The Changes of qEEG Approximate Entropy during Test of Variables of Attention as a Predictor of Major Depressive Disorder
Abstract
:1. Introduction
2. Materials and Methods
2.1. Absolute Power, Relative Power, and Cordance
2.2. Covariance Matrix Images
2.3. Approximate Entropy for Quantization of Covariance Matrix Images
2.4. Statistical Analysis
3. Results
3.1. Demographic and Clinical Characteristics
3.2. Responses to TOVA
3.3. Effects of Groups and Response Conditions on Frontal Theta Cordance
3.4. Effects of Groups and Response Conditions on F7 Theta Cordance
3.5. Effects of Groups and Response Conditions on ApEn
3.6. Relationship between Severity of Depression and ApEn
3.7. Receiver Operating Characteristic Curve
3.8. Bootstrapping Simulation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- WHO. Depression. Available online: https://www.who.int/news-room/fact-sheets/detail/depression (accessed on 30 January 2020).
- Ku, L.-C.; Shen, T.-W.; Chen, S.-T. Quantization on EEG covariance matrix images during TOVA attention test for depression disorder classification. In Proceedings of the 2012 19th International Conference on Systems, Signals and Image Processing (IWSSIP), Austria, Vienna, 11–13 April 2012; pp. 488–491. [Google Scholar]
- Herrmann, W.; Winterer, G. Electroencephalog-raphy in psychiatry-current status and outlook. Nervenarzt 1996, 67, 348–359. [Google Scholar] [PubMed]
- Bieble, D.B.; Koenig, H.G. New Light on Depression: Help, Hope, and Answers for the Depressed and Those Who Love Them; Olive: Orlando, FL, USA, 2008. [Google Scholar]
- Hänsel, A.; Känel, R.V. The ventro-medial prefron-tal cortex: A major link between the autonomic nervous system, regulation of emotion, and stress reactivity? Biopsychosoc. Med. 2008, 2, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Psychiatry Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-IV); American Psychiatry Association: Washington, DC, USA, 2000. [Google Scholar]
- Shen, T.W.; Liu, F.C.; Chen, S.J.; Chen, S.T. Changes in heart rate variability during TOVA testing in patients with major depressive disorder. Psychiatry Clin. Neurosci. 2013, 67, 35–40. [Google Scholar] [CrossRef] [PubMed]
- The Test of Variables of Attention (T.O.V.A.®). Available online: https://www.tovatest.com/ (accessed on 1 August 2020).
- Bosch-Bayard, J.; Peluso, V.; Galan, L.; Valdes Sosa, P.; Chiarenza, G.A. Clinical and Electrophysiological Differences between Subjects with Dysphonetic Dyslexia and Non-Specific Reading Delay. Brain Sci. 2018, 8, 172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vega-Zelaya, L.; Martín Abad, E.; Pastor, J. Quantified EEG for the Characterization of Epileptic Seizures versus Periodic Activity in Critically Ill Patients. Brain Sci. 2020, 10, 158. [Google Scholar] [CrossRef] [Green Version]
- de Aguiar Neto, F.S.; Rosa, J.L.G. Depression biomarkers using non-invasive EEG: A review. Neurosci. Biobehav. Rev. 2019, 105, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Schiller, M.J. Quantitative Electroencephalography in Guiding Treatment of Major Depression. Front. Psychiatry 2018, 9, 779. [Google Scholar] [CrossRef] [Green Version]
