
applied  
sciences

Article

MEBN-RM: A Mapping between Multi-Entity
Bayesian Network and Relational Model

Cheol Young Park 1,* and Kathryn Blackmond Laskey 2

1 The C4I and Cyber Center, George Mason University, Fairfax, VA 22030, USA
2 The Department of Systems Engineering and Operations Research, George Mason University,

Fairfax, VA 22030, USA; klaskey@gmu.edu
* Correspondence: cparkf@gmu.edu

Received: 12 March 2019; Accepted: 23 April 2019; Published: 26 April 2019
����������
�������

Abstract: Multi-Entity Bayesian Network (MEBN) is a knowledge representation formalism
combining Bayesian Networks (BNs) with First-Order Logic (FOL). MEBN has sufficient expressive
power for general-purpose knowledge representation and reasoning, and is the logical basis
of Probabilistic Web Ontology Language (PR-OWL), a representation language for probabilistic
ontologies. Developing an MEBN model to support a given application is a challenge, requiring
definition of entities, relationships, random variables, conditional dependence relationships,
and probability distributions. When available, data can be invaluable both to improve performance
and to streamline development. By far the most common format for available data is the relational
database (RDB). Relational databases describe and organize data according to the Relational Model
(RM). Developing an MEBN model from data stored in an RDB therefore requires mapping between
the two formalisms. This paper presents MEBN-RM, a set of mapping rules between key elements of
MEBN and RM. We identify links between the two languages (RM and MEBN) and define four levels
of mapping from elements of RM to elements of MEBN. These definitions are implemented in the
MEBN-RM algorithm, which converts a relational schema in RM to a partial MEBN model. Through
this research, the software has been released as an MEBN-RM open-source software tool. The method
is illustrated through two example use cases using MEBN-RM to develop MEBN models: a Critical
Infrastructure Defense System and a Smart Manufacturing System. Both systems are proof-of-concept
systems used for situation awareness, where data coming from various sensors are stored in RDBs
and converted into MEBN models through the MEBN-RM algorithm. In these use cases, we evaluate
the performance of the MEBN-RM algorithm in terms of mapping speed and quality to show its
efficiency in MEBN modeling.

Keywords: mapping model; probabilistic graphical model; Multi-Entity Bayesian Networks;
Relational Model; semantic web; Probabilistic Web Ontology Language; Statistical Relational
Learning; MEBN modeling; MEBN machine learning

1. Introduction

Statistical Relational Learning (SRL) deals with representation and reasoning methods for
uncertain and complex situations by combining probabilistic models (e.g., BNs and Markov Networks)
and relational structures (e.g., FOL and RM) [1]. The expressive power of SRL enables us to
represent real-world situations characterized by uncertainty and complexity. For this reason, it
has been used in several domains (e.g., information fusion [2], video analysis [3,4], and bioinformatics
[5]). Several formalisms embodying probabilistic models with relational structures have been
proposed in recent decades, such as Probabilistic-Logic Programming [6], Programming in Statistical
Modeling [7], Probabilistic RMs [8], Relational BNs [9], Relational Markov Networks [10], Bayesian
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LOGic [11], Markov Logic Networks [12], Conditional Random Fields for Logical Sequences [13],
Bayesian Logic Programming [14], FACTORIE: Probabilistic Programming [15], and Probabilistic
Conditional Logic [16].

Multi-Entity Bayesian Network (MEBN) belongs to the formalisms in SRL. MEBN is a knowledge
representation language based on Bayesian Networks (BN) [17] and First-Order Logic (FOL). MEBN is
sufficiently expressive for general-purpose knowledge representation and reasoning in an uncertain
and complex world. Because MEBN is flexible enough to represent a variety of complex and uncertain
situations, it has been applied to systems for Predictive Situation Awareness (PSAW), the problem of
understanding and predicting aspects of a temporally evolving situation [18–27]. In a recent review
of knowledge representation formalisms, Golestan et al. [28] recommended MEBN as having the
most comprehensive coverage of features needed to represent complex problems among several
Artificial Intelligence (AI) models including statistical RMs. The reviewed formalisms included MEBN,
Hidden Markov Models [29], Artificial Neural Networks [30], BNs [17], Support Vector Machine [31],
Fuzzy BNs [32], Dynamic BNs [33], Probabilistic RMs [1], and Markov Logic Networks [12]. Also,
MEBN has been applied to a wide variety of domains [34].

Construction of relational structures (e.g., FOL and RM) for MEBN is an active research topic.
Probabilistic Web Ontology Language (PR-OWL) [35] extends the Web Ontology Language (OWL) to
represent uncertainty. A domain ontology, typically represented in a relational language, provides
common semantics for expressing information about entities and relationships in a domain. PR-OWL
is an upper ontology, written in OWL, that uses MEBN to express uncertainty about entities and
relationships in an OWL ontology. PR-OWL 2 extends PR-OWL to provide better integration with
OWL [36]. Carvalho et al. [37] provides a methodology for developing MEBN theories expressed as
PR-OWL ontologies. PR-OWL, a semantic web language associated with probability, can be used as
a common language for the Internet of Things (IoT) [38] and the Web of Things (WoT) [39]. IoT is
a network composed of a group of physical systems that interact with each other over the Internet
using sensors, actuators, and computing devices. WoT is an extension of IoT by including virtual
systems (i.e., the Internet Web) to deliver services to stakeholders. Sekkal et al. [40] used PR-OWL as a
representation formalism specifically representing watering system situations in a WoT architecture.
The paper showed that the sensor data obtained through IoT can be used to predict the humidity of
the ground to support decision making of watering.

This paper focuses on the RM, from which MEBN theories can be partially constructed.
The Relational Model (RM) [41–43] is the most popular database model. While non-relational databases,
called NoSQL, are receiving increasing attention [44], our focus in this work is on RM because so much
of the available data is stored in relational databases. A Relational Database (RDB) uses RM to describe
and organize data. An RDB stores data in the form of multiple relations. A relation is composed of a
relation schema and a relation instance. The relation schema represents a class of entities and its attributes.
A relational database schema or relational schema is a collection of relation schemas. An MEBN model,
called an MTheory, consists of a set of MFrags. An MFrag is composed of Context nodes, Input nodes,
Resident nodes, a fragment graph, and a set of Local Distributions.

To construct an MTheory from an RDB, we need a way to map from relations to MFrags. In this
paper, we introduce a mapping between a relational schema and a partial MTheory. This mapping is
called MEBN-RM mapping (or MEBN-RM). MEBN-RM contains four levels of mapping from elements
of a relational database to elements of an MTheory. The first level maps a relation schema to an entity
in an MTheory. The second level maps attributes of a relation schema to resident nodes of an MFrag.
The third maps a relation schema to an MFrag is defined. The fourth level maps a relational database
to an MTheory. Furthermore, MEBN-RM forms the basis for a MEBN-RM mapping algorithm takes a
relational database as input and produces a partial MTheory as output.

The main contribution of this paper is to introduce the set of mapping definitions and
the MEBN-RM mapping algorithm, which can be the basis for developing MEBN theories in
manual approaches (e.g., [37]) or automatic approaches (e.g., [45–47]). In addition, we present an
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MEBN-RM open-source software tool that is implemented in the Java programming language and
performs MEBN-RM.

The remainder of the paper is organized as follows. Section 2 provides background knowledge of
MEBN and RM. Section 3 defines MEBN-RM and presents the mapping algorithm. Section 4 introduces
the MEBN-RM open-source software tool and an experiment for MEBN-RM algorithm performance in
terms of the mapping time and accuracy. Section 5 presents two use cases in which the tool is applied
to construct a partial MTheory. The final section presents conclusions and future research directions.

2. Background

In this section, we describe MEBN, a graphical representation for MEBN, and a script form of
MEBN. Then, RM is presented briefly along with examples.

