The Effect of Blindness on Spatial Asymmetries
Abstract
1. Introduction
2. Pseudoneglect
3. Mirror Symmetry
4. Localization Tasks
5. The Role of Sensorimotor Experience
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Concha, M.L.; Bianco, I.H.; Wilson, S.W. Encoding asymmetry within neural circuits. Nat. Rev. Neurosci. 2012, 13, 832–843. [Google Scholar] [CrossRef] [PubMed]
- Güntürkün, O.; Ocklenburg, S. Ontogenesis of Lateralization. Neuron 2017, 94, 249–263. [Google Scholar] [CrossRef] [PubMed]
- Zozulinsky, P.; Greenbaum, L.; Brande-Eilat, N.; Braun, Y.; Shalev, I.; Tomer, R. Dopamine system genes are associated with orienting bias among healthy individuals. Neuropsychologia 2014, 62, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Greene, C.M.; Robertson, I.H.; Gill, M.; Bellgrove, M.A. Dopaminergic genotype influences spatial bias in healthy adults. Neuropsychologia 2010, 48, 2458–2464. [Google Scholar] [CrossRef] [PubMed]
- Ocklenburg, S.; Packheiser, J.; Schmitz, J.; Rook, N.; Güntürkün, O.; Peterburs, J.; Grimshaw, G.M. Hugs and kisses—The role of motor preferences and emotional lateralization for hemispheric asymmetries in human social touch. Neurosci. Biobehav. Rev. 2018, 95, 353–360. [Google Scholar] [CrossRef]
- Latham, A.J.; Patston, L.L.M.; Tippett, L.J. The precision of experienced action video-game players: Line bisection reveals reduced leftward response bias. Atten. Percept. Psychophys. 2014, 76, 2193–2198. [Google Scholar] [CrossRef]
- Schmitz, J.; Kumsta, R.; Moser, D.; Güntürkün, O.; Ocklenburg, S. DNA methylation of dopamine-related gene promoters is associated with line bisection deviation in healthy adults. Sci. Rep. 2019, 9, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ocklenburg, S.; Beste, C.; Arning, L.; Peterburs, J.; Güntürkün, O. The ontogenesis of language lateralization and its relation to handedness. Neurosci. Biobehav. Rev. 2014, 43, 191–198. [Google Scholar] [CrossRef]
- Kosslyn, S.M. Image And Brain; MIT Press: Cambridge, MA, USA, 1994. [Google Scholar]
- Cattaneo, Z.; Vecchi, T.; Cornoldi, C.; Mammarella, I.; Bonino, D.; Ricciardi, E.; Pietrini, P. Imagery and spatial processes in blindness and visual impairment. Neurosci. Biobehav. Rev. 2008, 32, 1346–1360. [Google Scholar] [CrossRef] [PubMed]
- Merabet, L.B.; Rizzo, J.F.; Amedi, A.; Somers, D.C.; Pascual-Leone, A. What blindness can tell us about seeing again: Merging neuroplasticity and neuroprostheses. Nat. Rev. Neurosci. 2005, 6, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Ricciardi, E.; Bonino, D.; Pellegrini, S.; Pietrini, P. Mind the blind brain to understand the sighted one! Is there a supramodal cortical functional architecture? Neurosci. Biobehav. Rev. 2014, 41, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Bradshaw, J.L.; Nettleton, N.C.; Nathan, G.; Wilson, L. Tactual-kinesthetic matching of horizontal extents by the long-term blind: Absence or reversal of normal left-side underestimation. Neuropsychologia 1986, 24, 261–264. [Google Scholar] [CrossRef]
- Cattaneo, Z.; Rinaldi, L.; Geraci, C.; Cecchetto, C.; Papagno, C. Spatial biases in deaf, blind, and deafblind individuals as revealed by a haptic line bisection task. Q. J. Exp. Psychol. 2018, 7, 2325–2333. [Google Scholar] [CrossRef] [PubMed]