- Hunter, A.M.; Muthen, B.O.; Cook, I.A.; Leuchter, A.F. Antidepressant response trajectories and quantitative electroencephalography (QEEG) biomarkers in major depressive disorder. J. Psychiatr. Res. 2010, 44, 90–98. [Google Scholar] [CrossRef] [Green Version]
- Shalbaf, R.; Brenner, C.; Pang, C.; Blumberger, D.M.; Downar, J.; Daskalakis, Z.J.; Tham, J.; Lam, R.W.; Farzan, F.; Vila-Rodriguez, F. Non-linear Entropy Analysis in EEG to Predict Treatment Response to Repetitive Transcranial Magnetic Stimulation in Depression. Front. Pharmacol. 2018, 9, 1188. [Google Scholar] [CrossRef]
- Ward, M.J.; Karim, H.T.; Jessen, Z.F.; Ghuman, A.S.; Richardson, R.M.; Reynolds, C.F., 3rd; Karp, J.F. Association between increased theta cordance and early response to ECT in late-life depression. Int. J. Geriatr. Psychiatry 2020, 35, 147–152. [Google Scholar] [CrossRef]
- Bares, M.; Novak, T.; Kopecek, M.; Brunovsky, M.; Stopkova, P.; Hoschl, C. The effectiveness of prefrontal theta cordance and early reduction of depressive symptoms in the prediction of antidepressant treatment outcome in patients with resistant depression: Analysis of naturalistic data. Eur. Arch. Psychiatry Clin. Neurosci. 2015, 265, 73–82. [Google Scholar] [CrossRef]
- Broadway, J.M.; Holtzheimer, P.E.; Hilimire, M.R.; Parks, N.A.; Devylder, J.E.; Mayberg, H.S.; Corballis, P.M. Frontal theta cordance predicts 6-month antidepressant response to subcallosal cingulate deep brain stimulation for treatment-resistant depression: A pilot study. Neuropsychopharmacology 2012, 37, 1764–1772. [Google Scholar] [CrossRef] [Green Version]
- Steiger, A.; Kimura, M. Wake and sleep EEG provide biomarkers in depression. J. Psychiatr. Res. 2010, 44, 242–252. [Google Scholar] [CrossRef] [PubMed]
- Faust, O.; Ang, P.C.A.; Puthankattil, S.D.; Joseph, P.K. Depression diagnosis support system based on EEG signal entropies. J. Mech. Med. Biol. 2014, 14, 1450035. [Google Scholar] [CrossRef]
- Acharya, U.R.; Sudarshan, V.K.; Adeli, H.; Santhosh, J.; Koh, J.E.; Puthankatti, S.D.; Adeli, A. A novel depression diagnosis index using nonlinear features in EEG signals. Eur. Neurol. 2015, 74, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Hasanzadeh, F.; Mohebbi, M.; Rostami, R. Graph theory analysis of directed functional brain networks in major depressive disorder based on EEG signal. J Neural Eng. 2020, 17, 026010. [Google Scholar] [CrossRef] [PubMed]
- Saeedi, M.; Saeedi, A.; Maghsoudi, A. Major depressive disorder assessment via enhanced k-nearest neighbor method and EEG signals. Phys. Eng. Sci. Med. 2020, 43, 1007–1018. [Google Scholar] [CrossRef]
- McVoy, M.; Aebi, M.E.; Loparo, K.; Lytle, S.; Morris, A.; Woods, N.; Deyling, E.; Tatsuoka, C.; Kaffashi, F.; Lhatoo, S.; et al. Resting-State Quantitative Electroencephalography Demonstrates Differential Connectivity in Adolescents with Major Depressive Disorder. J. Child Adolesc. Psychopharmacol. 2019, 29, 370–377. [Google Scholar] [CrossRef]
