The Relationship between Carotid Doppler Ultrasound and EEG Metrics in Healthy Preschoolers and Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. EEG and Doppler Examination
2.2.1. Procedure
2.2.2. EEG Recordings
2.2.3. Doppler Ultrasonography of Head and Neck Vessels
2.3. EEG Data Analysis
2.3.1. EEG Preprocessing
2.3.2. Power Spectral Density (PSD)
2.3.3. Fractal Dimension (FD)
2.3.4. Peak Alpha Frequency (PAF)
2.3.5. EEG Asymmetry Index
2.4. Statistical Analysis
3. Results
3.1. EEG Data
3.2. Ultrasound Data
3.3. Correlations between EEG and Ultrasound Data
3.3.1. Correlations between EEG and Ultrasound Data in Children
3.3.2. Correlations between EEG and Ultrasound Data in Adults
3.3.3. Correlations with Age, Gender, and Questionnaires
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sanchez, S.M.; Carpenter, J.; Chapman, K.E.; Dlugos, D.J.; Gallentine, W.B.; Giza, C.C.; Goldstein, J.L.; Hahn, C.D.; Kessler, S.K.; Loddenkemper, T.; et al. Pediatric ICU EEG monitoring: Current resources and practice in the United States and Canada. J. Clin. Neurophysiol. 2013, 30, 156–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baruah, J.; Vasudevan, A. The Vessels Shaping Mental Health or Illness. Open Neurol. J. 2019, 13, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Schatz, J.; McClellan, C.B.; Puffer, E.S.; Johnson, K.; Roberts, C.W. Neurodevelopmental screening in toddlers and early preschoolers with sickle cell disease. J. Child Neurol. 2008, 23, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Bishop, D.V. Cerebral asymmetry and language development: Cause, correlate, or consequence? Science 2013, 340, 1230531. [Google Scholar] [CrossRef] [Green Version]
- Sinha, A.K.; Cane, C.; Kempley, S.T. Blood flow in the common carotid artery in term and preterm infants: Reproducibility and relation to cardiac output. Arch. Dis. Child. Fetal Neonatal Ed. 2006, 91, F31–F35. [Google Scholar] [CrossRef] [Green Version]
- Jackson, P.A.; Reay, J.L.; Scholey, A.B.; Kennedy, D.O. DHA-rich oil modulates the cerebral haemodynamic response to cognitive tasks in healthy young adults: A near IR spectroscopy pilot study. Br. J. Nutr. 2012, 107, 1093–1098. [Google Scholar] [CrossRef]
- Grazioli, S.; Crippa, A.; Mauri, M.; Piazza, C.; Bacchetta, A.; Salandi, A.; Trabattoni, S.; Agostoni, C.; Molteni, M.; Nobile, M. Association Between Fatty Acids Profile and Cerebral Blood Flow: An Exploratory fNIRS Study on Children with and without ADHD. Nutrients 2019, 11, 2414. [Google Scholar] [CrossRef] [Green Version]
- Bjørklund, G.; Kern, J.K.; Urbina, M.A.; Saad, K.; El-Houfey, A.A.; Geier, D.A.; Chirumbolo, S.; Geier, M.R.; Mehta, J.A.; Aaseth, J. Cerebral hypoperfusion in autism spectrum disorder. Acta Neurobiol. Exp. 2018, 78, 21–29. [Google Scholar] [CrossRef] [Green Version]
- DiStefano, C.; Dickinson, A.; Baker, E.; Jeste, S.S. EEG Data Collection in Children with ASD: The Role of State in Data Quality and Spectral Power. Res. Autism Spectr. Disord. 2019, 57, 132–144. [Google Scholar] [CrossRef] [PubMed]
- Peterson, B.S.; Zargarian, A.; Peterson, J.B.; Goh, S.; Sawardekar, S.; Williams, S.C.R.; Lythgoe, D.J.; Zelaya, F.O.; Bansal, R. Hyperperfusion of Frontal White and Subcortical Gray Matter in Autism Spectrum Disorder. Biol. Psychiatry 2019, 85, 584–595. [Google Scholar] [CrossRef]
- Ogrim, G.; Kropotov, J.; Hestad, K. The quantitative EEG theta/beta ratio in attention deficit/hyperactivity disorder and normal controls: Sensitivity, specificity, and behavioral correlates. Psychiatry Res. 2012, 198, 482–488. [Google Scholar] [CrossRef] [PubMed]