- Cattaneo, Z.; Fantino, M.; Tinti, C.; Pascual-Leone, A.; Silvanto, J.; Vecchi, T. Spatial Biases in Peripersonal Space in Sighted and Blind Individuals Revealed by a Haptic Line Bisection Paradigm. J. Exp. Psychol. Hum. Percept. Perform. 2011, 37, 1110–1121. [Google Scholar] [CrossRef]
- Sampaio, E.; Gouarir, C.; Mvondo, D.M. Tactile and Visual Bisection Tasks by Sighted and Blind Children. Dev. Neuropsychol. 1995, 11, 109–127. [Google Scholar] [CrossRef]
- Cattaneo, Z.; Fantino, M.; Silvanto, J.; Vallar, G.; Vecchi, T. Tapping effects on numerical bisection. Exp. Brain Res. 2011, 208, 21–28. [Google Scholar] [CrossRef]
- Cattaneo, Z.; Fantino, M.; Tinti, C.; Silvanto, J.; Vecchi, T. Crossmodal interaction between the mental number line and peripersonal haptic space representation in sighted and blind individuals. Atten. Percept. Psychophys. 2010, 72, 885–890. [Google Scholar] [CrossRef]
- Rinaldi, L.; Vecchi, T.; Fantino, M.; Merabet, L.B.; Cattaneo, Z. The effect of hand movements on numerical bisection judgments in early blind and sighted individuals. Cortex 2015, 71, 76–84. [Google Scholar] [CrossRef][Green Version]
- Bauer, C.; Yazzolino, L.; Hirsch, G.; Cattaneo, Z.; Vecchi, T.; Merabet, L.B. Neural correlates associated with superior tactile symmetry perception in the early blind. Cortex 2015, 63, 104–117. [Google Scholar] [CrossRef]
- Cattaneo, Z.; Fantino, M.; Silvanto, J.; Tinti, C.; Pascual-Leone, A.; Vecchi, T. Symmetry perception in the blind. Acta Psychol. (Amsterdam) 2010, 134, 398–402. [Google Scholar] [CrossRef]
- Cattaneo, Z.; Vecchi, T.; Fantino, M.; Herbert, A.M.; Merabet, L.B. The effect of vertical and horizontal symmetry on memory for tactile patterns in late blind individuals. Atten. Percept. Psychophys. 2013, 75, 375–382. [Google Scholar] [CrossRef] [PubMed]
- Collignon, O.; Davare, M.; Olivier, E.; De Volder, A.G. Reorganisation of the right occipito-parietal stream for auditory spatial processing in early blind humans. a transcranial magnetic stimulation study. Brain Topogr. 2009, 21, 232–240. [Google Scholar] [CrossRef] [PubMed]
- Vercillo, T.; Tonelli, A.; Gori, M. Intercepting a sound without vision. PLoS ONE 2017, 5, e0177407. [Google Scholar] [CrossRef] [PubMed]
- Corbetta, M.; Kincade, M.J.; Lewis, C.; Snyder, A.Z.; Sapir, A. Neural basis and recovery of spatial attention deficits in spatial neglect. Nat. Neurosci. 2005, 8, 1603–1610. [Google Scholar] [CrossRef]
- Shulman, G.L.; Pope, D.L.W.; Astafiev, S.V.; McAvoy, M.P.; Snyder, A.Z.; Corbetta, M. Right Hemisphere Dominance during Spatial Selective Attention and Target Detection Occurs Outside the Dorsal Frontoparietal Network. J. Neurosci. 2010, 30, 3640–3651. [Google Scholar] [CrossRef]
- Jewell, G.; McCourt, M.E. Pseudoneglect: A review and meta-analysis of performance factors in line bisection tasks. Neuropsychologia 2000, 38, 93–110. [Google Scholar] [CrossRef]
- Benwell, C.S.Y.; Harvey, M.; Thut, G. On the neural origin of pseudoneglect: EEG-correlates of shifts in line bisection performance with manipulation of line length. Neuroimage 2014, 86, 370–380. [Google Scholar] [CrossRef]
- Fink, G.R.; Marshall, J.C.; Shah, N.J.; Weiss, P.H.; Halligan, P.W.; Grosse-Ruyken, M.; Ziemons, K.; Zilles, K.; Freund, H.J. Line bisection judgments implicate right parietal cortex and cerebellum as assessed by fMRI. Neurology 2000, 54, 1324–1331. [Google Scholar] [CrossRef]