2.1. Multi-Entity Bayesian Network

MEBN [48] allows compact representation of repeated structure in a joint distribution on a set
of random variables. In MEBN, random variables are defined as templates that can be repeatedly
instantiated to construct probabilistic models with repeated structure. MEBN represents domain
knowledge using an MTheory, which consists of a collection of MFrags (see Figure 1). An MFrag is a
fragment of a graphical model that is a template for probabilistic relationships among instances of its
random variables. Random variables (RVs) may contain ordinary variables, which can be instantiated
for different domain entities. We can think of an MFrag as a class which can generate instances of BN
fragments. These can then be assembled into a Bayesian network, called a situation-specific Bayesian
Network (SSBN), using an SSBN algorithm [48]. A given MTheory can be used to construct many
different SSBNs for different situations. To understand how this works, consider Figure 1, which shows
an MTheory called the Danger Assessment MTheory. This MTheory contains seven MFrags: Speed,
ImageTypeReport, VehicleObject, Danger, Weather, Region, and Reference. An MFrag may contain three
types of random variables: context RVs, denoted by green pentagons, resident RVs, denoted by yellow
ovals, and input RVs, denoted by gray trapezoids. Each MFrag defines local probability distributions
for its input RVs. These distributions may depend on the input RVs, whose distributions are defined
in other MFrags. Context RVs express conditions that must be satisfied for the distributions defined
in the MFrag to apply. For example, consider the VehicleObject MFrag in the MTheory of Figure 1.
This MFrag expresses knowledge of how the vehicle class is related to the terrain type. The context
RVs, IsA(obj, VEHICLE), IsA(rgn, REGION), and rgn = Location(obj), indicate that the ordinary variable
obj must refer to a vehicle, the ordinary variable rgn must refer to a region, and the object denoted by
obj must be located in the region denoted by rgn. The resident RV VehicleClass(obj) refers to the type
of obj. This type is uncertain, with its distribution defined in the MFrag. The distribution depends
on the type of terrain in the region, with wheeled vehicles more likely on roads and tracked vehicles
more likely on rough terrain. The terrain type is represented by the input RV TerrainType(rgn), whose
distribution is defined in the MFrag Region. The distribution for a resident random variable, defined in
its home MFrag, is called a class local distribution. For example, the class local distribution (CLD) of
VehicleClass(obj), which depends on the type of terrain where the vehicle is located, can be expressed as
Listing 1.

This CLD specifies that if the terrain type is Road, then there is an 80% chance the vehicle is wheeled;
and if the terrain type is OffRoad, then there is an 80% chance the vehicle is tracked. The final clause
specifies a distribution if none of these conditions is met, which is equal probabilities for tracked and
wheeled vehicles.
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Listing 1. The class local distribution of the VehicleClass(obj) RV.

1 i f some rgn have ( TerrainType = Road ) [
2 Tracked = . 2 ,
3 Wheeled = . 8
4 ] e l s e i f some rgn have ( TerrainType = OffRoad ) [
5 Tracked = . 8 ,
6 Wheeled = . 2
7 ] e l s e [
8 Tracked = . 5 ,
9 Wheeled = . 5

10 ]

Figure 1. Danger Assessment MTheory.

Formally, an MFrag is defined as follows [48].

Definition 1 (MFrag). An MFrag F, or MEBN fragment, consists of: (i) a set C of context nodes, which
represent conditions under which the distribution defined in the MFrag is valid; (ii) a set I of input nodes, which
have their distributions defined elsewhere and condition the distributions defined in the MFrag; (iii) a set R of
resident nodes, whose distributions are defined in the MFrag; (iv) an acyclic directed graph G, whose nodes are
associated with resident and input nodes; and (v) a set LC of CLDs, in which an element of LC is associated with
each resident node.

The nodes in an MFrag are different from the nodes in a common Bayesian network. A node in a
common BN represents a single random variable, whereas a node in an MFrag represents a collection
of RVs: those formed by replacing the ordinary variables with identifiers of entity instances that
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satisfy the context conditions. To emphasize the distinction, we call the resident nodes MEBN nodes,
or MNodes.

MNodes correspond to predicates (for true/false RVs) or terms (for other RVs) of FOL. An MNode
is written as a predicate or a term followed by a parenthesized list of ordinary variables as arguments.

Definition 2 (MNode). An MNode N, or MEBN Node, is a random variable N(ff) corresponding to an n-ary
function or predicate of FOL, a list of n arguments consisting of ordinary variables, a set of mutually exclusive
and collectively exhaustive possible values, and an associated CLD. The special values true and false are the
possible values for predicates, but may not be possible values for functions.

The RVs associated with the MNode are constructed by substituting domain entities for the n
arguments of the function or predicate. The CLD specifies how to define local distributions for these
RVs. For example, the node VehicleClass(obj) in Figure 1 is an MNode corresponding to the FOL function
VehicleClass(obj). It has two possible values (i.e., Wheeled and Tracked). This MNode is associated
with the class local distribution LC in Listing 1. The MNode is used as a template for the distributions
of instance RVs created when an SSBN is constructed from the MFrag associated with the MNode.
These instances are formed by substituting identifiers of vehicle objects for the ordinary variable obj.

Definition 3 (MTheory). An MTheory M, or MEBN Theory, is a collection of MFrags that satisfies conditions
given in [48] ensuring the existence of a unique joint distribution over its RVs.

An MTheory is a collection of MFrags that defines a consistent joint distribution over RVs
describing a domain. The MFrags forming an MTheory should be mutually consistent. To ensure
consistency, conditions must be satisfied, such as no-cycle, bounded causal depth, unique home MFrags,
and recursive specification condition [48]. No-cycle means that the generated SSBN will contain no
directed cycles. Bounded causal depth means that depth from a root node to a leaf node of an instance
SSBN should be finite. Unique home MFrags means that each random variable has its distribution
defined in a single MFrag, called its home MFrag. Recursive specification means that MEBN provides
a means for defining the distribution for an RV depending on an ordered ordinary variable from
previous instances of the RV.

The IsA random variable is a special RV representing the type of an entity. IsA is commonly
used as a context node to specify the type of entity that can be substituted for an ordinary variable in
an MNode.

Definition 4 (IsA Random Variable). An IsA random variable, IsA(ov, tp), is an RV corresponding to a
2-argument FOL predicate. The IsA RV has value true when its second argument tp is filled by the type of its
first argument ov and false otherwise.

For example, in the MFrag Danger in Figure 1, IsA(obj, VEHICLE) is an IsA RV. Its first argument
obj is filled by an entity instance and its second argument is the type symbol Vehicle. It has value true
when its first argument is filled by an object of the type Vehicle.

2.2. A Script for MEBN

Figure 1 shows a graphical representation for an MTheory. In this subsection, we introduce a
script representing an MTheory. This script is useful to manage contents of an MTheory. The MTheory
Danger Assessment in Figure 1 can be represented by the following script (Listing 2).
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Listing 2. Part of Script MTheory for Danger Assessment.

1 [F: ImageTypeReport
2 [C: IsA(obj, VEHICLE)][C: IsA(rgn, REGION)][C: IsA(rpt, REPORT)]
3 [C: rgn = Location(obj)][C: obj = ReportedObject(rpt)]
4 [R: ImageTypeReport(rpt)
5 [IP: WeatherType(rgn)]
6 [IP: VehicleClass(obj)]
7 ]
8 ]
9 [F: Weather

10 [C: IsA(rgn, REGION)]
11 [R: WeatherType(rgn)]
12 ]

The script contains several predefined single letters (F, C, R, IP, RP, and L). The single letters, F,
C, and R denote an MFrag, a context node, and a resident node, respectively. For a resident node
(e.g., Y) in an MFrag, a resident parent (RP) node (e.g., X), which is defined in the MFrag, is denoted
as RP (e.g., [R: Y [RP: X]]). For an input node, we use a single letter IP. Each node can contain a
CLD denoted as L. For example, suppose that there is a CLD type called WeatherCLD. If the resident
node WeatherType in Line 11 uses the CLD type WeatherCLD, the resident node WeatherType can be
represented as [R: WeatherType (rgn) [L: WeatherCLD]].