- Kupfer, D.J.; Foster, F.G.; Reich, L.; Thompson, S.K.; Weiss, B. EEG sleep changes as predictors in depression. Am. J. Psychiatry 1976, 133, 622–626. [Google Scholar] [CrossRef]
- Machado, S.; Portella, C.E.; Silva, J.G.; Velasques, B.; Terra, P.; Vorkapic, C.F.; Silva, V.F.d.; Miana, L.; Basile, L.; Cagy, M.; et al. Changes in quantitative EEG absolute power during the task of catching an object in free fall. Arq. Neuro Psiquiatr. 2007, 65, 633–636. [Google Scholar] [CrossRef] [Green Version]
- Kramlinger, K. Mayo Clinic on Depression; Mayo Clinic: Rochester, NY, USA, 2005. [Google Scholar]
- Goldin, P.; McRae, K.; Ramel, W.; Gross, J. The neural bases of emotion regulation: Reappraisal and suppression of negative emotion. Biol. Psychiatry 2008, 63, 577–586. [Google Scholar] [CrossRef] [Green Version]
- Greden, J.; Genero, N.; Price, H. Agitation-increased electromyogram activity in the corrugator muscle re-gion: A possible explanation of the "Omega sign"? Am. J. Psychiatry 1985, 142, 348–351. [Google Scholar]
- Henriques, J.; Davidson, R. Left Frontal Hypoacti-vation in Depression. J. Abnorm. Psychol. 1991, 100, 535–545. [Google Scholar] [CrossRef] [PubMed]
- Knott, V.; Mahoney, C.; Kennedy, S. EEG power, frequency, asymmetry and coherence in male depression. Psychiatry Res. 2001, 106, 123–140. [Google Scholar] [CrossRef]
- Cook, I.A.; O’Hara, R.; Uijtdehaage, S.H.; Mandelkern, M.; Leuchter, A.F. Assessing the accuracy of topographic EEG mapping for determining local brain function. Electroencephalogr. Clin. Neurophysiol. 1998, 107, 408–414. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Tong, S.; Tang, Y.; Zhu, Y. More normal EEGs of depression patients during mental arithmetic than rest. In Proceedings of the 2007 Joint Meeting of the 6th International Symposium on Noninvasive Functional Source Imaging of the Brain and Heart and the International Conference on Functional Biomedical Imaging, Hangzhou, China, 12–14 October 2007; pp. 165–168. [Google Scholar]
- Severus, W.E.; Littman, A.B.; Stoll, A.L. Omega-3 fatty acids, homocysteine, and the increased risk of cardiovascular mortality in major depressive disorder. Harv. Rev. Psychiatry 2001, 9, 280–293. [Google Scholar] [CrossRef]
- Niemiec, A.; Lithgow, B. Alpha-band characteris-tics in EEG spectrum indicate reliability of frontal brain asymmetry measures in diagnosis of depression. In Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, 17–18 January 2006; pp. 7517–7520. [Google Scholar]
- Leuchter, A. Relationship between brain electrical activity and cortical perfusion in normal subjects. Psychiatry Res. Neuroimaging 1999, 90, 125–140. [Google Scholar] [CrossRef]
- Bares, M.; Brunovsky, M.; Kopecek, M.; Novak, T.; Stopkova, P.; Kozeny, J.; Sos, P.; Krajca, V.; Höschl, C. Early reduction in prefrontal theta QEEG cordance value predicts response to venlafaxine treatment in patients with resistant depressive disorder. Eur. Psychiatry 2008, 23, 350–355. [Google Scholar] [CrossRef]