- Fink, G.R.; Marshall, J.C.; Weiss, P.H.; Zilles, K. The neural basis of vertical and horizontal line bisection judgments: An fMRI study of normal volunteers. Neuroimage 2001, 14, S59–S67. [Google Scholar] [CrossRef]
- Zago, L.; Petit, L.; Jobard, G.; Hay, J.; Mazoyer, B.; Tzourio-Mazoyer, N.; Karnath, H.O.; Mellet, E. Pseudoneglect in line bisection judgement is associated with a modulation of right hemispheric spatial attention dominance in right-handers. Neuropsychologia 2017, 94, 75–83. [Google Scholar] [CrossRef]
- Brooks, J.L.; Darling, S.; Malvaso, C.; Della Sala, S. Adult developmental trajectories of pseudoneglect in the tactile, visual and auditory modalities and the influence of starting position and stimulus length. Brain Cogn. 2016, 103, 12–22. [Google Scholar] [CrossRef] [PubMed]
- Brooks, J.L.; Della Sala, S.; Logie, R.H. Tactile rod bisection in the absence of visuo-spatial processing in children, mid-age and older adults. Neuropsychologia 2011, 49, 3392–3398. [Google Scholar] [CrossRef] [PubMed]
- Coudereau, J.P.; Gueguen, N.; Pratte, M.; Sampaio, E. Tactile precision in right-handed archery experts with visual disabilities: A pseudoneglect effect? Laterality 2006, 11, 170–180. [Google Scholar] [CrossRef] [PubMed]
- Ciricugno, A.; Rinaldi, L.; Vecchi, T.; Merabet, L.B.; Cattaneo, Z. The role of binocular vision in driving pseudoneglect in visual and haptic bisection: Evidence from strabismic and monocular blind individuals. Multisens. Res. 2020, 33, 549–567. [Google Scholar] [CrossRef] [PubMed]
- Roth, H.L.; Lora, A.N.; Heilman, K.M. Effects of monocular viewing and eye dominance on spatial attention. Brain 2002, 125, 2023–2035. [Google Scholar] [CrossRef] [PubMed]
- Girelli, L.; Marinelli, C.V.; Grossi, G.; Arduino, L.S. Cultural and biological factors modulate spatial biases over development. Laterality 2017, 22, 725–739. [Google Scholar] [CrossRef]
- Rinaldi, L.; Di Luca, S.; Toneatto, C.; Girelli, L. The effects of hemispheric dominance, literacy acquisition, and handedness on the development of visuospatial attention: A study in preschoolers and second graders. J. Exp. Child Psychol. 2020, 195, 104830. [Google Scholar] [CrossRef]
- Fierro, B.; Brighina, F.; Piazza, A.; Oliveri, M.; Bisiach, E. Timing of right parietal and frontal cortex activity in visuo-spatial perception: A TMS study in normal individuals. Neuroreport 2001, 12, 2605–2607. [Google Scholar] [CrossRef]
- Fink, G.R.; Marshall, J.C.; Weiss, P.H.; Toni, I.; Zilles, K. Task instructions influence the cognitive strategies involved in line bisection judgements: Evidence from modulated neural mechanisms revealed by fMRI. Neuropsychologia 2002, 40, 119–130. [Google Scholar] [CrossRef]
- Foxe, J.J.; McCourt, M.E.; Javitt, D.C. Right hemisphere control of visuospatial attention: Line-bisection judgments evaluated with high-density electrical mapping and source analysis. Neuroimage 2003, 19, 710–726. [Google Scholar] [CrossRef]
- Collignon, O.; Lassonde, M.; Voss, P.; Vandewalle, G.; Charbonneau, G.; Lepore, F.; Albouy, G. Functional specialization for auditory-spatial processing in the occipital cortex of congenitally blind humans. Proc. Natl. Acad. Sci. USA 2011, 108, 4435–4440. [Google Scholar] [CrossRef] [PubMed]