2.3. Relational Model

In 1969, Edgar F. Codd proposed the Relational Model (RM) as a database model based on
first-order predicate logic [41–43]. The RM is the most popular database model. A relational database
(RDB) is a database that uses the RM to describe and organize data. In the RM, data are organized as a
collection of relations. A relation is an abstract definition of a class of entities or a relationship that can
hold between classes of entities. An instance of a relation is depicted as a table in which each column
is an attribute of the relation and each row, also called a tuple, contains the value of each attribute for
an individual entity of the class represented by the relation. An entry in the table, called a cell, is the
value of the attribute associated with the column for the entity associated with the row. A key for a
relation is one or more attributes that uniquely identify a particular domain entity or row. A primary
key uniquely identifies the individual entities in the relation. A foreign key points to the primary key
in another relation. The cardinality of a relation is the number of rows in the table, i.e., the number
of unique entities of the type represented by the relation. The degree of the relation is the number of
columns in the table, i.e., the number of attributes of entities of the type represented by the relation.

Figure 2 shows an illustrative example of an RDB. In the example RDB, there are three relations:
Vehicle, Region, and VehicleLocation. We could imagine different situations, each with different vehicles,
regions, etc. Each particular situation, such as the one depicted in Figure 2, corresponds to an instance
of this relational model. The instance is represented as a table for each of the relations as shown
Figure 2, where the columns represent attributes of the relation and the rows represent the attribute
values for specific entities. For example, the relation Vehicle has two attributes: VehicleID, which
uniquely identifies each individual vehicle, and VehicleClass, which indicates whether the vehicle is
tracked or wheeled. The relation VehicleLocation has three attributes: LocatingVehicleID, LocatingTimeID,
and Location. The attribute LocatingVehicleID in the relation VehicleLocation is a foreign key pointing
to the primary key of the relation Vehicle. A row of the relation VehicleLocation represents a vehicle
being located in a region at a point in time. Attributes that are part of the primary key of the relation
(e.g., LocatingVehicleID and LocatingTimeID in the relation Location) are denoted by bold, italicized,
and underlined letters, while foreign keys which are not part of the primary key of the relation in which
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the foreign keys are used (e.g., Location in the relation VehicleLocation) are denoted by underlined
letters. A relation without instances or data—that is, an empty table – is called the relation schema.
Hereinafter, for MEBN-RM, we define the elements of RM formally.

Figure 2. Example of a Part of the Vehicle Identification RDB.

Definition 5 (Relation Schema). A relation schema, RS[A1:D1, A2:D2, ..., An:Dn], is a set of pairs Ai:Di,
where A1 6=. . . 6=An are attribute names, and Di is a set called the domain for an attribute i.

For example, the relation schema of Vehicle in Figure 2 is [VehicleID:{v1, v2, . . . },
VehicleClass:{wheeled, tracked}], where VehicleID and VehicleClass are attributes with domains {v1,
v2, . . . } and wheeled, tracked, respectively. Please note that we denote the domain of the attribute by
inserting the colon, “:”, between the name of the attribute and the name of the domain. This ancillary
information can be omitted for brevity (e.g., [VehicleID, VehicleClass]). As another example,
the relation schema of the relation VehicleLocation is VehicleLocation[LocatingVehicleID:{v1, v2, . . . },
LocatingTimeID:{t1, t2, . . . }, Location:{r1, r1_1, r1_2, . . . }], where LocatingVehicleID, LocatingTimeID,
and Location are attributes, with domains {v1, v2, . . . }, {t1, t2, . . . }, and {r1, r1_1, r1_2, . . . }, respectively.

Definition 6 (Key). A key of a relation schema is a set of one or more attributes that uniquely identify a row of
the relation.

Definition 7 (Foreign Key). A foreign key, FK, of a relation schema, RS[A1, A2, ..., An], is a subset of the
attributes A1, A2, ..., An that uniquely identifies a row of another relation.

The relation VehicleLocation of Figure 2 has two foreign keys (i.e., LocatingVehicleID/Vehicle and
Location/Region). Here, we use the “/” symbol followed by the relation name to indicate the relation
to which the foreign key points, i.e., the foreign key LocatingVehicleID refers to the relation Vehicle.
A relation schema containing a foreign key is called a target relation schema for the foreign key, while a
relation schema which is referenced by the foreign key is called a home relation schema. For example,
the relation schema VehicleLocation is the target relation schema for the attribute LocatingVehicleID,
while the relation schema Vehicle is the home relation schema of the attribute. If the target and home
relation schema are same, the foreign key and primary key are the same. In this case, the foreign key is
called a recursive foreign key.
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Definition 8 (Primary Key). A primary key, PK, of a relation schema RS[A1, A2, ..., An] is a selected subset
of the attributes A1, A2, ..., An that uniquely identifies each tuple in the RS.

The relation VehicleLocation of Figure 2 has a PK composed of two attributes (i.e.,
LocatingVehicleID/Vehicle and LocatingTimeID). Each tuple of the relation VehicleLocation is uniquely
identified by these two arguments. Please note that the attribute Location/Region in the relation is not
used as the PK in the target relation, but it uniquely identifies each tuple in its home relation (i.e., the
relation Region); therefore, it is a foreign key. This kind of key is called a Non-Primary Foreign Key.

Definition 9 (Non-Primary Foreign Key). A Non-Primary Foreign Key, NK, is a Foreign Key that is not
used for a PK in a target relation.

The attribute ContainingRegion of the relation Region of Figure 2 is another example of a
non-primary foreign key since the home relation schema of the attribute ContainingRegion is the
relation Region and it is not used for the PK of the target relation.

Definition 10 (Non-Foreign-Key Attribute). A Non-Foreign-Key Attribute, A, is an attribute which is not
a foreign key.

For example, in Figure 2, the VehicleClass and TerrainType attribute are non-foreign-key attributes
since they are not foreign keys.

Definition 11 (Original Primary Key). An Original Primary Key, OK, is a PK that is not a foreign key in
any target relation.

A PK in one relation can be imported from the PK in another relation (i.e., foreign & primary
key), while an original primary key is not originated from other PK in another relation. Examples for
the original primary key can include VehicleID in the relation Vehicle, RegionID in the relation Region,
and LocatingTimeID in the relation Location.

Definition 12 (Entity Relation Schema). An entity relation schema, ERS, is a relation schema containing
an original primary key that is not a foreign key and consists of exactly one attribute.

In Figure 2, the Vehicle and Region relation schema are ERSs. An ERS represents a type of entity.
An original primary key in an ERS is a field that holds an identifier that uniquely identifies an instance
of the entity type.

Definition 13 (Relationship Relation Schema). A relationship relation schema, RRS, is a relation schema
containing a PK consisting of attributes which are foreign keys pointing to ERSs.

Therefore, a relationship relation represents a relationship for one entity type (i.e., a unary relation)
or a relationship between entities of more than two entity types. In Figure 2, the relation schema
VehicleLocation is a relationship relation schema, if we assume that there is a Time ERS and the attribute
LocatingTimeID points to the Time ERS.

Definition 14 (Relation Instance). A relation instance, RI, of a relation schema, RS[A1, A2, ..., An], is
specified by a table with n columns and m rows, {{d11, d21, ..., dn1}, ... {d1m, d2m, ..., dnm}}, where Ai is an
attribute of RS, dij ∈ Dom(Ai). The relation instance represents a set of m specific entities of the class represented
by the relation.
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For example, in the relation Vehicle, there are six rows (i.e., {{v1, wheeled}, {v2, tracked}, {v3,
tracked}, {v4, tracked}, {v5, wheeled}, {v6, tracked}}). The instance of the relation Vehicle refers to these
six rows or tuples.