- ICook, A.; Leuchter, A.F.; Morgan, M.; Witte, E.; Stubbeman, W.F.; Abrams, M.; Rosenberg, S.; Uijtdehaage, S.H. Early changes in prefrontal activity characterize clinical responders to antidepressants. Neuropsychopharmacology 2002, 27, 120–131. [Google Scholar]
- Erguzel, T.T.; Ozekes, S.; Gultekin, S.; Tarhan, N.; Hizli Sayar, G.; Bayram, A. Neural Network Based Response Prediction of rTMS in Major Depressive Disorder Using QEEG Cordance. Psychiatry Investig. 2015, 12, 61–65. [Google Scholar] [CrossRef]
- McVoy, M.; Lytle, S.; Fulchiero, E.; Aebi, M.; Adeleye, O.; Sajatovic, M. A systematic review of quantitative EEG as a possible biomarker in child psychiatric disorders. Psychiatry Res. 2019, 279, 331–344. [Google Scholar] [CrossRef]
- Bares, M.; Brunovsky, M.; Novak, T.; Kopecek, M.; Stopkova, P.; Sos, P.; Krajca, V.; Höschl, C. The change of prefrontal QEEG theta cordance as a predictor of response to bupropion treatment in patients who had failed to respond to previous antidepressant treatments. Eur. Neuropsychopharmacol. 2010, 20, 459–466. [Google Scholar] [CrossRef]
- Salle, S.d.l.; Jaworska, N.; Blier, P.; Smith, D.; Knott, V. Using prefrontal and midline right frontal EEG-derived theta cordance and depressive symptoms to predict the differential response or remission to antidepressant treatment in major depressive disorder. Psychiatry Res. Neuroimaging 2020, 302. [Google Scholar] [CrossRef]
- Memória, C.M.; Muela, H.; Moraes, N.C.; Costa-Hong, V.A.; Machado, M.F.; Nitrini, R.; Bortolotto, L.A.; Yassuda, M.S. Applicability of the Test of Variables of Attention—T.O.V.A in Brazilian adults. Dement. Neuropsychol. 2018, 12, 394–401. [Google Scholar] [CrossRef]
- Guerrero-Mosquera, C.; Vazquez, A.N. Automatic removal of ocular artifacts from EEG data using adaptive filtering and Independent Component Analysis. In Proceedings of the 2009 17th European Signal Processing Conference, Glasgow, UK, 24–28 August 2009; pp. 2317–2321. [Google Scholar]
- Kreyszig, E. Advanced Engineering Mathematics, 4th ed.; Wiley: Hoboken, NJ, USA, 1979. [Google Scholar]
- Tompkins, W.J. (Ed.) Biomedical Digital Signal Processing; Prentice-Hall: Upper Saddle River, NJ, USA, 1993. [Google Scholar]
- Moody, G.B. Approximate Entropy (ApEn). Available online: https://archive.physionet.org/physiotools/ApEn/ (accessed on 6 October 2020).
- Pincus, S.M. Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA 1991, 88, 2297–2301. [Google Scholar] [CrossRef] [Green Version]
- Efron, B.; Tibshirani, R. An Introduction to the Bootstrap; Chapman & Hall/CRC: Boca Raton, FL, USA, 1993. [Google Scholar]
- Ottowitz, W.E.; Dougherty, D.D.; Savage, C.R. The neural network basis for abnormalities of attention and executive function in major depressive disorder: Implications for application of the medical disease model to psychiatric disorders. Harv. Rev. Psychiatry 2002, 10, 86–99. [Google Scholar] [CrossRef] [PubMed]
- Bora, E.; Harrison, B.J.; Yucel, M.; Pantelis, C. Cognitive impairment in euthymic major depressive disorder: A meta-analysis. Psychol. Med. 2013, 43, 2017–2026. [Google Scholar] [CrossRef]