- Garg, A.; Schwartz, D.; Stevens, A.A. Orienting auditory spatial attention engages frontal eye fields and medial occipital cortex in congenitally blind humans. Neuropsychologia 2007, 45, 2307–2321. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Gougoux, F.; Zatorre, R.J.; Lassonde, M.; Voss, P.; Lepore, F. A functional neuroimaging study of sound localization: Visual cortex activity predicts performance in early-blind individuals. PLoS Biol. 2005, 3, e27. [Google Scholar] [CrossRef] [PubMed]
- Vanlierde, A.; De Volder, A.G.; Wanet-Defalque, M.C.; Veraart, C. Occipito-parietal cortex activation during visuo-spatial imagery in early blind humans. Neuroimage 2003, 19, 698–709. [Google Scholar] [CrossRef]
- Weeks, R.; Horwitz, B.; Aziz-Sultan, A.; Tian, B.; Wessinger, C.M.; Cohen, L.G.; Hallett, M.; Rauschecker, J.P. A positron emission tomographic study of auditory localization in the congenitally blind. J. Neurosci. 2000, 20, 2664–2672. [Google Scholar] [CrossRef] [PubMed]
- Barrett, A.M.; Crosson, J.B.; Crucian, G.P.; Heilman, K.M. Far bias on the radial line bisection task: Measuring perceptual-attentional and motor-intentional bias in normal subjects. Cortex 2002, 38, 769–778. [Google Scholar] [CrossRef]
- Chieffi, S.; Iavarone, A.; Carlomagno, S. Effects of spatiotopic factors on bisection of radial lines. Exp. Brain Res. 2008, 189, 129–132. [Google Scholar] [CrossRef] [PubMed]
- Szpak, A.; Thomas, N.A.; Nicholls, M.E.R. Hemispheric asymmetries in perceived depth revealed through a radial line bisection task. Exp. Brain Res. 2016, 234, 807–813. [Google Scholar] [CrossRef]
- Suavansri, K.; Falchook, A.D.; Williamson, J.B.; Heilman, K.M. Right up there: Hemispatial and hand asymmetries of altitudinal pseudoneglect. Brain Cogn. 2012, 79, 216–220. [Google Scholar] [CrossRef]
- Drain, M.; Reuter-Lorenz, P.A. Vertical Orienting Control: Evidence for Attentional Bias and “Neglect” in the Intact Brain. J. Exp. Psychol. Gen. 1996, 125, 139–158. [Google Scholar] [CrossRef]
- Brooks, J.L.; Logie, R.H.; McIntosh, R.; Sala, S. Della Representational pseudoneglect in an auditory-driven spatial working memory task. Q. J. Exp. Psychol. 2011, 64, 2168–2180. [Google Scholar] [CrossRef] [PubMed]
- Brooks, J.L.; Della Sala, S.; Darling, S. Representational pseudoneglect: A review. Neuropsychol. Rev. 2014, 24, 148–165. [Google Scholar] [CrossRef] [PubMed]
- Darling, S.; Logie, R.H.; Della Sala, S. Representational pseudoneglect in line bisection. Psychon. Bull. Rev. 2012, 19, 879–883. [Google Scholar] [CrossRef] [PubMed]
- McGeorge, P.; Beschin, N.; Colnaghi, A.; Rusconi, M.L.; Della Sala, S. A lateralized bias in mental imagery: Evidence for representational pseudoneglect. Neurosci. Lett. 2007, 421, 259–263. [Google Scholar] [CrossRef]
- Dehaene, S.; Bossini, S.; Giraux, P. The Mental Representation of Parity and Number Magnitude. J. Exp. Psychol. Gen. 1993, 122, 371–396. [Google Scholar] [CrossRef]
- Longo, M.R.; Lourenco, S.F. Spatial attention and the mental number line: Evidence for characteristic biases and compression. Neuropsychologia 2007. [Google Scholar] [CrossRef]
- Loftus, A.M.; Nicholls, M.E.R.; Mattingley, J.B.; Chapman, H.L.; Bradshaw, J.L. Pseudoneglect for the bisection of mental number lines. Q. J. Exp. Psychol. 2009, 62, 925–945. [Google Scholar] [CrossRef]
- Göbel, S.M.; Calabria, M.; Farnè, A.; Rossetti, Y. Parietal rTMS distorts the mental number line: Simulating “spatial” neglect in healthy subjects. Neuropsychologia 2006, 44, 860–868. [Google Scholar] [CrossRef]