Definition 15 (Relational Database Schema). A relational database schema, RDBS[RS1, RS2, ..., RSn], is
a set of relation schemas.

For example, the table headers of Figure 2 describe the relational database schema, RDBS[Vehicle,
Region, VehicleLocation].

Definition 16 (Relational Database). A relational database, RDB[RI1:RS1, RI2:RS2, . . . , RIn:RSn], is a set
of pairs RIi:RSi, where RSi denotes a relation schema and RIi denotes a relation instance of RSi.

For example, the tables of Figure 2 describe the relational database RDB[{{v1, wheeled}...{v6,
tracked}}:Vehicle, {{r1, offroad, null}. . . {r2_1_1, road, r2_1}}:Region, {{v1, t1, r1}...{v2, t3, r2_1
}}:VehicleLocation].

In the relational model, normalization is an operation performed on an RDB to make it more
manageable by minimizing redundancy of elements and reducing dependency between attributes [41].
Several normal forms have been suggested such as First ∼ Fifth normal form and Boyce–Codd Normal
Form (BCNF) [41–43,49–51].

3. MEBN-RM

Both MEBN and RM have their theoretical basis in FOL, and both represent entities in a domain
and relationships among them. We would like to be able to use data stored in an RDB to learn the
joint distribution represented by an MTheory. To do this, we need a mapping from elements of
RM to elements of MEBN. MEBN-RM provides such a mapping. MEBN-RM contains four levels
of mapping from elements of a relational database to elements of an MTheory. In the first level,
an entity mapping between an ERS and an entity in MEBN is defined. In the second level, a resident
node mapping is defined. In the third level, a relation and MFrag mapping is defined. In the
fourth level, a relational database schema and MTheory mapping is defined. Before discussing
these mappings, some ingredients and assumptions are discussed in this section. The following
Listing 3 from the Vehicle Identification RDB in Section 2 is used for an illustrative example through
Section 3. In the example RDBS, there are four relations: Vehicle, Region, VehicleLocation, and Follow.
The relation Vehicle has two attributes: VehicleID and VehicleClass. The relation Region has three
attributes: RegionID, TerrainType, and ContainingRegion. The relation VehicleLocation has three
attributes: LocatingVehicleID, LocatingTimeID, and Location. The relation Follow has two attributes:
FollowingVehicleID and LeadingVehicleID.

Listing 3. Vehicle Identification.

1 VehicleIdentification[
2 Vehicle[VehicleID, VehicleClass],
3 Region[RegionID, TerrainType, ContainingRegion/Region],
4 VehicleLocation[LocatingVehicleID/Vehicle, LocatingTimeID, Location/Region],
5 Follow[FollowingVehicleID/Vehicle, LeadingVehicleID/Vehicle]
6 ]

As we saw in Section 2, an attribute in a relation can be a Primary key (PK), Non-Foreign-Key
Attribute (NF), or Non-Primary Foreign Key (NK). For example, in the relation Region, the attribute
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RegionID is PK, the attribute TerrainType is NF, and the attribute ContainingRegion is NK. Because
each of these types of attribute plays a different role in MEBN-RM, we distinguish them from each other.

In Section 2, Definition 5 defined a relation schema as a set of pairs consisting of an attribute
name and a domain (i.e., RS[A1:D1, A2:D2, ..., An:Dn], where Ai is the i-th attribute name and Di is
the domain for the attribute i). The attributes[A1, A2, ..., An] can be grouped into three disjoint and
exhaustive subsets: PK, NF, and NK, where PK is the set of attributes in a primary key, NF is the set of
non-foreign-key attributes, and NK is the set of attributes in a non-primary foreign key.

A variety of relations can be formed in accordance with the following restrictions on the attributes
in these subsets. A PK in a relation cannot be empty; however, an NF, NK, or both in a relation may be
empty. Therefore, a relation can be one of four types: (1) RS[PK] denotes a relation schema containing
only a primary key, (2) RS[PK, NF] denotes a relation schema containing only a primary key and
non-foreign-key attributes, (3) RS[PK, NK] denotes a relation schema containing only a primary key
and non-primary foreign key attributes, and (4) RS[PK, NF, NK] denotes a relation schema containing
a primary key, non-foreign-key attributes, and non-primary foreign key attributes. We define the
mapping between RM and MEBN for each of these four types of relation.

We start by assuming that all relations in the RDB are in at least first normal form [52]. Therefore,
no relation may contain multiple values in a row (and domain) of an attribute of the relation. To accord
with the formalism of MEBN, we introduce a new kind of normalization for MEBN-RM, which we call
Entity-Relationship Normalization.

An MTheory developed from an RDB represents entities. We would like to derive these entities
from the RDB. We can do this by defining an entity type in MEBN for each entity relation. This entity
type can then be referenced in another relation by using the PK of the entity relation as a foreign key in
a referring relation. For example, we can identify an entity of type Vehicle corresponding to the relation
Vehicle from Figure 2, and use the PK VehicleID to refer to a specific vehicle instance.

For this method to produce a clearly defined mapping, we must make sure that all entity types we
wish to represent in the MEBN model are represented as entity relations. As an example of a problem
that can occur if this practice is not followed, consider an example of a relationship relation that
contains a PK consisting of two attributes that are not foreign keys. For example, we might represent
patrol assignments using a PatrolAssignment relation with attributes PatrolDriver, PatrolNavigator,
PatrolVehicle/Vehicle, and PatrolRegion/Region. The latter two attributes, the vehicle used and the
region patrolled, are foreign keys pointing to the Vehicle and Region relations, respectively. The first
two refer to the driver and navigator. These refer to soldiers. If we used this two-attribute primary
key to define an entity type, we might erroneously create two different types, when the intention was
that both would be filled by an entity of type Soldier. To address this issue, we would create a Soldier
relation with its own original primary key (Definition 11), and redefine PatrolDriver and PatrolNavigator
as foreign keys pointing to the relation Soldier (i.e., PatrolDriver/Soldier, PatrolNavigator/Soldier,
PatrolVehicle/Vehicle, and PatrolRegion/Region).

To formalize this idea, we define Entity-Relationship Normalization to ensure that each entity
instance is uniquely identified and to clarify which attributes in a relation correspond to entities
in MEBN.

Definition 17 (Entity-Relationship Normalization). A relation is in Entity-Relationship Normal Form if
either it is an ERS in Definition 12 or a relationship relation schema in Definition 13.

In the example of Figure 2, the relation VehicleLocation contains a PK consisting of the attributes
LocatingVehicleID and LocatingTimeID. LocatingVehicleID is a foreign key, while LocatingTimeID is not.
Therefore, in Entity-Relationship Normalization, a new relation for LocatingTimeID should be added
(e.g., the relation Time) and the attribute LocatingTimeID should be changed to a foreign key pointing
to the new relation Time. As a result, of this transformation, there are three relations (Vehicle, Region,
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and Time) in which a PK for each of them consists of a single attribute. These relations are used to
identify entities in an MEBN model. Thus, there are three entities; Vehicle, Region, and Time.

MEBN-RM provides a conversion from a relation schema (RS) in Entity-Relationship Normal
Form to a partial MFrag containing a set of context and resident nodes. Full conversion from a relation
instance to a complete MFrag (i.e., context nodes, resident nodes, input nodes, a directed acyclic graph,
and local distributions) requires augmenting MEBN-RM with either a human modeler or a machine
learning algorithm. Hence, in the following sections, MFrag should be taken to mean a partial MFrag.