- Woo, Y.S.; Rosenblat, J.D.; Kakar, R.; Bahk, W.M.; McIntyre, R.S. Cognitive Deficits as a Mediator of Poor Occupational Function in Remitted Major Depressive Disorder Patients. Clin. Psychopharmacol. Neurosci. 2016, 14, 1–16. [Google Scholar] [CrossRef]
- de Oliveira, R.S.; Trezza, B.M.; Busse, A.L.; Jacob Filho, W. Use of computerized tests to assess the cognitive impact of interventions in the elderly. Dement. Neuropsychol. 2014, 8, 107–111. [Google Scholar] [CrossRef] [Green Version]
- Hosseinifard, B.; Moradi, M.H.; Rostami, R. Classifying depression patients and normal subjects using machine learning techniques and nonlinear features from EEG signal. Comput. Methods Programs Biomed. 2013, 109, 339–345. [Google Scholar] [CrossRef]
- Leuchter, A.F.; Cook, I.A.; Mena, I.; Dunkin, J.J.; Cummings, J.L.; Newton, T.F.; Migneco, O.; Lufkin, R.B.; Walter, D.O.; Lachenbruch, P.A. Assessment of cerebral perfusion using quantitative EEG cordance. Psychiatry Res. 1994, 55, 141–152. [Google Scholar] [CrossRef]
- O’Gorman, R.L.; Poil, S.S.; Brandeis, D.; Klaver, P.; Bollmann, S.; Ghisleni, C.; Luchinger, R.; Martin, E.; Shankaranarayanan, A.; Alsop, D.C.; et al. Coupling between resting cerebral perfusion and EEG. Brain. Topogr. 2013, 26, 442–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pizzagalli, D.; Pascual-Marqui, R.D.; Nitschke, J.B.; Oakes, T.R.; Larson, C.L.; Abercrombie, H.C.; Schaefer, S.M.; Koger, J.V.; Benca, R.M.; Davidson, R.J. Anterior cingulate activity as a predictor of degree of treatment response in major depression: Evidence from brain electrical tomography analysis. Am. J. Psychiatry 2001, 158, 405–415. [Google Scholar] [CrossRef]
- Arns, M.; Etkin, A.; Hegerl, U.; Williams, L.M.; DeBattista, C.; Palmer, D.M.; Fitzgerald, P.B.; Harris, A.; deBeuss, R.; Gordon, E. Frontal and rostral anterior cingulate (rACC) theta EEG in depression: Implications for treatment outcome? Eur. Neuropsychopharmacol. 2015, 25, 1190–1200. [Google Scholar] [CrossRef]
- Carroll, B.J.; Iranmanesh, A.; Keenan, D.M.; Cassidy, F.; Wilson, W.H.; Veldhuis, J.D. Pathophysiology of hypercortisolism in depression: Pituitary and adrenal responses to low glucocorticoid feedback. Acta Psychiatr Scand. 2012, 125, 478–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carroll, B.J.; Cassidy, F.; Naftolowitz, D.; Tatham, N.E.; Wilson, W.H.; Iranmanesh, A.; Liu, P.Y.; Veldhuis, J.D. Pathophysiology of hypercortisolism in depression. Acta Psychiatr. Scand. Suppl. 2007, 90–103. [Google Scholar] [CrossRef]
- Young, E.A.; Veldhuis, J.D. Disordered adrenocorticotropin secretion in women with major depression. J. Clin. Endocrinol. Metab. 2006, 91, 1924–1928. [Google Scholar] [CrossRef] [Green Version]
- Posener, J.A.; Charles, D.; Veldhuis, J.D.; Province, M.A.; Williams, G.H.; Schatzberg, A.F. Process irregularity of cortisol and adrenocorticotropin secretion in men with major depressive disorder. Psychoneuroendocrinology 2004, 29, 1129–1137. [Google Scholar] [CrossRef]