- Castronovo, J.; Seron, X. Numerical Estimation in Blind Subjects: Evidence of the Impact of Blindness and Its Following Experience. J. Exp. Psychol. Hum. Percept. Perform. 2007. [Google Scholar] [CrossRef]
- Cattaneo, Z.; Fantino, M.; Silvanto, J.; Tinti, C.; Vecchi, T. Blind individuals show pseudoneglect in bisecting numerical intervals. Atten. Percept. Psychophys. 2011, 73, 1021–1028. [Google Scholar] [CrossRef][Green Version]
- Szücs, D.; Csépe, V. The parietal distance effect appears in both the congenitally blind and matched sighted controls in an acoustic number comparison task. Neurosci. Lett. 2005, 384, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Doricchi, F.; Guariglia, P.; Gasparini, M.; Tomaiuolo, F. Dissociation between physical and mental number line bisection in right hemisphere brain damage. Nat. Neurosci. 2005. [Google Scholar] [CrossRef] [PubMed]
- Treder, M.S. Behind the looking-glass: A review on human symmetry perception. Symmetry 2010, 2, 1510–1543. [Google Scholar] [CrossRef]
- Ballesteros, S.; Manga, D.; Reales, J.M. Haptic discrimination of bilateral symmetry in 2-dimensional and 3-dimensional unfamiliar displays. Percept. Psychophys. 1997, 59, 37–50. [Google Scholar] [CrossRef]
- Cattaneo, Z.; Bona, S.; Bauer, C.; Silvanto, J.; Herbert, A.M.; Vecchi, T.; Merabet, L.B. Symmetry detection in visual impairment: Behavioral evidence and neural correlates. Symmetry 2014, 6, 427–443. [Google Scholar] [CrossRef]
- Tyler, C.W.; Baseler, H.A.; Kontsevich, L.L.; Likova, L.T.; Wade, A.R.; Wandell, B.A. Predominantly extra-retinotopic cortical response to pattern symmetry. Neuroimage 2005, 24, 306–314. [Google Scholar] [CrossRef]
- Sasaki, Y.; Vanduffel, W.; Knutsen, T.; Tyler, C.; Tootell, R. Symmetry activates extrastriate visual cortex in human and nonhuman primates. Proc. Natl. Acad. Sci. USA 2005, 102, 3159–3163. [Google Scholar] [CrossRef]
- Bona, S.; Herbert, A.; Toneatto, C.; Silvanto, J.; Cattaneo, Z. The causal role of the lateral occipital complex in visual mirror symmetry detection and grouping: An fMRI-guided TMS study. Cortex 2014, 51, 46–55. [Google Scholar] [CrossRef]
- Cattaneo, Z. The neural basis of mirror symmetry detection: A review. J. Cogn. Psychol. 2017, 29, 259–268. [Google Scholar] [CrossRef]
- Bertamini, M.; Silvanto, J.; Norcia, A.M.; Makin, A.D.J.; Wagemans, J. The neural basis of visual symmetry and its role in mid-and high-level visual processing. Ann. N. Y. Acad. Sci. 2018, 1426, 111–126. [Google Scholar] [CrossRef]
- Hillger, L.A.; Koenig, O. Separable mechanisms in face processing: Evidence from hemispheric specialization. J. Cogn. Neurosci. 1991, 3, 42–58. [Google Scholar] [CrossRef] [PubMed]
- Epstein, R.A.; Patai, E.Z.; Julian, J.B.; Spiers, H.J. The cognitive map in humans: Spatial navigation and beyond. Nat. Neurosci. 2017, 20, 1504–1513. [Google Scholar] [CrossRef] [PubMed]
- Weeks, R.A.; Aziz-Sultan, A.; Bushara, K.O.; Tian, B.; Wessinger, C.M.; Dang, N.; Rauschecker, J.P.; Hallett, M. A PET study of human auditory spatial processing. Neurosci. Lett. 1999, 262, 155–158. [Google Scholar] [CrossRef]
- Zatorre, R.J.; Bouffard, M.; Ahad, P.; Belin, P. Where is “where” in the human auditory cortex? Nat. Neurosci. 2002, 5, 905–909. [Google Scholar] [CrossRef] [PubMed]
- Van Boven, R.W.; Ingeholm, J.E.; Beauchamp, M.S.; Bikle, P.C.; Ungerleider, L.G. Tactile form and location processing in the human brain. Proc. Natl. Acad. Sci. USA 2005, 102, 12601–12605. [Google Scholar] [CrossRef]