- van Dongen-Boomsma, M.; Lansbergen, M.M.; Bekker, E.M.; Kooij, J.J.; van der Molen, M.; Kenemans, J.L.; Buitelaar, J.K. Relation between resting EEG to cognitive performance and clinical symptoms in adults with attention-deficit/hyperactivity disorder. Neurosci. Lett. 2010, 469, 102–106. [Google Scholar] [CrossRef] [PubMed]
- Monastra, V.J.; Lubar, J.F.; Linden, M. The development of a quantitative electroencephalographic scanning process for attention deficit-hyperactivity disorder: Reliability and validity studies. Neuropsychology 2001, 15, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Lenartowicz, A.; Loo, S.K. Use of EEG to diagnose ADHD. Curr. Psychiatry Rep. 2014, 16, 498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aldemir, R.; Demirci, E.; Per, H.; Canpolat, M.; Ozmen, S.; Tokmakci, M. Investigation of attention deficit hyperactivity disorder (ADHD) sub-types in children via EEG frequency domain analysis. Int. J. Neurosci. 2018, 128, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Barttfeld, P.; Wicker, B.; Cukier, S.; Navarta, S.; Lew, S.; Sigman, M. A big-world network in ASD: Dynamical connectivity analysis reflects a deficit in long-range connections and an excess of short-range connections. Neuropsychologia 2011, 49, 254–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angelakis, E.; Lubar, J.F.; Stathopoulou, S.; Kounios, J. Peak alpha frequency: An electroencephalographic measure of cognitive preparedness. Clin. Neurophysiol. 2004, 115, 887–897. [Google Scholar] [CrossRef] [PubMed]
- Ng, S.; Raveendran, P. EEG Peak Alpha Frequency as an Indicator for Physical Fatigue. In Proceedings of the 11th Mediterranean Conference on Medical and Biomedical Engineering and Computing 2007, Ljubljana, Slovenia, 26–30 June 2007; Springer: Berlin/Heidelberg, Germany, 2007; pp. 517–520. [Google Scholar]
- Ekman, P.; Friesen, W.V.; Simons, R.C. Is the startle reaction an emotion? J. Personal. Soc. Psychol. 1985, 49, 1416–1426. [Google Scholar] [CrossRef]
- Fuss, F.K. A method for quantifying the emotional intensity and duration of a startle reaction with customized fractal dimensions of EEG signals. Appl. Math. 2016, 7, 355–364. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Sourina, O.; Nguyen, M.K. Real-time EEG-based emotion recognition and its applications. In Transactions on Computational Science XII; Springer: Berlin/Heidelberg, Germany, 2011; pp. 256–277. [Google Scholar]
- Andreou, M.; Skrimpa, V. Theory of Mind Deficits and Neurophysiological Operations in Autism Spectrum Disorders: A Review. Brain Sci. 2020, 20, 393. [Google Scholar] [CrossRef]
- Michail, E.; Kokonozi, A.; Chouvarda, I.; Maglaveras, N. EEG and HRV markers of sleepiness and loss of control during car driving. In Proceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, BC, Canada, 20–25 August 2008; pp. 2566–2569. [Google Scholar]
- Portnova, G.V. Age changes of EEG during photo-and auditory low-frequency stimulation and assessment of fatigue. In Proceedings of the 2018 IEEE 31st International Symposium on Computer-Based Medical Systems, Karlstad, Sweden, 18–21 June 2018; pp. 1–5. [Google Scholar]
- Portnova, G.V.; Ivanova, O.; Proskurnina, E.V. Effects of EEG examination and ABA-therapy on resting-state EEG in children with low-functioning autism. AIMS Neurosci. 2020, 7, 153–167. [Google Scholar] [CrossRef] [PubMed]