3.1. Entity Mapping

In MEBN, an entity is a unique kind of thing which exists distinctly and independently, and can
be instantiated as an object in the world. For example, from a person entity, various person instances
can be defined (e.g., John and Mathew). In RM, an entity relation, a relation containing an original
primary key consisting of exactly one attribute, represents a kind of thing that exists uniquely and
independently. In MEBN-RM, an entity relation or a non-foreign-key attribute can be mapped to an
entity in MEBN as defined by the following.

Definition 18 (ERS to Entity Mapping). An ERS to entity mapping is a mapping in which an entity relation
schema, ERS, in an RDBS in Entity-Relationship Normal Form is mapped to an entity, E, denoted by ERS 7→ E
(A 7→ B means A is mapped to B).

For example, the ERS (Definition 12) Vehicle can be mapped to an entity VEHICLE. In MEBN-RM,
entities are written as strings of uppercase letters.

3.2. Resident Node Mapping

In MFrags, a resident node can be described as Function or Predicate of FOL. MEBN allows the
modeler to specify a probability distribution for the truth value of a predicate or the value of a function.
Formulas are not probabilistic and are defined by built-in MFrags [48]. In this section, we describe the
correspondence between functions and predicates in FOL and relations in RM.

Table 1 shows the two types of the resident node with examples from the RDBS Vehicle Identification.
These are discussed in the next subsection.

Table 1. Resident Node Types on MEBN-RM.

Type Name Example

1 Predicate Follow(followingvehicleid, leadingvehicleid)

2 Function

VehicleClass(vehicleid),
TerrainType(regionid),

ContainingRegion(regionid),
Location(locatingvehicleid, locatingtimeid)

3.2.1. Predicate

In FOL, a predicate represents a true/false statement about entities in the domain. It is expressed
by a predicate symbol followed by a list of arguments. For example, Follow(x, y) is a predicate that
expresses whether a following vehicle indicated by the argument x is following a leading vehicle
indicated by the argument y. In MEBN, this predicate corresponds to a Boolean RV with possible
values true and false. In RM, we can express a predicate as a relation schema in which the attributes are
arguments of the predicate, and the rows of the table represent the arguments for which the predicate
is true [52]. For example, the relation Follow [FollowingVehicleID, LeadingVehicleID] can be mapped
to a predicate, Follow (followingvehicleid, leadingvehicleid). The arguments of this predicate are identical
to the set of attributes of the relation to which the predicate refers. A predicate from a relation can
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map to only a true value, because RM does not provide a false value for the predicate. For example,
suppose that there is a dataset for the relation Follow({{v1, v2}, {v2, v3}}). This dataset can be a mapped
to a set of propositions of the predicate ({Follow(v1, v2) = true, Follow(v2, v3) = true}).

Table 2 defines the relationship between elements of RM and elements of MEBN for a predicate.

Table 2. Predicate Mapping in MEBN-RM.

RM MEBN

Name of relation Name of Predicate
Key Arguments for Predicate

Presence of a tuple true value
Absence of a tuple false value

The name of a relation is used for the name of the predicate corresponding to the relation.
The attributes of the relation correspond to the arguments of the predicate in sequence. A given tuple
can be either present or absent in the RDB. If the tuple is present, a true value for the corresponding
predicate can be assigned in the MEBN representation. If the tuple is absent, a false value for the
corresponding predicate can be assigned in the MEBN representation. (This convention is used when
adopting the closed world assumption, which asserts that all positive cases of a relation are represented
in the database, so that absence of an instance implies the corresponding predicate is false. Dropping
the closed world assumption could be handled by adding a Truth-Value attribute, with values True
and False. With this representation, all cases not appearing in the database would have unknown truth
value.) Now, we introduce a predicate resident node mapping.

Definition 19 (Predicate Resident Node Mapping). A predicate resident node mapping is a mapping in
which a primary key, PK, of a relationship relation schema, RRS[PK], is mapped to a resident node, R, denoted
by RRS[PK] 7→ R[RRS(A1, A2, ..., An)] = {true, false}, where PK = {K1, K2, ..., Kn} and Ki 7→ Ai.

For example, the relation schema Follow[FollowingVehicleID, LeadingVehicleID] can be mapped
to a predicate resident node denoted by R[Follow (followingvehicleid, leadingvehicleid)].

3.2.2. Function

In FOL, a function is a mapping from domain entities called inputs to a value called the output.
For example, the function VehicleClass(vehicleid) is a function that maps its argument to wheeled if
it is a wheeled vehicle and tracked if it is a tracked vehicle. In RM, a function is represented by
a Non-Foreign-Key Attribute (NF) or Non-Primary Foreign Key (NK) of a relation, because both
functionally depend on a Primary Key (PK). Thus, a function of a relation maps to its argument(s),
the primary key(s) for the relation, to the output, which is the value of the domain of the attribute in
the relation.

Table 3 defines the relationship between elements of RM and elements of MEBN for a function.
We define a mapping between an element of A or NK of RM, and a function of a resident node of
MEBN formally.

Definition 20 (Function Resident Node Mapping). A function resident node mapping is a mapping in
which an attribute, A, of a relation schema, RS, and a primary key, PK, of the RS is mapped to a resident node,
R, of an MFrag, denoted by RS[PK, A] 7→ R[A(K1, K2, ..., Kn)] = Dom(A), where PK = {K1, K2, ..., Kn}.

For example, the argument of the function VehicleClass(vehicleid) is the PK of the relation Vehicle,
and the output is the value (either tracked or wheeled) of the attribute VehicleClass. In other words,
Vehicle[VehicleID, VehicleClass] 7→ R[VehicleClass(vehicleid)] = Dom(VehicleClass).
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Table 3. Function Mapping in MEBN-RM.

NF or NK of RM Resident Node of MEBN

Non-Foreign-Key Attribute/Non-Primary Foreign Key Function
Primary Key Arguments of Function

Domain of Attribute Domain of Function

3.3. Relation Schema and MFrag Mapping

In the previous section, we discussed the mapping between the elements of the relation schema
and the elements of the MFrag. In this section, we discuss the mapping between a relation schema
and a partial MFrag. It is called RS-MFrag Mapping. For ERS and RRS, we define the RS-MFrag
mapping formally.

Definition 21 (RS-MFrag Mapping). An RS-MFrag Mapping is a mapping in which a relation schema, RS,
is mapped to a partial MFrag, F, denoted by RS[PK, O] 7→ F[C, R]. Here, C denotes a set of context nodes
(Definition 1), R denotes a set of resident nodes (Definition 1), PK = {K1, K2, ..., Kn} is the PK, and O = {O1,
O2, ..., Om}, where Oi is the i-th NF or NK attribute. The mapping satisfies the following conditions:

(a) If the RS is an ERS and |O| > 0, the PK and O of the ERS are mapped to the C and R of the F,
respectively. This is denoted by ERS[PK, O] 7→ F[C1[IsA(K1, E(K1))], R1[O1(K1)], ..., Rm[Om(K1)]].

(b) If the RS is an RRS and |O| > 0, the PK and O of the RRS are mapped to the C and R of the
F, respectively. This is denoted by RRS[PK, O] 7→ F[C1[IsA(K1, E(K1))], ..., Cn[IsA(Kn, E(Kn))],
R1[O1(PK)], ..., Rm[Om(PK)]] (E(X) is the entity type which the attribute X points to).

(c) If the RS is an RRS and |O| = 0, the PK and RRS are mapped to the C and R of the F, respectively. This
is denoted by RRS[PK] 7→ F[C1[IsA(K1, E(K1))], ..., Cn[IsA(Kn, E(Kn))], R1[RRS(PK)]].