- Röder, B.; Rösler, F.; Spence, C. Early Vision Impairs Tactile Perception in the Blind. Curr. Biol. 2004, 14, 121–124. [Google Scholar] [CrossRef]
- Lessard, N.; Paré, M.; Lepore, F.; Lassonde, M. Early-blind human subjects localize sound sources better than sighted subjects. Nature 1998, 395, 278–280. [Google Scholar] [CrossRef]
- Voss, P.; Gougoux, F.; Lassonde, M.; Zatorre, R.J.; Lepore, F. A positron emission tomography study during auditory localization by late-onset blind individuals. Neuroreport 2006, 17, 383–388. [Google Scholar] [CrossRef]
- Röder, B.; Teder-Sälejärvi, W.; Sterr, A.; Rösler, F.; Hillyard, S.A.; Neville, H.J. Improved auditory spatial tuning in blind humans. Nature 1999, 400, 162–166. [Google Scholar] [CrossRef]
- Poirier, C.; Collignon, O.; Scheiber, C.; Renier, L.; Vanlierde, A.; Tranduy, D.; Veraart, C.; De Volder, A.G. Auditory motion perception activates visual motion areas in early blind subjects. Neuroimage 2006, 31, 279–285. [Google Scholar] [CrossRef]
- Arno, P.; De Volder, A.G.; Vanlierde, A.; Wanet-Defalque, M.C.; Streel, E.; Robert, A.; Sanabria-Bohórquez, S.; Veraart, C. Occipital activation by pattern recognition in the early blind using auditory substitution for vision. Neuroimage 2001, 13, 632–645. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Collignon, O.; Davare, M.; De Volder, A.G.; Poirier, C.; Olivier, E.; Veraart, C. Time-course of posterior parietal and occipital cortex contribution to sound localization. J. Cogn. Neurosci. 2008, 20, 1454–1463. [Google Scholar] [CrossRef]
- Bowers, D.; Heilman, K.M. Pseudoneglect: Effects of hemispace on a tactile line bisection task. Neuropsychologia 1980, 18, 491–498. [Google Scholar] [CrossRef]
- Bradshaw, J.L.; Nathan, G.; Nettleton, N.C.; Wilson, L.; Pierson, J. Why is there a left side underestimation in rod bisection? Neuropsychologia 1987. [Google Scholar] [CrossRef]
- Kinsbourne, M. The cerebral basis of lateral asymmetries in attention. Acta Psychol. 1970, 33, 193–201. [Google Scholar] [CrossRef]
- Reuter-Lorenz, P.A.; Kinsbourne, M.; Moscovitch, M. Hemispheric control of spatial attention. Brain Cogn. 1990, 12, 240–266. [Google Scholar] [CrossRef]
- Chokron, S.; Imbert, M. Influence of reading habits on line bisection. Cogn. Brain Res. 1993, 1, 219–222. [Google Scholar] [CrossRef]
- Kazandjian, S.; Cavézian, C.; Zivotofsky, A.Z.; Chokron, S. Bisections in two languages: When number processing, spatial representation, and habitual reading direction interact. Neuropsychologia 2010, 48, 4031–4037. [Google Scholar] [CrossRef]
- Rinaldi, L.; Di Luca, S.; Henik, A.; Girelli, L. Reading direction shifts visuospatial attention: An Interactive Account of attentional biases. Acta Psychol. (Amsterdam) 2014, 151, 98–105. [Google Scholar] [CrossRef]
- Leo, A.; Bernardi, G.; Handjaras, G.; Bonino, D.; Ricciardi, E.; Pietrini, P. Increased BOLD variability in the parietal cortex and enhanced parieto-occipital connectivity during tactile perception in congenitally blind individuals. Neural Plast. 2012. [Google Scholar] [CrossRef]
- Hamilton, R.H.; Pascual-Leone, A. Cortical plasticity associated with Braille learning. Trends Cogn. Sci. 1998, 2, 168–174. [Google Scholar] [CrossRef]
- Burton, H.; Snyder, A.Z.; Diamond, J.B.; Raichle, M.E. Adaptive Changes in Early and Late Blind: A fMRI Study of Verb Generation to Heard Nouns. J. Neurophysiol. 2002, 88, 3359–3371. [Google Scholar] [CrossRef] [PubMed]