- Ishii, R.; Naito, Y. EEG connectivity as the possible endophenotype in adult ADHD. Clin. Neurophysiol. 2020, 131, 750–751. [Google Scholar] [CrossRef] [PubMed]
- Yoneda, S.; Nishimoto, A.; Nukada, T.; Kuriyama, Y.; Katsurada, K. To-and-fro movement and external escape of carotid arterial blood in brain death cases. A Doppler ultrasonic study. Stroke 1974, 5, 707–713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jann, K.; Smith, R.X.; Rios Piedra, E.A.; Dapretto, M.; Wang, D.J. Noise Reduction in Arterial Spin Labeling Based Functional Connectivity Using Nuisance Variables. Front. Neurosci. 2016, 10, 371. [Google Scholar] [CrossRef] [Green Version]
- Halsey, J.H.; McDowell, H.A.; Gelmon, S.; Morawetz, R.B. Blood velocity in the middle cerebral artery and regional cerebral blood flow during carotid endarterectomy. Stroke 1989, 20, 53–58. [Google Scholar] [CrossRef] [Green Version]
- Martynova, O.V.; Portnova, G.V.; Gladun, K.V. Neural correlates of brain state in chronic ischemia and stroke: Combined resting state electroencephalogram and transcranial Doppler ultrasonographic study. Neuroreport 2017, 28, 163–168. [Google Scholar] [CrossRef]
- Trojaborg, W.; Boysen, G. Relation between EEG, regional cerebral blood flow and internal carotid artery pressure during carotid endarterectomy. Electroencephalogr. Clin. Neurophysiol. 1973, 34, 61–69. [Google Scholar] [CrossRef]
- Koch, S.; Nelson, D.; Rundek, T.; Mandrekar, J.; Rabinstein, A. Race-ethnic variation in carotid bifurcation geometry. J. Stroke Cerebrovasc. Dis. 2009, 18, 349–353. [Google Scholar] [CrossRef]
- Schulz, U.G.; Rothwell, P.M. Major variation in carotid bifurcation anatomy: A possible risk factor for plaque development? Stroke 2001, 32, 2522–2529. [Google Scholar] [CrossRef] [Green Version]
- Kochanowicz, J.; Turek, G.; Rutkowski, R.; Mariak, Z.; Szydlik, P.; Lyson, T.; Krejza, J. Normal reference values of ratios of blood flow velocities in internal carotid artery to those in common carotid artery using Doppler sonography. J. Clin. Ultrasound 2009, 37, 208–211. [Google Scholar] [CrossRef]
- Nagai, Y.; Kemper, M.K.; Earley, C.J.; Metter, E.J. Blood-flow velocities and their relationships in carotid and middle cerebral arteries. Ultrasound Med. Biol. 1998, 24, 1131–1136. [Google Scholar] [CrossRef]
- Chavhan, G.B.; Parra, D.A.; Mann, A.; Navarro, O.M. Normal Doppler spectral waveforms of major pediatric vessels: Specific patterns. Radiographics 2008, 28, 691–706. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, B.B. (Ed.) An Atlas of Ultrasound Colour Flow Imaging; CRC Press: Boca Raton, FL, USA, 1997; p. 290. [Google Scholar]
- Smith, D.; Larsen, J.L. On the symmetry and asymmetry of the bifurcation of the common carotid artery: A study of bilateral carotid angiograms in 100 adults. Neuroradiology 1979, 17, 245–247. [Google Scholar] [CrossRef]
- Robinson, B.V.; Brzezinska-Rajszys, G.; Weber, H.S.; Ksiazyk, J.; Fricker, F.J.; Fischer, D.R.; Ettedgui, J.A. Balloon aortic valvotomy through a carotid cutdown in infants with severe aortic stenosis: Results of the multi-centric registry. Cardiol. Young 2000, 10, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Mori, T.; Ito, H.; Harada, M.; Hisaoka, S.; Matsumoto, Y.; Goji, A.; Toda, Y.; Mori, K.; Kagami, S. Multi-delay arterial spin labeling brain magnetic resonance imaging study for pediatric autism. Brain Dev. 2020, 42, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Winter, W.K.; Zorach, B.B.; Arpin, P.A.; Nelson, J.; Mackey, W.C. Progression of moderate-to-severe carotid disease. J. Vasc. Surg. 2016, 63, 1505–1510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganguli, R.; Mintun, M.A.; Becker, J.T.; Brar, J.S.; Diehl, D.; DeLeo, M.; Madoff, D.; Martidis, A. rCBF (O15 PET) during cognitive and physiological stimulation in schizophrenics. Biol. Psychiatry 1994, 35, 621–622. [Google Scholar] [CrossRef]
