MEBN-RM: A Mapping between Multi-Entity Bayesian Network and Relational Model
Abstract
:1. Introduction
2. Background
2.1. Multi-Entity Bayesian Network
|
2.2. A Script for MEBN
|
2.3. Relational Model
3. MEBN-RM
|
3.1. Entity Mapping
3.2. Resident Node Mapping
3.2.1. Predicate
3.2.2. Function
3.3. Relation Schema and MFrag Mapping
- (a)
- If the RS is an ERS and |O| > 0, thePKandOof the ERS are mapped to theCandRof the F, respectively. This is denoted by ERS[PK,O] ↦ F[C1[IsA(K1, E(K1))], R1[O1(K1)], …, Rm[Om(K1)]].
- (b)
- If the RS is an RRS and |O| > 0, thePKandOof the RRS are mapped to theCandRof the F, respectively. This is denoted by RRS[PK,O] ↦ F[C1[IsA(K1, E(K1))], …, Cn[IsA(Kn, E(Kn))], R1[O1(PK)], …, Rm[Om(PK)]] (E(X) is the entity type which the attribute X points to).
- (c)
- If the RS is an RRS and |O| = 0, thePKand RRS are mapped to theCandRof the F, respectively. This is denoted by RRS[PK] ↦ F[C1[IsA(K1, E(K1))], …, Cn[IsA(Kn, E(Kn))], R1[RRS(PK)]].
3.4. Relational Database Schema and MTheory Mapping
3.5. MEBN-RM Mapping Algorithm
Algorithm 1: MEBN-RM Mapping |
|
|
4. Experiment for MEBN-RM
4.1. MEBN-RM Tool
4.2. Experiment
4.2.1. Mapping Time
4.2.2. Mapping Accuracy
5. Use Cases
5.1. Critical Infrastructure Defense System
5.2. Smart Manufacturing System
|
|
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Koller, D.; Friedman, N.; Džeroski, S.; Sutton, C.; McCallum, A.; Pfeffer, A.; Abbeel, P.; Wong, M.F.; Heckerman, D.; Meek, C.; et al. Introduction to Statistical Relational Learning; MIT Press: Cambridge, MA, USA, 2007. [Google Scholar]
- MüUller, W.; Kuwertz, A.; Mühlenberg, D.; Sander, J. Semantic information fusion to enhance situational awareness in surveillance scenarios. In Proceedings of the 2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), Daegu, Korea, 16–18 November 2017; pp. 397–402. [Google Scholar]
- Morariu, V.I.; Davis, L.S. Multi-agent event recognition in structured scenarios. In Proceedings of the CVPR 2011, Colorado Springs, CO, USA, 20–25 June 2011; pp. 3289–3296. [Google Scholar]
- Wu, C.; Aghajan, H. User-centric environment discovery with camera networks in smart homes. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 2011, 41, 375–383. [Google Scholar] [CrossRef]
- Lippi, M.; Frasconi, P. Prediction of protein β-residue contacts by Markov logic networks with grounding-specific weights. Bioinformatics 2009, 25, 2326–2333. [Google Scholar] [CrossRef] [PubMed]
- Poole, D. Probabilistic Horn abduction and Bayesian networks. Artif. Intell. 1993, 64, 81–129. [Google Scholar] [CrossRef]
- Sato, T.; Kameya, Y. PRISM: A language for symbolic-statistical modeling. In Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence (IJCAI 97), Nagoya, Japan, 23–29 August 1997; Volume 97, pp. 1330–1339. [Google Scholar]
- Koller, D. Probabilistic relational models. In Proceedings of the International Conference on Inductive Logic Programming, Bled, Slovenia, 24–27 June 1999; pp. 3–13. [Google Scholar]
- Jaeger, M. Relational bayesian networks. In Proceedings of the Thirteenth Conference on Uncertainty in Artificial Intelligence, Providence, RI, USA, 1–3 August 1997; pp. 266–273. [Google Scholar]
- Taskar, B.; Abbeel, P.; Koller, D. Discriminative probabilistic models for relational data. In Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence, Edmonton, AB, Canada, 1–4 August 2002; pp. 485–492. [Google Scholar]
- Milch, B.; Marthi, B.; Russell, S.; Sontag, D.; Ong, D.L.; Kolobov, A. BLOG: Probabilistic models with unknown objects. In Proceedings of the IJCAI International Joint Conference on Artificial Intelligence, Edinburgh, UK, 30 July–5 August 2005; pp. 1352–1359. [Google Scholar]
- Richardson, M.; Domingos, P. Markov logic networks. Mach. Learn. 2006, 62, 107–136. [Google Scholar] [CrossRef] [Green Version]