Case (a) is that the RS is an ERS and it has at least one attribute which is not used for
the PK. In this case, the single attribute K1 in PK is used to create the IsA context node, and
each attribute in O is mapped to each resident node respectively using the function resident
node mapping. For example, the relation Vehicle[VehicleID/Vehicle, VehicleClass] becomes
a partial MFrag denoted by F[C[IsA(vehicleid, VEHICLE)], R[VehicleClass(vehicleid)]]. Case
(b) is that the RS is an RRS and it has an attribute which is not used for the PK. Each
attribute Ki in PK is used to create its respective IsA context node and each attribute in
O is mapped to a resident node using the function resident node mapping. For example,
the relation VehicleLocation[LocatingVehicleID/Vehicle, LocatingTimeID/Time, Location/Region]
becomes a partial MFrag denoted by F[C[IsA(locatingvehicleid, VEHICLE), IsA(locatingtimeid, TIME),
R[Location(locatingvehicleid, locatingtimeid)]]. Case (c) is that the RS is the RRS and has no attributes
other than the PK. In this case, each attribute Ki in PK is used to create the IsA context node and the
relation is mapped to a predicate resident node, RRS(K1, K2, ..., Kn), using the predicate resident node
mapping. For example, the relation Follow [FollowingVehicleID/Vehicle, LeadingVehicleID/Vehicle]
becomes a partial MFrag denoted by F[C[IsA(followingvehicleid, VEHICLE), IsA(leadingvehicleid,
VEHICLE), R[Follow(followingvehicleid, leadingvehicleid)]].

3.4. Relational Database Schema and MTheory Mapping

In the previous section, we discussed the mapping between a relation schema and partial MFrag.
In this section, we discuss the mapping between a relational database schema (RDBS) and MTheory
(M). It is called RDBS-MTheory Mapping. The mapping produces one MTheory from one relational
database schema, denoted by the following.

Definition 22 (RDBS-MTheory Mapping). An RDBS-MTheory Mapping is a mapping in which a
relational database schema RDBS is mapped to an MTheory M (Definition 3), denoted by RDBS[RS1, RS2,
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..., RSn] 7→ M[F1, F2, ..., Fn], where RSi is a relation schema in the RDBS, Fi is a partial MFrag in the M,
and n is the number of the relation schemas in the RDBS and the number of the partial MFrags in the M, if the
RS-MFrag Mapping between RSi and Fi is able to be used.

For example, the Vehicle Identification RDBS can be directly an MTheory using the RDBS-MTheory
mapping. The relations Vehicle, Region, and VehicleLocation in the RDBS are converted to partial MFrags
Vehicle, Region, and VehicleLocation. The following subsection presents a mapping algorithm using
MEBN-RM, which is a process to develop an MTheory from data in RM and contains specific sub-steps.

3.5. MEBN-RM Mapping Algorithm

In the previous subsections, we discussed the mapping definitions for entities, resident nodes,
MFrags, and MTheories. This subsection presents a MEBN-RM mapping algorithm (Algorithm 1) which
performs the RDBS-MTheory Mapping in Definition 22 and specifies how to convert an MTheory from
a relational database schema using the MEBN-RM definitions. For the MEBN-RM mapping algorithm,
we assume that (1) the relational database schema are normalized by Entity-Relationship Normalization
(Definition 17), and (2) the list of relation schemas in the relational database schema are sorted by
the entity relation schemas (ERS) first and the relationship relation schemas (RRS) second. For the
algorithm, let M be an MTheory, M.E be a set of entity types of M, M.F be a set of MFrags, F.C be a set of
context nodes in an MFrag F, F.R be a set of resident nodes of F, RDBS be a relational database schema,
rs be a relation schema in RDBS, and rs.O be a set of attributes for NF and/or NK of rs. The algorithm
takes the relational database schema RDBS as an input and produces the MTheory M as an output.

Algorithm 1: MEBN-RM Mapping
Input: RDBS a relational database schema
Output: M a partial mapped MTheory

1 Function MEBN-RM Mapping ( RDBS )
2 M← create a default MTheory ;
3 M.name← have a schema name using RDBS;
4 for i← 1 to n do
5 rsi ← have i-th relation schema from RDBS;
6 RM-MFrag Mapping(rsi, M);

7 return M;

8 Function RM-MFrag Mapping ( rs, M )
9 if rs = ERS then

10 M.E← create an entity type from rs using ERS to Entity Mapping;

11 if rs = ERS and |rs.O| > 0 then
12 M.F← F← create an MFrag for rs;
13 F.C← create IsA nodes from the entity types M.E associated with M.F;
14 F.R← create resident nodes from rs using Function Resident Node Mapping;
15 else if rs = RRS then
16 M.F← F← create an MFrag for rs;
17 F.C← create IsA nodes from the entity types M.E associated with M.F;
18 if |rs.O| = 0 then
19 F.R← create resident nodes from rs using Predicate Resident Node Mapping;
20 else if if |rs.O| > 0 then
21 F.R← create resident nodes from rs using Function Resident Node Mapping;
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Inputs of this algorithm are a relational database schema RDBS. (2) The algorithm starts with
creating a default MTheory M. (3) The name of RDBS is used to create the name of M. (4), (5) All
relation schema are investigated from a first relation schema rs1 to a last relation schema rsn, where n
denotes the number of the relation schemas in RDBS. (6) For an i-th relation schema, the algorithm
performs the procedure RM-MFrag Mapping defined in Definition 21. (9) If the i-th relation schema is
ERS, (10) the ERS to Entity Mapping (Definition 18) is performed. (11) If the i-th relation schema rs is
ERS and there is an attribute O for NF or NK, then (12) an MFrag F for the rs is created and added
to the set of MFrags of M, (13) IsA context nodes are created from the entity types M.E associated
with F and added to the set of context nodes of F, and (14) resident nodes are created from rs using
the function resident node mapping (Definition 20) and added into the set of resident nodes of F. (15) If
the i-th relation schema rs the is RRS, then performs (16) to (21). (16) An MFrag F for the rs is created
and added to the set of MFrags of M. (17) IsA context nodes are created from the entity types M.E
associated with F and added to the set of context nodes of F. (18) If there is no attribute O for NF or NK,
(19) the predicate resident node mapping (Definition 19) for rs is performed. (20) If there is an attribute
O for NF or NK, (21) the function resident node mapping (Definition 20) for rs is performed. (7) The
algorithm results in the MTheory M.

We consider the complexity of this algorithm in terms of the Big O. The for-loop in Line 3 is the
most computationally intensive operation of this algorithm and it is influenced by the number of
relations n. The complexity of the procedure RM-MFrag Mapping is O(k), where k is the number of PKs
in a relation. Therefore, this algorithm has complexity O(nk). However, in the most cases, k is not a big
number (i.e., k < n), so we can consider this algorithm as O(n). We will see experiment results for this
in Section 4.2. Listing 4 shows a result for the Listing 3 using the MEBN-RM mapping algorithm.

Listing 4. Vehicle Identification.

1 [F: Vehicle
2 [C: IsA(vehicleid, VEHICLE)]
3 [R: VehicleClass(vehicleid)]
4 ]
5 [F: Region
6 [C: IsA(regionid, REGION)]
7 [R: TerrainType(regionid)]
8 [R: ContainingRegion(regionid)]
9 ]

10 [F: VehicleLocation
11 [C: IsA(locatingvehicleid, VEHICLE)]
12 [C: IsA(locatingtimeid, TIME)]
13 [R: Location(locatingvehicleid, locatingtimeid)]
14 ]
15 [F: Follow
16 [C: IsA(followingvehicleid, VEHICLE)]
17 [C: IsA(leadingvehicleid, VEHICLE)]
18 [R: Follow(followingvehicleid, leadingvehicleid)]
19 ]

For example, the relation Region in Listing 3 is an ERS, which is mapped to the entity REGION and
used to create the IsA context node in Line 6. The relation Region contains an attribute TerrainType which
is converted to a resident node TerrainType as a Function in Line 7. Also, the relation Region contains a
Non-Primary Foreign Key ContainingRegion which is mapped to a resident node ContainingRegion as
a Function in Line 8.
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4. Experiment for MEBN-RM

In this section, we present an experiment to evaluate the performance of the MEBN-RM algorithm
in terms of mapping speed and quality. The MEBN-RM algorithm was implemented on an open-source
program. First this program is introduced and then the experiment is presented.