- Gur, R.C.; Gur, R.E.; Mozley, L.H.; Mozley, P.D.; Shtasel, D.; Ragland, J.D.; Alavi, A.; Reivich, M. Local cerebral blood flow during memory activation in healthy controls and patients with schizophrenia. Biol. Psychiatry 1994, 35, 622. [Google Scholar] [CrossRef]
- Motomiya, M.; Karino, T. Flow patterns in the human carotid artery bifurcation. Stroke 1984, 15, 50–56. [Google Scholar] [CrossRef] [Green Version]
- Keagy, B.A.; Pharr, W.F.; Thomas, D.; Bowles, D.E. Evaluation of the peak frequency ratio (PFR) measurement in the detection of internal carotid artery stenosis. J. Clin. Ultrasound 1982, 10, 109–112. [Google Scholar] [CrossRef]
- Mash, L.E.; Keehn, B.; Linke, A.C.; Liu, T.T.; Helm, J.L.; Haist, F.; Townsend, J.; Müller, R.A. Atypical Relationships Between Spontaneous EEG and fMRI Activity in Autism. Brain Connect. 2020, 10, 18–28. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.J.; Nichols, F.T.; Stephens, S.; Carl, E.; McKie, V.C.; McKie, K.; Fischer, A.; Thompson, W.O. Transcranial Doppler: The influence of age and hematocrit in normal children. J. Cardiovasc. Ultrason. 1988, 7, 201–205. [Google Scholar]
- Lin, P.Y.; Roche-Labarbe, N.; Dehaes, M.; Fenoglio, A.; Grant, P.E.; Franceschini, M.A. Regional and hemispheric asymmetries of cerebral hemodynamic and oxygen metabolism in newborns. Cereb. Cortex 2013, 23, 339–348. [Google Scholar] [CrossRef] [PubMed]
- Farber, D.A.; Bezrukikh, M.M. (Eds.) Razvitie Mozga i Formirovanie Poznavatel’noi Deyatel’nosti Rebenka [Brain Development and the Formation of Cognitive Activity of the Child]; MODEK Publ.: Voronezh, Russia, 2009; p. 432. [Google Scholar]
- O’Brien, C.; Saxton, V.; Crick, R.P.; Meire, H. Doppler carotid artery studies in asymmetric glaucoma. Eye 1992, 6 Pt. 3, 273–276. [Google Scholar] [CrossRef]
- Jordan, L.C.; Wityk, R.J.; Dowling, M.M.; DeJong, M.R.; Comi, A.M. Transcranial Doppler ultrasound in children with Sturge-Weber syndrome. J. Child Neurol. 2008, 23, 137–143. [Google Scholar] [CrossRef]
- Langleben, D.D.; Austin, G.; Krikorian, G.; Ridlehuber, H.W.; Goris, M.L.; Strauss, H.W. Interhemispheric asymmetry of regional cerebral blood flow in prepubescent boys with attention deficit hyperactivity disorder. Nucl. Med. Commun. 2001, 22, 1333–1340. [Google Scholar] [CrossRef] [Green Version]
- Fedotov, D.M.; Melkova, L.A.; Gribanov, A.V. Age Features of Hemispheric Asymmetry of Cerebral Blood Flow in Children with Attention Deficit Hyperactivity Disorder. Ekol. Cheloveka Hum. Ecol. 2016, 2, 13–17. [Google Scholar] [CrossRef] [Green Version]
- Chiron, C.; Leboyer, M.; Leon, F.; Jambaque, I.; Nuttin, C.; Syrota, A. SPECT of the brain in childhood autism: Evidence for a lack of normal hemispheric asymmetry. Dev. Med. Child. Neurol 1995, 37, 849–860. [Google Scholar] [CrossRef]
- Wilson, W.H.; Mathew, R.J. Asymmetry of rCBF in schizophrenia: Relationship to AP-gradient and duration of illness. Biol. Psychiatry 1993, 33, 806–814. [Google Scholar] [CrossRef]
- Niedermeyer, E.; da Silva, F.L. (Eds.) Electroencephalography: Basic Principles, Clinical Applications, and Related Fields; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2005; p. 1309. [Google Scholar]
