Low Intensity, Transcranial, Alternating Current Stimulation Reduces Migraine Attack Burden in a Home Application Set-Up: A Double-Blinded, Randomized Feasibility Study
Abstract
1. Introduction
2. Methods
2.1. Patients
2.2. Experimental Design
2.3. Transcranial Alternating Current Stimulation
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Disclosures
References
- Antal, A.; Kriener, N.; Lang, N.; Boros, K.; Paulus, W. Cathodal transcranial direct current stimulation of the visual cortex in the prophylactic treatment of migraine. Cephalalgia 2011, 31, 820–828. [Google Scholar] [CrossRef] [PubMed]
- Lipton, R.B.; Pearlman, S.H. Transcranial magnetic simulation in the treatment of migraine. Neurotherapeutics 2010, 7, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Lipton, R.B.; Dodick, D.W.; Silberstein, S.D.; Saper, J.R.; Aurora, S.K.; Pearlman, S.H.; Fischell, R.E.; Ruppel, P.L.; Goadsby, P.J. Single-pulse transcranial magnetic stimulation for acute treatment of migraine with aura: A randomised, double-blind, parallel-group, sham-controlled trial. Lancet Neurol. 2010, 9, 373–380. [Google Scholar] [CrossRef]
- Teepker, M.; Hötzel, J.; Timmesfeld, N.; Reis, J.; Mylius, V.; Haag, A.; Oertel, W.H.; Rosenow, F.; Schepelmann, K. Low-frequency rTMS of the vertex in the prophylactic treatment of migraine. Cephalalgia 2010, 30, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Clarke, B.M.; Upton, A.R.M.; Kamath, M.V.; Al-Harbi, T.M.; Castellanos, C.M. Transcranial magnetic stimulation for migraine: Clinical effects. J. Headache Pain 2006, 7, 341–346. [Google Scholar] [CrossRef]
- Viganò, A.; D’Elia, T.S.; Sava, S.; Auvé, M.; De Pasqua, V.; Colosimo, A.; Di Piero, V.; Schoenen, J.; Magis, D. Transcranial Direct Current Stimulation (tDCS) of the visual cortex: A proof-of-concept study based on interictal electrophysiological abnormalities in migraine. J. Headache Pain 2013, 14, 23. [Google Scholar] [CrossRef]
- Pinchuk, D.; Pinchuk, O.; Sirbiladze, K.; Shuhgar, O. Clinical effectiveness of primary and secondary headache treatment by transcranial direct current stimulation. Front. Neurol. 2013, 4, 25. [Google Scholar] [CrossRef]
- DaSilva, A.F.; Pt, M.E.M.; Zaghi, S.; Lopes, M.; DosSantos, M.F.; Spierings, E.L.; Bajwa, Z.; Datta, A.; Bikson, M.; Fregni, F. tDCS-induced analgesia and electrical fields in pain-related neural networks in chronic migraine. Headache 2012, 52, 1283–1295. [Google Scholar] [CrossRef]
- Martin, T.V.; Lipton, R.B. Epidemiology and biology of menstrual migraine. Headache 2008, 48 (Suppl. 3), S124–S130. [Google Scholar] [CrossRef]
- Wickmann, F.; Stephani, C.; Czesnik, D.; Klinker, F.; Timäus, C.; Chaieb, L.; Paulus, W.; Antal, A. Prophylactic treatment in menstrual migraine: A proof-of-concept study. J. Neurol. Sci. 2015, 354, 103–109. [Google Scholar] [CrossRef]
- Andrade, S.M.; Aranha, R.E.L.D.B.; De Oliveira, E.A.; De Mendonça, C.T.P.L.; Martins, W.K.N.; Alves, N.T.; Fernández-Calvo, B. Transcranial direct current stimulation over the primary motor vs prefrontal cortex in refractory chronic migraine: A pilot randomized controlled trial. J. Neurol. Sci. 2017, 378, 225–232. [Google Scholar] [CrossRef]