- Gutmann, B.; Kersting, K. TildeCRF: Conditional random fields for logical sequences. In Proceedings of the European Conference on Machine Learning, Berlin, Germany, 18–22 September 2006; pp. 174–185. [Google Scholar]
- Kersting, K.; De Raedt, L. Bayesian Logic Programming: Theory and Tool. In Introduction to Statistical Relational Learning; MIT Press: Cambridge, MA, USA, 2007; 291p. [Google Scholar]
- McCallum, A.; Schultz, K.; Singh, S. Factorie: Probabilistic programming via imperatively defined factor graphs. In Advances in Neural Information Processing Systems; Curran Associates Inc.: Vancouver, BC, Canada, 2009; pp. 1249–1257. [Google Scholar]
- Beierle, C.; Finthammer, M.; Potyka, N.; Varghese, J.; Kern-Isberner, G. A Framework for Versatile Knowledge and Belief Management Operations in a Probabilistic Conditional Logic. J. Log. 2017, 4, 2063–2095. [Google Scholar]
- Pearl, J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference; Morgan Kaufmann: San Francisco, CA, USA, 1988. [Google Scholar]
- Laskey, K.B.; D’ambrosio, B.; Levitt, T.S.; Mahoney, S. Limited rationality in action: Decision Support for military situation assessment. Minds Mach. 2000, 10, 53–77. [Google Scholar] [CrossRef]
- Wright, E.; Mahoney, S.; Laskey, K.; Takikawa, M.; Levitt, T. Multi-entity Bayesian networks for situation assessment. In Proceedings of the Fifth International Conference on Information Fusion, Annapolis, MD, USA, 8–11 July 2002; Volume 2, pp. 804–811. [Google Scholar]
- Suzic, R. A generic model of tactical plan recognition for threat assessment. In Multisensor, Multisource Information Fusion: Architectures, Algorithms, and Applications 2005; International Society for Optics and Photonics: Orlando, FL, USA, 2005; Volume 5813, pp. 105–117. [Google Scholar]
- Costa, P.C.G.; Carvalho, R.N.; Laskey, K.B.; Park, C.Y. Evaluating uncertainty representation and reasoning in HLF systems. In Proceedings of the 14th International Conference on Information Fusion, Chicago, IL, USA, 5–8 July 2011; pp. 1–8. [Google Scholar]
- Costa, P.C.G.; Laskey, K.B.; Chang, K.C.; Sun, W.; Park, C.Y.; Matsumoto, S. High-level information fusion with bayesian semantics. In Proceedings of the 9th Bayesian Modelling Applications Workshop, Catalina Island, CA, USA, 18 August 2012. [Google Scholar]
- Park, C.Y.; Laskey, K.B.; Costa, P.C.G.; Matsumoto, S. Predictive situation awareness reference model using multi-entity bayesian networks. In Proceedings of the 17th International Conference on Information Fusion (FUSION), Salamanca, Spain, 7–10 July 2014; pp. 1–8. [Google Scholar]
- Park, C.Y.; Laskey, K.B.; Costa, P.C.G. An Extended Maritime Domain Awareness Probabilistic Ontology Derived from Human-aided Multi-Entity Bayesian Networks Learning. In Proceedings of the Eleventh Conference on Semantic Technology for Intelligence, Defense, and Security, STIDS 2016, Fairfax, VA, USA, 17 November 2016; pp. 28–36. [Google Scholar]
- Golestan, K. Information Fusion Methodology for Enhancing Situation Awareness in Connected Cars Environment. Ph.D. Dissertation, University of Waterloo, Waterloo, ON, Canada, 2015. [Google Scholar]
- Li, X.; Martínez, J.F.; Rubio, G. Towards a hybrid approach to context reasoning for underwater robots. Appl. Sci. 2017, 7, 183. [Google Scholar] [CrossRef]
- Park, C.Y.; Laskey, K.B.; Salim, S.; Lee, J.Y. Predictive situation awareness model for smart manufacturing. In Proceedings of the 2017 20th International Conference on Information Fusion (Fusion), Xi’an, China, 10–13 July 2017; pp. 1–8. [Google Scholar]
- Golestan, K.; Soua, R.; Karray, F.; Kamel, M.S. Situation awareness within the context of connected cars: A comprehensive review and recent trends. Inf. Fusion 2016, 29, 68–83. [Google Scholar] [CrossRef]
- Baum, L.E.; Petrie, T. Statistical inference for probabilistic functions of finite state Markov chains. Ann. Math. Stat. 1966, 37, 1554–1563. [Google Scholar] [CrossRef]