- Alesci, S.; Martinez, P.E.; Kelkar, S.; Ilias, I.; Ronsaville, D.S.; Listwak, S.J.; Ayala, A.R.; Licinio, J.; Gold, H.K.; Kling, M.A.; et al. Major depression is associated with significant diurnal elevations in plasma interleukin-6 levels, a shift of its circadian rhythm, and loss of physiological complexity in its secretion: Clinical implications. J. Clin. Endocrinol. Metab 2005, 90, 2522–2530. [Google Scholar] [CrossRef] [Green Version]
- Quick, C.; Kliem, A.; Berger, S.; Hocke, M.; Tancer, M.; Juckel, G.; Yeragani, V.K.; Bar, K.J. Gastric dysmotility in major depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 2010, 34, 92–97. [Google Scholar] [CrossRef]
- Berger, S.; Kliem, A.; Yeragani, V.; Bar, K.J. Cardio-respiratory coupling in untreated patients with major depression. J. Affect. Disord. 2012, 139, 166–171. [Google Scholar] [CrossRef]
- Byun, S.; Kim, A.Y.; Jang, E.H.; Kim, S.; Choi, K.W.; Yu, H.Y.; Jeon, H.J. Entropy analysis of heart rate variability and its application to recognize major depressive disorder: A pilot study. Technol. Health Care 2019, 27, 407–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moon, E.; Lee, S.H.; Kim, D.H.; Hwang, B. Comparative Study of Heart Rate Variability in Patients with Schizophrenia, Bipolar Disorder, Post-traumatic Stress Disorder, or Major Depressive Disorder. Clin. Psychopharmacol. Neurosci. 2013, 11, 137–143. [Google Scholar] [CrossRef] [PubMed]
Control (n = 18) | MDD (n = 18) | p Values | |
---|---|---|---|
Age | 40.7 ± 15.8 | 42.8 ± 10.4 | |
HAM-D-17 | x | 20.4 ± 8.47 | |
BAI | 3.33 ± 2.61 | 27.7 ± 9.87 | *** (p < 0.0001) |
BDI | 6.22 ± 6..76 | 30.8 ± 11.7 | *** (p < 0.0001) |
Variables | Control (n = 18) | MDD (n = 18) | p Values |
---|---|---|---|
Age | 40.7 ± 15.8 | 42.8 ± 10.4 | p = 0.7274 |
HAM-D-17 | NA | 20.4 ± 8.47 | |
BAI | 3.33 ± 2.61 | 27.7 ± 9.87 | p < 0.0001 |
BDI | 6.22 ± 6.76 | 30.8 ± 11.7 | p < 0.0001 |
TOVA | |||
Omission Rate (%) | 1.70 ± 5.55 | 7.29 ± 13.0 | p = 0.0016 |
Commission Rate (%) | 2.06 ± 2.18 | 3.33 ± 2.36 | p = 0.0358 |
Mean Response Time (ms) | 363 ± 47.8 | 450 ± 92.5 | p = 0.0012 |
Mean Variability (ms) | 75.7 ± 29.9 | 128 ± 52.6 | p = 0.0009 |
Mean d-prime score (ms) | 5.50 ± 1.25 | 3.98 ± 1.2 | p = 0.0007 |
Frontal Theta Cordance | |||
Resting | −1.37 ± 0.82 | −1.03 ± 1.04 | NS |
Target | −1.34 ± 0.85 | −1.20 ± 0.73 | NS |
Nontarget | −1.41 ± 0.78 | −1.30 ± 0.73 | NS |
F7 Theta Cordance | |||
Resting | −1.42 ± 0.70 | −0.58 ± 1.08 | p < 0.01 |
Target | −1.50 ± 0.59 | −0.84 ± 0.91 | NS |
Nontarget | −1.49 ± 0.66 | −0.93 ± 0.94 | NS |
ApEn | |||
Resting | 0.53 ± 0.40 | 0.46 ± 0.33 | NS |
Target | 0.32 ± 0.33 | 0.72 ± 0.42 | p < 0.01 |
Nontarget | 0.39 ± 0.31 | 0.66 ± 0.38 | p < 0.05 |
Resting | Target | Nontarget | |||||||
---|---|---|---|---|---|---|---|---|---|
Control | Depression | p | Control | Depression | p | Control | Depression | p | |
Fp1 | −1.48 ± 0.84 | −0.98 ± 1.11 | 0.135 | −1.44 ± 0.81 | −1.13 ± 0.84 | 0.26 | −1.51 ± 0.78 | −1.19 ± 0.87 | 0.25 |
Fp2 | −1.38 ± 0.76 | −0.99 ± 1.07 | 0.22 | −1.40 ± 0.83 | −1.26 ± 0.65 | 0.571 | −1.47 ± 0.73 | −1.42 ± 0.60 | 0.805 |
F7 | −1.42 ± 0.70 | −0.58 ± 1.08 | 0.009 | −1.50 ± 0.59 | −0.84 ± 0.91 | 0.014 | −1.49 ± 0.66 | −0.93 ± 0.94 | 0.048 |
