{rh}$ | Total number of intersections right hand | 44.0 ± 10.0 |

$Ti{n}_{lh}$ | Total number of intersections left hand | 53.9 ± 2.5 |

$Ti{n}_{rf}$ | Total number of intersections right foot | 45.9 ± 10.8 |

$Ti{n}_{lf}$ | Total number of intersections left foot | 43.4 ± 8.1 |

${P}_{rh}$ | Periodicity right hand | 46.2 ± 10.1 |

${P}_{lh}$ | Periodicity left hand | 52.4 ± 1.7 |

${P}_{rf}$ | Periodicity right foot | 49.1 ± 11.8 |

${P}_{lf}$ | Periodicity left foot | 47.2 ± 12.7 |

**Table 6.**Mean ± SD percentage of tracking failures. For each tracked limb, the percentage of frames in which the operator reset the tracking point is reported.

End-Effector | Failure (%) |
---|---|

Right hand | 9.7 ± 6.7 |

Left hand | 10.3 ± 6.7 |

Right foot | 15.2 ± 9.3 |

Left foot | 14.5 ± 9.2 |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Baccinelli, W.; Bulgheroni, M.; Simonetti, V.; Fulceri, F.; Caruso, A.; Gila, L.; Scattoni, M.L. Movidea: A Software Package for Automatic Video Analysis of Movements in Infants at Risk for Neurodevelopmental Disorders. *Brain Sci.* **2020**, *10*, 203.
https://doi.org/10.3390/brainsci10040203

**AMA Style**

Baccinelli W, Bulgheroni M, Simonetti V, Fulceri F, Caruso A, Gila L, Scattoni ML. Movidea: A Software Package for Automatic Video Analysis of Movements in Infants at Risk for Neurodevelopmental Disorders. *Brain Sciences*. 2020; 10(4):203.
https://doi.org/10.3390/brainsci10040203

**Chicago/Turabian Style**

Baccinelli, Walter, Maria Bulgheroni, Valentina Simonetti, Francesca Fulceri, Angela Caruso, Letizia Gila, and Maria Luisa Scattoni. 2020. "Movidea: A Software Package for Automatic Video Analysis of Movements in Infants at Risk for Neurodevelopmental Disorders" *Brain Sciences* 10, no. 4: 203.
https://doi.org/10.3390/brainsci10040203