- Hopfield, J.J. Artificial neural networks. IEEE Circuits Devices Mag. 1988, 4, 3–10. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef] [Green Version]
- Pan, H.; Liu, L. Fuzzy bayesian networks—A general formalism for representation, inference and learning with hybrid bayesian networks. Int. J. Pattern Recognit. Artif. Intell. 2000, 14, 941–962. [Google Scholar] [CrossRef]
- Murphy, K.P.; Russell, S. Dynamic Bayesian Networks: Representation, Inference and Learning. Ph.D. Dissertation, University of California, Berkeley, CA, USA, 2002. [Google Scholar]
- Patnaikuni, P.; Shrinivasan, R.; Gengaje, S.R. Survey of Multi Entity Bayesian Networks (MEBN) and its applications in probabilistic reasoning. Int. J. Adv. Res. Comput. Sci. 2017, 8, 2425–2429. [Google Scholar]
- Costa, P.C.G. Bayesian Semantics for the Semantic Web. Ph.D. Dissertation, George Mason University, Fairfax, VA, USA, 2005. [Google Scholar]
- Carvalho, R.N.; Laskey, K.B.; Costa, P.C.G. PR-OWL—A language for defining probabilistic ontologies. Int. J. Approx. Reason. 2017, 91, 56–79. [Google Scholar] [CrossRef]
- Carvalho, R.N.; Laskey, K.B.; Da Costa, P.C.G. Uncertainty modeling process for semantic technology. Peerj Comput. Sci. 2016, 2, e77. [Google Scholar] [CrossRef]
- Gershenfeld, N.; Krikorian, R.; Cohen, D. The internet of things. Sci. Am. 2004, 291, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Guinard, D.; Trifa, V. Towards the web of things: Web mashups for embedded devices. In Proceedings of the WWW (International World Wide Web Conferences), Madrid, Spain, 20–24 April 2009; Volume 15. [Google Scholar]
- Sekkal, N.; Benslimane, S.M.; Mrissa, M.; Park, C.Y.; Boudaa, B. Proactive and reactive context reasoning architecture for smart web services. Int. J. Data Min. Model. Manag. 2019, in press. [Google Scholar]
- Codd, E.F. A relational model of data for large shared data banks. Commun. ACM 1970, 13, 377–387. [Google Scholar] [CrossRef]
- Codd, E.F. Further normalization of the data base relational model. Data Base Syst. 1972, RJ909, 33–64. [Google Scholar]
- Codd, E.F. Racent Investigations in Relational Data Base Systems. Inf. Process. 1974, RJ1385, 1017–1021. [Google Scholar]
- Han, J.; Haihong, E.; Le, G.; Du, J. Survey on NoSQL database. In Proceedings of the 2011 6th International Conference on Pervasive Computing And Applications, Port Elizabeth, South Africa, 26–28 October 2011; pp. 363–366. [Google Scholar]
- Park, C.Y.; Laskey, K.B.; Costa, P.C.G.; Matsumoto, S. A process for human-aided Multi-Entity Bayesian Networks learning in Predictive Situation Awareness. In Proceedings of the 2016 19th International Conference on Information Fusion (FUSION), Heidelberg, Germany, 5–8 July 2016; pp. 2116–2124. [Google Scholar]
- Park, C.Y.; Laskey, K.B.; Costa, P.C.G.; Matsumoto, S. Multi-entity bayesian networks learning for hybrid variables in situation awareness. In Proceedings of the 16th International Conference on Information Fusion, Istanbul, Turkey, 9–12 July 2013; pp. 1894–1901. [Google Scholar]
- Park, C.Y.; Laskey, K.B.; Costa, P.C.G.; Matsumoto, S. Multi-Entity Bayesian Networks Learning in Predictive Situation Awareness. In Proceedings of the 18th International Command and Control Technology and Research Symposium, Alexandria, VA, USA, 19–21 June 2013. [Google Scholar]
- Laskey, K.B. MEBN: A language for first-order Bayesian knowledge bases. Artif. Intell. 2008, 172, 140–178. [Google Scholar] [CrossRef] [Green Version]
- Fagin, R. The decomposition versus synthetic approach to relational database design. In Proceedings of the Third International Conference on Very Large Data Bases, Tokyo, Japan, 6–8 October 1977; Volume 3, pp. 441–446. [Google Scholar]