- Cohen, L.G.; Celnik, P.; Pascual-Leone, A.; Corwell, B.; Faiz, L.; Dambrosia, J.; Honda, M.; Sadato, N.; Gerloff, C.; Dolores Catalá, M.; et al. Functional relevance of cross-modal plasticity in blind humans. Nature 1997, 389, 180–183. [Google Scholar] [CrossRef] [PubMed]
- Siuda-Krzywicka, K.; Bola, Ł.; Paplińska, M.; Sumera, E.; Jednoróg, K.; Marchewka, A.; Śliwińska, M.W.; Amedi, A.; Szwed, M. Massive cortical reorganization in sighted braille readers. eLife 2016. [Google Scholar] [CrossRef]
- Bonino, D.; Ricciardi, E.; Bernardi, G.; Sani, L.; Gentili, C.; Vecchi, T.; Pietrini, P. Spatial imagery relies on a sensory independent, though sensory sensitive, functional organization within the parietal cortex: A fMRI study of angle discrimination in sighted and congenitally blind individuals. Neuropsychologia 2015, 68, 59–70. [Google Scholar] [CrossRef]
- Merabet, L.B.; Pascual-Leone, A. Neural reorganization following sensory loss: The opportunity of change. Nat. Rev. Neurosci. 2010, 11, 44–52. [Google Scholar] [CrossRef]
- Pascual-Leone, A.; Amedi, A.; Fregni, F.; Merabet, L.B. The plastic human brain cortex. Annu. Rev. Neurosci. 2005. [Google Scholar] [CrossRef]
- Bedny, M.; Richardson, H.; Saxe, R. “Visual” Cortex Responds to Spoken Language in Blind Children. J. Neurosci. 2015, 35, 11674–11681. [Google Scholar] [CrossRef]
- Merabet, L.B.; Hamilton, R.; Schlaug, G.; Swisher, J.D.; Kiriakopoulos, E.T.; Pitskel, N.B.; Kauffman, T.; Pascual-Leone, A. Rapid and reversible recruitment of early visual cortex for touch. PLoS ONE 2008, 3, e3046. [Google Scholar] [CrossRef]
- Chiao, J.; Li, S.-C.; Seligman, R.; Turner, R. The Oxford Handbook of Cultural Neuroscience; Oxford Univ. Press: Oxford, UK, 2016. [Google Scholar]
Author | Year | Blind Participants | Control Participants |
---|---|---|---|
Pseudoneglect (line bisection) | |||
Bradshaw et al. [13] | 1986 | 10 | 24 |
Cattaneo et al. [14] | 2018 | 11 | 25 |
Cattaneo, Fantino, Tinti et al. [15] | 2011 | 17 | 18 |
Sampaio et al. [16] | 1995 | 20 | 20 |
Pseudoneglect (numerical bisection) | |||
Cattaneo, Fantino, Silvanto et al. [17] | 2011 | 18 | 10 |
Cattaneo, Fantino, Tinti et al. [18] | 2010 | 17 | 23 |
Rinaldi et al. [19] | 2015 | 16 | 16 |
Mirror symmetry | |||
Bauer et al. [20] | 2015 | 8 | 7 |
Cattaneo, Fantino, Silvanto et al. [21] | 2010 | 16 | 26 |
Cattaneo et al. [22] | 2013 | 12 | 12 |
Localization tasks | |||
Collignon et al. [23] | 2009 | 6 | 0 |
Vercillo et al. [24] | 2017 | 8 | 8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rinaldi, L.; Ciricugno, A.; Merabet, L.B.; Vecchi, T.; Cattaneo, Z. The Effect of Blindness on Spatial Asymmetries. Brain Sci. 2020, 10, 662. https://doi.org/10.3390/brainsci10100662
Rinaldi L, Ciricugno A, Merabet LB, Vecchi T, Cattaneo Z. The Effect of Blindness on Spatial Asymmetries. Brain Sciences. 2020; 10(10):662. https://doi.org/10.3390/brainsci10100662
Chicago/Turabian StyleRinaldi, Luca, Andrea Ciricugno, Lotfi B. Merabet, Tomaso Vecchi, and Zaira Cattaneo. 2020. "The Effect of Blindness on Spatial Asymmetries" Brain Sciences 10, no. 10: 662. https://doi.org/10.3390/brainsci10100662
APA StyleRinaldi, L., Ciricugno, A., Merabet, L. B., Vecchi, T., & Cattaneo, Z. (2020). The Effect of Blindness on Spatial Asymmetries. Brain Sciences, 10(10), 662. https://doi.org/10.3390/brainsci10100662