- Rahimi, M.D.; Fadardi, J.S.; Saeidi, M.; Bigdeli, I.; Kashiri, R. Effectiveness of cathodal tDCS of the primary motor or sensory cortex in migraine: A randomized controlled trial. Brain Stimul. 2020, 13, 675–682. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Zhang, B.; Zhang, J.; Yin, Y. Effects of Non-invasive Brain Stimulation on Headache Intensity and Frequency of Headache Attacks in Patients With Migraine: A Systematic Review and Meta-Analysis. Headache 2019, 59, 1436–1447. [Google Scholar] [CrossRef]
- Leao, A.A. Spreading depression. Funct. Neurol. 1986, 1, 363–366. [Google Scholar] [PubMed]
- Moliadze, V.; Atalay, D.; Antal, A.; Paulus, W. Close to threshold transcranial electrical stimulation preferentially activates inhibitory networks before switching to excitation with higher intensities. Brain Stimul. 2012, 5, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Haigh, S.M.; Karanovic, O.; Wilkinson, F.; Wilkins, A. Cortical hyperexcitability in migraine and aversion to patterns. Cephalalgia 2012, 32, 236–240. [Google Scholar] [CrossRef] [PubMed]
- Mickleborough, M.J.; Hayward, J.; Chapman, C.; Chung, J.; Handy, T.C. Reflexive attentional orienting in migraineurs: The behavioral implications of hyperexcitable visual cortex. Cephalalgia 2011, 31, 1642–1651. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.-T.; Lin, Y.-Y.; Fuh, J.-L.; Hämäläinen, M.S.; Ko, Y.-C.; Wang, S.-J. Sustained visual cortex hyperexcitability in migraine with persistent visual aura. Brain 2011, 134 Pt 8, 2387–2395. [Google Scholar] [CrossRef]
- Höffken, O.; Stude, P.; Lenz, M.; Bach, M.; Dinse, H.R.; Tegenthoff, M. Visual paired-pulse stimulation reveals enhanced visual cortex excitability in migraineurs. Eur. J. Neurosci. 2009, 30, 714–720. [Google Scholar] [CrossRef]
- Chadaide, Z.; Arlt, S.; Antal, A.; Nitsche, M.A.; Lang, N.; Paulus, W. Transcranial direct current stimulation reveals inhibitory deficiency in migraine. Cephalalgia 2007, 27, 833–839. [Google Scholar] [CrossRef]
- Angelini, L.; De Tommaso, M.; Guido, M.; Hu, K.; Ivanov, P.C.; Marinazzo, D.; Nardulli, G.; Nitti, L.; Pellicoro, M.; Pierro, C.; et al. Steady-state visual evoked potentials and phase synchronization in migraine patients. Phys. Rev. Lett. 2004, 93, 038103. [Google Scholar] [CrossRef] [PubMed]
- Martín, H.; Del Río, M.S.; De Silanes, C.L.; Álvarez-Linera, J.; Hernández, J.A.; Pareja, J.A. Photoreactivity of the occipital cortex measured by functional magnetic resonance imaging-blood oxygenation level dependent in migraine patients and healthy volunteers: Pathophysiological implications. Headache 2011, 51, 1520–1528. [Google Scholar] [CrossRef] [PubMed]
- Coppola, G.; Di Lorenzo, C.; Parisi, V.; Lisicki, M.; Serrao, M.; Pierelli, F. Clinical neurophysiology of migraine with aura. J. Headache Pain 2019, 20, 42. [Google Scholar] [CrossRef] [PubMed]