- Fagin, R. Normal forms and relational database operators. In Proceedings of the 1979 ACM SIGMOD International Conference on Management of Data, Boston, MA, USA, 30 May–1 June 1979; pp. 153–160. [Google Scholar]
- Maier, D. Theory of Relational Databases; Computer Science Pr: Rockville, MD, USA, 1983. [Google Scholar]
- Date, C. Database Design and Relational Theory: Normal Forms and All That Jazz; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2012. [Google Scholar]
- Motl, J.; Schulte, O. The CTU prague relational learning repository. arXiv 2015, arXiv:1511.03086. [Google Scholar]
Type | Name | Example |
---|---|---|
1 | Predicate | Follow(followingvehicleid, leadingvehicleid) |
2 | Function | VehicleClass(vehicleid), |
TerrainType(regionid), | ||
ContainingRegion(regionid), | ||
Location(locatingvehicleid, locatingtimeid) |
RM | MEBN |
---|---|
Name of relation | Name of Predicate |
Key | Arguments for Predicate |
Presence of a tuple | true value |
Absence of a tuple | false value |
NF or NK of RM | Resident Node of MEBN |
---|---|
Non-Foreign-Key Attribute/Non-Primary Foreign Key | Function |
Primary Key | Arguments of Function |
Domain of Attribute | Domain of Function |
# | Name | Domain | # of RS (Definition 5) | # of ERS (Definition 12) | # of RRS (Definition 13) | # of Attributes | # of Primary Keys (Definition 8) | Mapping Time (Second) |
---|---|---|---|---|---|---|---|---|
1 | Stats | Education | 8 | 8 | 0 | 71 | 8 | 0.0597 |
2 | Financial | Financial | 8 | 8 | 0 | 55 | 8 | 0.0498 |
3 | MovieLens | Entertainment | 7 | 4 | 3 | 24 | 10 | 0.0445 |
4 | LegalActs | Government | 5 | 2 | 3 | 33 | 7 | 0.0334 |
5 | SAT | Industry | 36 | 3 | 33 | 69 | 37 | 0.1656 |
6 | Dunur | Kinship | 17 | 1 | 16 | 34 | 33 | 0.0726 |
7 | Elti | Kinship | 11 | 1 | 10 | 22 | 21 | 0.0503 |
8 | Bupa | Medicine | 9 | 2 | 7 | 16 | 9 | 0.0383 |
9 | Pima | Medicine | 9 | 1 | 8 | 18 | 9 | 0.0417 |
10 | Social | 2 | 1 | 1 | 265 | 3 | 0.0359 |
# | Name | # of Entity | # of MFrag (Definition 1) | # of Resident Node (Definition 2) | # of IsA Nodes (Definition 4) |
---|---|---|---|---|---|
1 | Stats | 8 | 8 | 63 | 8 |
2 | Financial | 8 | 8 | 47 | 8 |
3 | MovieLens | 4 | 7 | 14 | 10 |
4 | LegalActs | 2 | 5 | 28 | 7 |
5 | SAT | 3 | 33 | 33 | 34 |
6 | Dunur | 1 | 16 | 16 | 32 |
7 | Elti | 1 | 10 | 10 | 20 |
8 | Bupa | 2 | 7 | 7 | 7 |
9 | Pima | 1 | 9 | 9 | 9 |
10 | 1 | 2 | 263 | 3 |
# of Entity | # of MFrag (Definition 1) | # of Resident Node (Definition 2) | # of IsA Nodes (Definition 4) | MappingTime (Second) |
---|---|---|---|---|
7 | 12 | 31 | 21 | 0.0136 |
# of Entity | # of MFrag (Definition 1) | # of Resident Node (Definition 2) | # of IsA Nodes (Definition 4) | MappingTime (Second) |
---|---|---|---|---|
3 | 18 | 92 | 45 | 0.0161 |
RM | Mapping Types | MEBN |
---|---|---|
ERS | Definition 18 ERS to Entity Mapping | Entity |
RRS | Definition 19 Predicate Resident Node Mapping | Predicate resident node |
Non-foreign-key attribute, Non-primary foreign key | Definition 20 Function Resident Node Mapping | Function resident node |
RS | Definition 21 RS-MFrag Mapping | MFrag |
RDBS | Definition 22 RDBS-MTheory Mapping | MTheory |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, C.Y.; Laskey, K.B. MEBN-RM: A Mapping between Multi-Entity Bayesian Network and Relational Model. Appl. Sci. 2019, 9, 1743. https://doi.org/10.3390/app9091743
Park CY, Laskey KB. MEBN-RM: A Mapping between Multi-Entity Bayesian Network and Relational Model. Applied Sciences. 2019; 9(9):1743. https://doi.org/10.3390/app9091743
Chicago/Turabian StylePark, Cheol Young, and Kathryn Blackmond Laskey. 2019. "MEBN-RM: A Mapping between Multi-Entity Bayesian Network and Relational Model" Applied Sciences 9, no. 9: 1743. https://doi.org/10.3390/app9091743
APA StylePark, C. Y., & Laskey, K. B. (2019). MEBN-RM: A Mapping between Multi-Entity Bayesian Network and Relational Model. Applied Sciences, 9(9), 1743. https://doi.org/10.3390/app9091743