4.1. MEBN-RM Tool

MEBN-RM Tool is a JAVA-based open-source program that can be used to create an MTheory
script from a relational schema. MEBN-RM Tool can be commonly used in MEBN learning or MEBN
modeling. MEBN-RM Tool is implemented in the MEBN-RM mapping algorithm in Section 3.5.
This enables rapid development of an MTheory script by clicking a button in the tool. The current
version of MEBN-RM Tool uses MySQL, an open-source relational database management system, to
take the relational schema. The most recent version and source code of MEBN-RM Tool are available
online at the GMU-HMLP GitHub repository (https://github.com/pcyoung75/GMU_HMLP.git).
Once we obtain MEBN-RM Tool we are ready to select a relational database and convert it to an
MTheory script. MEBN-RM Tool contains two panels: (1) a left tree panel shows a list of relational
databases and (2) a right panel shows a result MTheory script. By selecting a database and clicking the
select button in the tool, the MEBN-RM mapping performs and produces a result MTheory script.

4.2. Experiment

We conducted the experiment to evaluate the performance of the MEBN-RM algorithm in terms
of the mapping time and accuracy. The mapping time is the time it takes to map from a relational
database to an MTheory script. The mapping accuracy means how correctly the MTheory script
was mapped from the relational database. For this, we compared both elements from the MTheory
script and the relational database. For the test relational databases, Relational Learning Repository
[53], which contains more than 70 relational databases from the real world or the simulation, was
used. For the experiment, 10 real-world relational databases (see Table 4) from 8 domains (Education,
Financial, Entertainment, Government, Industry, Kinship, Medicine, and Social) were chosen. These
relational databases satisfied Entity-Relationship Normalization (Definition 17), so the normalization
step was not required. The experiment was run on a 3.40 GHz Intel Core i7-3770 processor.

Table 4. 10 Real-World Relational Databases with Experiment Results for the Mapping Time.

# Name Domain # of RS
(Definition 5)

# of ERS
(Definition 12)

# of RRS
(Definition 13)

# of
Attributes

# of
Primary Keys
(Definition 8)

Mapping
Time (Second)

1 Stats Education 8 8 0 71 8 0.0597
2 Financial Financial 8 8 0 55 8 0.0498
3 MovieLens Entertainment 7 4 3 24 10 0.0445
4 LegalActs Government 5 2 3 33 7 0.0334
5 SAT Industry 36 3 33 69 37 0.1656
6 Dunur Kinship 17 1 16 34 33 0.0726
7 Elti Kinship 11 1 10 22 21 0.0503
8 Bupa Medicine 9 2 7 16 9 0.0383
9 Pima Medicine 9 1 8 18 9 0.0417

10 Facebook Social 2 1 1 265 3 0.0359

4.2.1. Mapping Time

Table 4 shows 10 relational databases with the name, domain, and number of attributes/relations.
Each relational database had different attribute and relation features, so the following factors were used
to investigate the mapping time: (1) the number of relations and (2) the number of attributes. Table 4
also shows the experiment results for the mapping time over the different number of attributes and
relations in each of the 10 real-world relational databases. The correlation coefficient for the mapping
time over the number of attributes was −0.033, while the correlation coefficient for the mapping time
over the number of relations was 0.97 (see Figure 3).

https://github.com/pcyoung75/GMU_HMLP.git
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Figure 3. Mapping Time over the Number of Relations.

The increase in mapping time was linear in the number of relations. However, the acceptable
speed of the algorithm alone is not sufficient. The accuracy for the mapped results is also essential.

4.2.2. Mapping Accuracy

The mapping accuracy for the MEBN-RM algorithm can be evaluated by comparing between the
numbers of elements in a source RDB and the numbers of elements in a target MTheory. For example,
an ERS (Definition 12) in the RDB and an entity in the MTheory are mapped to one-to-one. An ERS
containing NK (Definition 9) or A (Definition 10) is mapped to an MFrag. Table 5 shows the numbers
of elements in the target MTheories. These elements were generated as we expected.

Table 5. 10 Real-World Relational Databases with Elements of Its Mapped MTheory.

# Name # of Entity # of MFrag
(Definition 1)

# of Resident Node
(Definition 2)

# of IsA Nodes
(Definition 4)

1 Stats 8 8 63 8
2 Financial 8 8 47 8
3 MovieLens 4 7 14 10
4 LegalActs 2 5 28 7
5 SAT 3 33 33 34
6 Dunur 1 16 16 32
7 Elti 1 10 10 20
8 Bupa 2 7 7 7
9 Pima 1 9 9 9

10 Facebook 1 2 263 3

We also applied MEBN-RM to two projects. Section 5 introduces the projects with specific
relational databases and mapping outcomes.

5. Use Cases

In this section, we introduce two example use cases using MEBN-RM: a Critical Infrastructure
Defense System and a Smart Manufacturing System.
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5.1. Critical Infrastructure Defense System

HERALD is a proof-of-concept system designed to prevent attacks to critical infrastructures
(CI) through early detection/identification of threatening targets and short-term prediction of the
target’s activities and threat level for the region where the critical infrastructures are located [23].
In 2014, Samsung Thales coined the design of a critical infrastructure defense system which is the
predecessor of the HERALD system. Requirements from Samsung Thales were to design and develop
a next-generation system for critical infrastructure defense by means of integration for previous
knowledge with evidence from multiple sensors (e.g., MTI (Moving Target Indicator) system, IMINT
(Imagery Intelligence) sensor system, and GEOINT (Geospatial Intelligence) system).

HERALD consisted of an inference module, a control module, and a scenario simulator.
The inference module used a HERALD MTheory to infer current and future situations. The HERALD
MTheory was designed by domain experts and learned using an MEBN learning process (HMLP) [23].
Also, HERALD contained a relational database that was developed by the domain experts and
used for a simulation. The HERALD simulator simulated ground truth information of a situation
in which our forces and enemies operated against each other. To develop the HERALD MTheory,
the relational database was used to develop a partial HERALD MTheory. Figure 4 shows the schema
of the relational database.

The relational database schema contained 18 relations (e.g., MTI_Report, Target, and
TargetTemporalProperty). For example, the relation MTI_Report represented knowledge from MTI
about reported locations (e.g., LatitudeReport) of and reported moving aspects (e.g., DistanceToCIReport)
of a target. The relation Target represented knowledge about a target’s information that was not
time-varying. The relation TargetTemporalProperty represented knowledge about a target’s information
that was time-varying.

MEBN-RM was used to convert the relational database schema to the partial HERALD MTheory.
Listing 5 shows some MFrags of the partial HERALD MTheory. These three MFrags correspond to the
three relations in the relational database schema. Please note that each name of the resident nodes is
changed to a form that includes an abbreviation derived from the name of the MFrag (e.g., the prefix
MR for resident nodes in the MFrag MTI_Report) to prevent construction for resident nodes with the
same name. The domain experts, then, used the partial HERALD MTheory to construct a complete
HERALD MTheory by adding CLDs for resident nodes and conditional dependence relationships
between the resident nodes.

To evaluate the mapping accuracy, we compared the numbers of elements in the source RDB
(Figure 4) and the numbers of elements in the target MTheory (Table 6). These elements in Table 6
were mapped as expected. The total mapping time was 0.0136 s (running on the 3.40 GHz Intel Core
i7-3770 processor).

Table 6. The Results of the MEBN-RM Mapping for the Partial HERALD Relational Database (Figure 4)
and Its Mapping Time.