- Valiengo, L.; Benseñor, I.M.; Goulart, A.C.; De Oliveira, J.F.; Zanao, T.A.; Boggio, P.S.; Lotufo, P.A.; Fregni, F.; Brunoni, A.R. The sertraline versus electrical current therapy for treating depression clinical study (select-TDCS): Results of the crossover and follow-up phases. Depress. Anxiety 2013, 30, 646–653. [Google Scholar] [CrossRef] [PubMed]
- Hagenacker, T.; Bude, V.; Naegel, S.; Holle, D.; Katsarava, Z.; Diener, H.; Obermann, M. Patient-conducted anodal transcranial direct current stimulation of the motor cortex alleviates pain in trigeminal neuralgia. J. Headache Pain 2014, 15, 78. [Google Scholar] [CrossRef]
- Alonzo, A.; Fong, J.; Ball, N.; Martin, D.; Chand, N.; Loo, C. Pilot trial of home-administered transcranial direct current stimulation for the treatment of depression. J. Affect. Disord. 2019, 252, 475–483. [Google Scholar] [CrossRef]
- Dobbs, B.; Pawlak, N.; Biagioni, M.; Agarwal, S.; Shaw, M.; Pilloni, G.; Bikson, M.; Datta, A.; Charvet, L. Generalizing remotely supervised transcranial direct current stimulation (tDCS): Feasibility and benefit in Parkinson’s disease. J. Neuroeng. Rehabil. 2018, 15, 114. [Google Scholar] [CrossRef]
- Im, J.J.; Jeong, H.; Bikson, M.; Woods, A.J.; Unal, G.; Oh, J.K.; Na, S.; Park, J.S.; Knotkova, H.; Song, I.U.; et al. Effects of 6-month at-home transcranial direct current stimulation on cognition and cerebral glucose metabolism in Alzheimer’s disease. Brain Stimul. 2019, 12, 1222–1228. [Google Scholar] [CrossRef]
- Bikson, M.; Hanlon, C.A.; Woods, A.J.; Gillick, B.T.; Charvet, L.; Lamm, C.; Madeo, G.; Holczer, A.; Almeida, J.; Antal, A.; et al. Guidelines for TMS/tES clinical services and research through the COVID-19 pandemic. Brain Stimul. 2020, 13, 1124–1149. [Google Scholar] [CrossRef]
- Olesen, J.; BOusser, M.G.; Diener, H.C.D.; Dodick, D.; First, M.B.; Godsby, P.J.; Gobel, H.; Láinez, M.J.A. Headache Classification Subcommittee of the International Headache Society. The International Classification of Headache Disorders: 2nd edition. Cephalalgia 2004, 24, 9–160. [Google Scholar] [CrossRef]
- Herd, C.P.; Tomlinson, C.L.; Rick, C.; Scotton, W.J.; Edwards, J.; Ives, N.J.; Clarke, C.E.; Sinclair, A.J. Cochrane systematic review and meta-analysis of botulinum toxin for the prevention of migraine. BMJ Open 2019, 9, e027953. [Google Scholar] [CrossRef] [PubMed]
- Charvet, L.; Kasschau, M.; Datta, A.; Knotkova, H.; Stevens, M.C.; Alonzo, A.; Loo, C.; Krull, K.R.; Bikson, M. Remotely-supervised transcranial direct current stimulation (tDCS) for clinical trials: Guidelines for technology and protocols. Front. Syst. Neurosci. 2015, 9, 26. [Google Scholar] [CrossRef] [PubMed]
- Neuling, T.; Wagner, S.; Wolters, C.; Zaehle, T.; Herrmann, C.S. Finite-Element Model Predicts Current Density Distribution for Clinical Applications of tDCS and tACS. Front. Psychiatry 2012, 3, 83. [Google Scholar] [CrossRef]
- Poreisz, C.; Boros, K.; Antal, A.; Paulus, W. Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients. Brain Res. Bull. 2007, 72, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, M.D.; Goadsby, P.J.; Roon, K.I.; Lipton, R.B. Triptans (serotonin, 5-HT1B/1D agonists) in migraine: Detailed results and methods of a meta-analysis of 53 trials. Cephalalgia 2002, 22, 633–658. [Google Scholar] [CrossRef] [PubMed]