F3 | −1.16 ± 0.66 | −0.80 ± 0.81 | 0.147 | −1.18 ± 0.65 | −0.82 ± 0.93 | 0.189 | −1.18 ± 0.69 | −0.85 ± 0.91 | 0.222 |
Fz | −1.26 ± 0.85 | −1.11 ± 0.94 | 0.619 | −1.19 ± 0.91 | −1.21 ± 0.71 | 0.941 | −1.26 ± 0.84 | −1.28 ± 0.73 | 0.936 |
F4 | −0.99 ± 0.51 | −0.85 ± 0.73 | 0.508 | −1.00 ± 0.68 | −0.91 ± 0.46 | 0.633 | −1.06 ± 0.57 | −1.03 ± 0.40 | 0.837 |
F8 | −1.13 ± 0.56 | −0.72 ± 1.05 | 0.146 | −1.32 ± 0.70 | −1.12 ± 0.85 | 0.437 | −1.40 ± 0.62 | −1.28 ± 0.93 | 0.649 |
Receiver Operating Characteristic (ROC) Curve | Area Under the Curve (AUC) | S.E. | 95% C.I. | Performance |
---|---|---|---|---|
ApEn | ||||
Resting | 0.63 | 0.094 | (0.45, 0.81) | Poor |
Target | 0.78 | 0.078 | (0.63, 0.94) | Fair |
Nontarget | 0.63 | 0.093 | (0.45, 0.82) | Poor |
Omission Rate (%) | ||||
TOVA Scores | 0.80 | 0.074 | (0.66, 0.95) | Good |
Commission Rate (%) | ||||
TOVA Scores | 0.71 | 0.087 | (0.53, 0.88) | Good |
ApEn+ Omission Rate(%) | ||||
Resting | 0.72 | 0.086 | (0.55, 0.89) | Fair |
Target | 0.83 | 0.070 | (0.70, 0.96) | Good |
Nontarget | 0.81 | 0.072 | (0.67, 0.96) | Good |
Bonferroni’s Multiple Comparison Test | Mean Diff. | 95% CI of Diff |
---|---|---|
H_resting vs. H_Target | 0.2950 | 0.2767 to 0.3134 |
H_resting vs. H_nontarget | 0.1824 | 0.1640 to 0.2007 |
H_resting vs. M_resting | 0.1356 | 0.1172 to 0.1539 |
H_resting vs. M_Target | −0.1623 | −0.1806 to −0.1439 |
H_resting vs. M_nontarget | −0.0849 | −0.1033 to −0.0666 |
H_Target vs. H_nontarget | −0.1126 | −0.1310 to −0.0943 |
H_Target vs. M_resting | −0.1594 | −0.1778 to −0.1411 |
H_Target vs. M_Target | −0.4573 | −0.4756 to −0.4389 |
H_Target vs. M_nontarget | −0.3799 | −0.3983 to −0.3616 |
H_nontarget vs. M_resting | −0.0468 | −0.06514 to −0.0285 |
H_nontarget vs. M_Target | −0.3446 | −0.3630 to −0.3263 |
H_nontarget vs. M_nontarget | −0.2673 | −0.2856 to −0.2489 |
M_resting vs. M_Target | −0.2978 | −0.3162 to −0.2795 |
M_resting vs. M_nontarget | −0.2205 | −0.2388 to −0.2022 |
M_Target vs. M_nontarget | 0.0774 | 0.0590 to 0.0957 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.-T.; Ku, L.-C.; Chen, S.-J.; Shen, T.-W. The Changes of qEEG Approximate Entropy during Test of Variables of Attention as a Predictor of Major Depressive Disorder. Brain Sci. 2020, 10, 828. https://doi.org/10.3390/brainsci10110828
Chen S-T, Ku L-C, Chen S-J, Shen T-W. The Changes of qEEG Approximate Entropy during Test of Variables of Attention as a Predictor of Major Depressive Disorder. Brain Sciences. 2020; 10(11):828. https://doi.org/10.3390/brainsci10110828
Chicago/Turabian StyleChen, Shao-Tsu, Li-Chi Ku, Shaw-Ji Chen, and Tsu-Wang Shen. 2020. "The Changes of qEEG Approximate Entropy during Test of Variables of Attention as a Predictor of Major Depressive Disorder" Brain Sciences 10, no. 11: 828. https://doi.org/10.3390/brainsci10110828
APA StyleChen, S.-T., Ku, L.-C., Chen, S.-J., & Shen, T.-W. (2020). The Changes of qEEG Approximate Entropy during Test of Variables of Attention as a Predictor of Major Depressive Disorder. Brain Sciences, 10(11), 828. https://doi.org/10.3390/brainsci10110828