# of Entity # of MFrag
(Definition 1)

# of Resident Node
(Definition 2)

# of IsA Nodes
(Definition 4) MappingTime (Second)

7 12 31 21 0.0136

5.2. Smart Manufacturing System

An MSAW (Predictive Manufacturing Situation Awareness) system as a prototype system was
designed and developed to estimate current situations as well as predict future situations for a steel
plate manufacturing [27]. The MSAW system was associated with various equipment for steel plate
manufacturing (e.g., a reheating furnace, a roughing mill, and a finishing mill) to produce steel plates
of good quality (e.g., few defects and required flatness) by taking steel slabs. The goal of the MSAW
system was to support four smart functions: Function 1 (Control value reasoning given outputs),
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Function 2 (Optimal control value finding to maximize/minimize objective values (e.g., outputs)),
Function 3 (Prediction for future manufacturing situations), and Function 4 (Sensitivity analysis to find
defective factors for faulty outputs). The MSAW system supporting the steel plate manufacturing
contained an MSAW MTheory which was used to perform the above four functions.

Figure 4. Partial HERALD Relational Database Schema.

The MSAW MTheory was designed by domain experts and learned using data from a simulator.
The simulator was designed by domain experts and contained a relational database as shown Figure 5.
The simulator simulated ground truth information for the reheating furnace, the roughing mill, and the
finishing mill. The relational database in the simulator was used to develop a partial MSAW MTheory.
Figure 5 shows the schema of the relational database.

The relational database schema contained 21 relations. Examples of the relations include
heater_item, estimator_item, and heateractuator_item. The relation heater_item represented properties of
a slab item heated by the reheating furnace. The relation contained several attributes for the slab
item (e.g., attributes SteelGrade, Thickness, and Temperature). The relation estimator_item represented
knowledge about an overall situation for manufacturing in terms of total manufacturing cost, total
manufacturing time, and total quality rate for products. The relation heateractuator_item represented
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knowledge about control factors and properties for the reheating furnace (e.g., attributes NumberOfSlab
and ProductionTime).

MEBN-RM was used to convert the relational database schema to the partial MSAW MTheory.
Listing 6 shows some MFrags of the partial MSAW MTheory. These three MFrags correspond to
the three relations (i.e., heater_item, estimator_item, and heateractuator_item) in the relational database
schema. The domain experts, then, used the partial MSAW MTheory to construct a complete MSAW
MTheory by adding local probability distributions for resident nodes and conditional dependence
relationships between the resident nodes.

Listing 5. Part of Script MTheory for HERALD corresponding to the Relations shown in
Rounded-Dashed Boxes of Figure 4.

1 [F: MTI_Report
2 [C: IsA(rt_mti, REPORTEDTARGET_MTIRPT)]
3 [C: IsA(t, TIME)]
4 [R: MR_LatitudeReport(rt_mti, t)]
5 [R: MR_LogitudeReport(rt_mti, t)]
6 [R: MR_AltitudeReport(rt_mti, t)]
7 [R: MR_DistanceToCIReport (rt_mti, t)]
8 [R: MR_DirectionToCIReport(rt_mti, t)]
9 ]

10 [F: target
11 [C: IsA(targetid, TARGET)]
12 [R: T_TargetType(targetid)]
13 [R: T_TargetSize(targetid)]
14 [R: T_TargetImage(targetid)]
15 ]
16 ...
17

18 [F: TargetTemporalProperty
19 [C: IsA(tr, TARGET)]
20 [C: IsA(t, TIME)]
21 [R: TTP_Latitude(tr,t)]
22 [R: TTP_Longitude(tr,t)]
23 [R: TTP_Altitude(tr,t)]
24 [R: TTP_Latitude_Velocity(tr,t)]
25 [R: TTP_Longitude_Velocity (tr,t)]
26 [R: TTP_Altitude_Velocity (tr,t)]
27 [R: TTP_DistanceToCI(tr,t)]
28 [R: TTP_DirectionToCI(tr,t)]
29 [R: TTP_RegionType(tr,t)]
30 [R: TTP_Temperature(tr,t)]
31 [R: TTP_Activity(tr,t)]
32 [R: TTP_Mission(tr,t)]
33 ]
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Listing 6. Part of Script MTheory for MSAW corresponding to the Relations shown in Rounded-Dashed
Boxes of Figure 5.

1 [F: heater_item
2 [C: IsA(itemid, ITEM)]
3 [C: IsA(processid, PROCESS)]
4 [C: IsA(timeid, TIME)]
5 [R: HI_SteelGrade(itemid, processid, timeid)]
6 [R: HI_Thickness(itemid, processid, timeid)]
7 [R: HI_OrderedThickness(itemid, processid, timeid)]
8 [R: HI_Width(itemid, processid, timeid)]
9 [R: HI_Length(itemid, processid, timeid)]

10 [R: HI_Weight(itemid, processid, timeid)]
11 [R: HI_Temperature(itemid, processid, timeid)]
12 [R: HI_OrderedTemperature(itemid, processid, timeid)]
13 [R: HI_Foreign_Substance(itemid, processid, timeid)]
14 [R: HI_Shape(itemid, processid, timeid)]
15 [R: HI_External_Defect(itemid, processid, timeid)]
16 [R: HI_Internal_Defect(itemid, processid, timeid)]
17 ]
18 [F: estimator_item
19 [C: IsA(itemid, ITEM)]
20 [C: IsA(processid, PROCESS)]
21 [C: IsA(timeid, TIME)]
22 [R: ETMOI_TotalCost(itemid, processid, timeid)]
23 [R: ETMOI_TotalTime(itemid, processid, timeid)]
24 [R: ETMOI_TotalQuality (itemid, processid, timeid)]
25 ]
26 ...
27

28 [F: heateractuator_item
29 [C: IsA(itemid, ITEM)]
30 [C: IsA(processid, PROCESS)]
31 [C: IsA(timeid, TIME)]
32 [R: HAI_NumberOfSlab(itemid, processid, timeid)]
33 [R: HAI_ProductionTime(itemid, processid, timeid)]
34 [R: HAI_HeaterTotalEnergy(itemid, processid, timeid)]
35 ]



Appl. Sci. 2019, 9, 1743 22 of 26

Figure 5. Partial MSAW Relational Database Schema.
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The MEBN-RM mapping for the partial MSAW relational database performed as we expected,
and the total mapping time was 0.0161 s (Table 7).

Table 7. The Results of the MEBN-RM Mapping for the Partial MSAW Relational Database (Figure 5)
and Its Mapping Time.

# of Entity # of MFrag
(Definition 1)

# of Resident Node
(Definition 2)

# of IsA Nodes
(Definition 4) MappingTime (Second)

3 18 92 45 0.0161

6. Conclusions

In this paper, we presented MEBN-RM formalizing conversion from a relational database schema
in RM to a partial MTheory in MEBN syntactically. To do this, MEBN-RM contained the four levels of
the mappings between elements of the relational database schema and MTheory. Table 8 summarizes
the mappings that this research presents.

Table 8. Mapping types on MEBN-RM.

RM Mapping Types MEBN

ERS Definition 18
ERS to Entity Mapping Entity

RRS Definition 19
Predicate Resident Node Mapping Predicate resident node

Non-foreign-key attribute,
Non-primary foreign key

Definition 20
Function Resident Node Mapping Function resident node

RS Definition 21
RS-MFrag Mapping MFrag

RDBS Definition 22
RDBS-MTheory Mapping MTheory

MEBN-RM is a foundation of designing an MEBN model from a relational database, so, using
MEBN-RM, the modeler (Human or Machine) can design the MEBN model seamlessly. The idea
behind MEBN-RM may be used to develop other mapping models for different types of database
(e.g., ontology, graph, and event database) as an example mapping model. Recently non-relational
databases, called NoSQL, are receiving increasing attention. In the era of Big Data, we may need a
scalable and flexible database to manage the many and varied types of data. In this paper, we only
focused on the RM as a source data model to develop an MTheory. Future work will consider extensions
to NoSQL data and other types of data.
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