- Puledda, F.; Goadsby, P.J. An Update on Non-Pharmacological Neuromodulation for the Acute and Preventive Treatment of Migraine. Headache 2017, 57, 685–691. [Google Scholar] [CrossRef]
- Cho, S.-J.; Song, T.-J.; Chu, M.K. Treatment Update of Chronic Migraine. Curr. Pain Headache Rep. 2017, 21, 26. [Google Scholar] [CrossRef]
- Facco, E.; Liguori, A.; Petti, F.; Fauci, A.J.; Cavallin, F.; Zanette, G. Acupuncture versus valproic acid in the prophylaxis of migraine without aura: A prospective controlled study. Minerva Anestesiol 2013, 79, 634–642. [Google Scholar]
- Varkey, E.; Cider, Å.; Carlsson, J.; Linde, M. Exercise as migraine prophylaxis: A randomized study using relaxation and topiramate as controls. Cephalalgia 2011, 31, 1428–1438. [Google Scholar] [CrossRef]
- Sutherland, A.; Sweet, B.V. Butterbur: An alternative therapy for migraine prevention. Am. J. Health Syst. Pharm. 2010, 67, 705–711. [Google Scholar] [CrossRef]
- Schoenen, J.; Roberta, B.; Magis, D.; Coppola, G. Noninvasive neurostimulation methods for migraine therapy: The available evidence. Cephalalgia 2016, 36, 1170–1180. [Google Scholar] [CrossRef] [PubMed]
- Bhola, R.; Kinsella, E.; Giffin, N.; Lipscombe, S.; Ahmed, F.; Weatherall, M.; Goadsby, P.J. Single-pulse transcranial magnetic stimulation (sTMS) for the acute treatment of migraine: Evaluation of outcome data for the UK post market pilot program. J. Headache Pain 2015, 16, 535. [Google Scholar] [CrossRef] [PubMed]
- Brighina, F.; Piazza, A.; Vitello, G.; Aloisio, A.; Palermo, A.; Daniele, O.; Fierro, B. rTMS of the prefrontal cortex in the treatment of chronic migraine: A pilot study. J. Neurol. Sci. 2004, 227, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Conforto, A.B.; Amaro, E., Jr.; Goncalves, A.L.; Mercante, J.P.; Guendler, V.Z.; Ferreira, J.R.; Kirschner, C.C.; Peres, M.F. Randomized, proof-of-principle clinical trial of active transcranial magnetic stimulation in chronic migraine. Cephalalgia 2014, 34, 464–472. [Google Scholar] [CrossRef] [PubMed]
- Stilling, J.M.; Monchi, O.; Amoozegar, F.; Debert, C.T. Transcranial Magnetic and Direct Current Stimulation (TMS/tDCS) for the Treatment of Headache: A Systematic Review. Headache 2019, 59, 339–357. [Google Scholar] [CrossRef] [PubMed]
- Rocha, S.; Melo, L.; Boudoux, C.; Foerster, Á.; Araújo, D.; Monte-Silva, K. Transcranial direct current stimulation in the prophylactic treatment of migraine based on interictal visual cortex excitability abnormalities: A pilot randomized controlled trial. J. Neurol. Sci. 2015, 349, 33–39. [Google Scholar] [CrossRef]
- Ahdab, R.; Mansour, A.G.; Khazen, G.; Khoury, C.E.; Sabbouh, T.M.; Salem, M.; Yamak, W.; Ayache, S.; Riachi, N. Cathodal Transcranial Direct Current Stimulation of the Occipital cortex in Episodic Migraine: A Randomized Sham-Controlled Crossover Study. J. Clin. Med. 2019, 9, 60. [Google Scholar] [CrossRef]