- Pietz, J.; Benninger, C.; Schmidt, H.; Scheffner, D.; Bickel, H. Long-term development of intelligence (IQ) and EEG in 34 children with phenylketonuria treated early. Eur. J. Pediatr. 1988, 147, 361–367. [Google Scholar] [CrossRef]
- Di Gennaro, G.; Quarato, P.P.; Onorati, P.; Colazza, G.B.; Mari, F.; Grammaldo, L.G.; Ciccarelli, O.; Meldolesi, N.G.; Sebastiano, F.; Manfredi, M.; et al. Localizing significance of temporal intermittent rhythmic delta activity (TIRDA) in drug-resistant focal epilepsy. Clin. Neurophysiol. 2003, 114, 70–78. [Google Scholar] [CrossRef]
- Watemberg, N.; Linder, I.; Dabby, R.; Blumkin, L.; Lerman-Sagie, T. Clinical correlates of occipital intermittent rhythmic delta activity (OIRDA) in children. Epilepsia 2007, 48, 330–334. [Google Scholar] [CrossRef] [PubMed]
- Gullapalli, D.; Fountain, N.B. Clinical correlation of occipital intermittent rhythmic delta activity. J. Clin. Neurophysiol. 2003, 20, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Smigielska-Kuzia, J.; Sobaniec, W.; Kulak, W.; Bockowski, L. Clinical and EEG features of epilepsy in children and adolescents in Down syndrome. J. Child Neurol. 2009, 24, 416–420. [Google Scholar] [CrossRef] [PubMed]
- Cobb, W.A. Rhythmic slow discharges in the electroencephalogram. J. Neurol. Neurosurg. Psychiatry 1945, 8, 65–78. [Google Scholar] [CrossRef] [Green Version]
- Watemberg, N.; Alehan, F.; Dabby, R.; Lerman-Sagie, T.; Pavot, P.; Towne, A. Clinical and radiologic correlates of frontal intermittent rhythmic delta activity. J. Clin. Neurophysiol. 2002, 19, 535–539. [Google Scholar] [CrossRef]
- Yerys, B.E.; Herrington, J.D.; Bartley, G.K.; Liu, H.S.; Detre, J.A.; Schultz, R.T. Arterial spin labeling provides a reliable neurobiological marker of autism spectrum disorder. J. Neurodev. Disord. 2018, 10, 32. [Google Scholar] [CrossRef]
- Shreve, L.; Kaur, A.; Vo, C.; Wu, J.; Cassidy, J.M.; Nguyen, A.; Zhou, R.J.; Tran, T.B.; Yang, D.Z.; Medizade, A.I.; et al. Electroencephalography Measures are Useful for Identifying Large Acute Ischemic Stroke in the Emergency Department. J. Stroke Cerebrovasc. Dis. 2019, 28, 2280–2286. [Google Scholar] [CrossRef]
- Wu, J.; Srinivasan, R.; Burke Quinlan, E.; Solodkin, A.; Small, S.L.; Cramer, S.C. Utility of EEG measures of brain function in patients with acute stroke. J. Neurophysiol. 2016, 115, 2399–2405. [Google Scholar] [CrossRef] [Green Version]
Valid N | AC * | Left | Right | |||
---|---|---|---|---|---|---|
ICA/ECA ** | ICA/CCA *** | ICA/ECA | ICA/CCA | |||
Children | 29 | 0.21 ± 0.1 | 1.05 ± 0.2 | 1.24 ± 0.2 | 1.00 ± 0.14 | 1.14 ± 0.3 |
Adults | 45 | 0.11 ± 0.1 | 0.90 ± 0.2 | 0.89 ± 0.2 | 0.81 ± 0.15 | 0.93 ± 0.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Portnova, G.V.; Maslennikova, A.V.; Proskurnina, E.V. The Relationship between Carotid Doppler Ultrasound and EEG Metrics in Healthy Preschoolers and Adults. Brain Sci. 2020, 10, 755. https://doi.org/10.3390/brainsci10100755
Portnova GV, Maslennikova AV, Proskurnina EV. The Relationship between Carotid Doppler Ultrasound and EEG Metrics in Healthy Preschoolers and Adults. Brain Sciences. 2020; 10(10):755. https://doi.org/10.3390/brainsci10100755
Chicago/Turabian StylePortnova, Galina V., Aleksandra V. Maslennikova, and Elena V. Proskurnina. 2020. "The Relationship between Carotid Doppler Ultrasound and EEG Metrics in Healthy Preschoolers and Adults" Brain Sciences 10, no. 10: 755. https://doi.org/10.3390/brainsci10100755