- Zaehle, T.; Rach, S.; Herrmann, C.S. Transcranial alternating current stimulation enhances individual alpha activity in human EEG. PLoS ONE 2010, 5, e13766. [Google Scholar] [CrossRef]
- Neuling, T.; Rach, S.; Herrmann, C.S. Orchestrating neuronal networks: Sustained after-effects of transcranial alternating current stimulation depend upon brain states. Front. Hum. Neurosci. 2013, 7, 161. [Google Scholar] [CrossRef]
- Sava, S.L.; De Pasqua, V.; Magis, D.; Schoenen, J. Effects of visual cortex activation on the nociceptive blink reflex in healthy subjects. PLoS ONE 2014, 9, e100198. [Google Scholar] [CrossRef]
tACS (n = 16) | Sham (n = 9) | |
---|---|---|
With aura | 9 | 5 |
Without aura | 7 | 4 |
Mean age (SD) | 31.1 (8.9) | 28.1 (10.5) |
Mean duration in years (SD) | 13.7 (7.8) | 14.8 (10.3) |
Mean number of attacks/year (SD) | 28.7 (18.5) | 42.8 (42.2) |
Pain localization | ||
unilateral | 11 | 5 |
bilateral | 5 | 4 |
with Family history | 9 | 7 |
Medication | ||
Acetylsalicylic acid (Aspirin) | 2 | 1 |
Triptans | 4 | 3 |
Ibuprofen | 2 | 1 |
Paracetamol | 4 | 3 |
Others | ||
-Antidepressants | 2 | 0 |
-Metamizole | 1 | 0 |
-Thyroid Hormone | 1 | 0 |
Oral contraception | 9 | 5 |
Smokers | 4 | 1 |
Pain under the Electrodes | Tingling | Itching | ||||
---|---|---|---|---|---|---|
N | MI | N | MI | N | MI | |
tACS (n = 16) | 1 | 2 | 5 | 1.8 | 5 | 1.4 |
Sham (n = 9) | 1 | 3 | 4 | 1.8 | 2 | 1.3 |
Nervousness | Fatigue | Unpleasantness | ||||
N | MI | N | MI | N | MI | |
tACS (n = 16) | 1 | 4.0 | 6 | 2.2 | 2 | 2.0 |
Sham (n = 9) | 3 | 2.5 | 6 | 2.2 | 5 | 3.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antal, A.; Bischoff, R.; Stephani, C.; Czesnik, D.; Klinker, F.; Timäus, C.; Chaieb, L.; Paulus, W. Low Intensity, Transcranial, Alternating Current Stimulation Reduces Migraine Attack Burden in a Home Application Set-Up: A Double-Blinded, Randomized Feasibility Study. Brain Sci. 2020, 10, 888. https://doi.org/10.3390/brainsci10110888
Antal A, Bischoff R, Stephani C, Czesnik D, Klinker F, Timäus C, Chaieb L, Paulus W. Low Intensity, Transcranial, Alternating Current Stimulation Reduces Migraine Attack Burden in a Home Application Set-Up: A Double-Blinded, Randomized Feasibility Study. Brain Sciences. 2020; 10(11):888. https://doi.org/10.3390/brainsci10110888
Chicago/Turabian StyleAntal, Andrea, Rebecca Bischoff, Caspar Stephani, Dirk Czesnik, Florian Klinker, Charles Timäus, Leila Chaieb, and Walter Paulus. 2020. "Low Intensity, Transcranial, Alternating Current Stimulation Reduces Migraine Attack Burden in a Home Application Set-Up: A Double-Blinded, Randomized Feasibility Study" Brain Sciences 10, no. 11: 888. https://doi.org/10.3390/brainsci10110888
APA StyleAntal, A., Bischoff, R., Stephani, C., Czesnik, D., Klinker, F., Timäus, C., Chaieb, L., & Paulus, W. (2020). Low Intensity, Transcranial, Alternating Current Stimulation Reduces Migraine Attack Burden in a Home Application Set-Up: A Double-Blinded, Randomized Feasibility Study. Brain Sciences, 10(11), 888. https://doi.org/10.3390/brainsci10110888