Antihypertensive Peptide Activity in Dutch-Type Cheese Models Prepared with Different Additional Strains of Lactobacillus Genus Bacteria
Abstract
:1. Introduction
2. Material and Methods
2.1. Determination of Proteolytic Activity of Lactobacillus Strains
2.2. Preparation of Cheese Models
- C—a control cheese model consisting of milk, 2% of basic CHN-19 starter, and a coagulant;
- Lba 2499—a cheese model consisting of milk, 2% of CHN-19 starter, 1.5% of Lb. acidophilus 2499 culture, and a coagulant;
- Lbr 489—a cheese model consisting of milk, 2% of CHN-19 starter, 1.5% of Lb. rhamnosus 489 culture, and a coagulant;
- Lbd 490—a cheese model consisting of milk, 2% of CHN-19 starter, 1.5% of Lb. delbrueckii 490 culture, and a coagulant;
- Lbc 2639—a cheese model consisting of milk, 2% of CHN-19 starter, 1.5% of Lb. casei 2639 culture, and a coagulant.
2.3. Measurement of the ACE-Inhibitory Activity of Dutch-Type Cheese Models
2.4. Determination of Proteolysis of Dutch-Type Cheese Models
2.5. Statistical Analysis
3. Results and Discussion
3.1. Proteolytic Activity of Lactobacillus Strains
3.2. Proteolytic and ACE-Inhibitory Activity (%) During Ripening of Dutch-Type Cheese Models
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ryhänen, E.L.; Pihlanto-Leppälä, A.; Pahkala, E. A new type of ripened, low-fat cheese with bioactive properties. Int. Dairy J. 2001, 11, 441–447. [Google Scholar] [CrossRef]
- Dziuba, B.; Dziuba, M. Milk proteins-derived bioactive peptides in dairy products: Molecular, biological and methodological aspects. Acta Sci. Pol. Technol. Aliment. 2014, 13, 5–25. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, M.; Hudson, J.A.; Korpela, R.; de los Reyes-Gavilán, C.G. Impact on human health of microorganisms present in fermented dairy products: An overview. Biomed. Res. Int. 2015, 2015, 412714. [Google Scholar] [CrossRef]
- Sharma, S.; Singh, R.; Rana, S. Bioactive peptides: A review. Int. J. Bioautom. 2011, 15, 223–250. [Google Scholar]
- Nielsen, S.D.; Beverly, R.L.; Qu, Y.; Dallas, D.C. Milk bioactive peptide database: A comprehensive database of milk protein-derived bioactive peptides and novel visualization. Food Chem. 2017, 232, 673–682. [Google Scholar] [CrossRef]
- Sieber, R.; Bütikofer, U.; Egger, C.; Portmann, R.; Walther, B.; Wechsler, D. ACE-inhibitory activity and ACE-inhibiting peptides in different cheese varieties. Dairy Sci. Technol. 2010, 90, 47–73. [Google Scholar] [CrossRef]
- Baptista, D.P.; Galli, B.D.; Cavalheiro, F.G.; Negrāo, F.; Eberlin, M.N.; Gigante, M.L. Lactobacillus helveticus LH-B02 favours the release of bioactive peptide during Prato cheese ripening. Int. Dairy J. 2018, 87, 75–83. [Google Scholar]
- Reale, A.; Ianniello, R.G.; Ciocia, F.; Di Renzo, T.; Boscaino, F.; Ricciardi, A.; Coppola, R.; Parente, E.; Zotta, T.; McSweeney, P.L.H. Effect of respirative and catalase-positive Lactobacillus casei adjuncts on the production and quality of Cheddar-type cheese. Int. Dairy J. 2016, 63, 78–87. [Google Scholar] [CrossRef]
- Addeo, F.; Chianese, L.; Salzano, A.; Sacchi, R.; Cappuccio, U.; Ferranti, P.; Malorni, A. Characterization of the 12% trichloroacetic acid-insoluble oligopeptides of Parmigiano-Reggiano cheese. J. Dairy Res. 1992, 59, 401–411. [Google Scholar] [CrossRef]
- Smacchi, E.; Gobbetti, M. Bioactive peptides in dairy products: Synthesis and interaction with proteolytic enzymes. Food Microbiol. 2000, 17, 129–141. [Google Scholar] [CrossRef]
- EFSA. Evolus and reduce arterial stiffness—Scientific substantiation of a health claim related to Lactobacillus helveticus fermented Evolus® low-fat milk products and reduction of arterial stiffness pursuant to article 14 of the regulation (EC) No 1924/2006—Scientific opinion of the panel on dietetic products, nutrition and allergies; question number EFSA-Q-2008-218. EFSA J. 2008, 6, 824. [Google Scholar] [CrossRef]
- Korhonen, H.; Pihlanto, A. Bioactive peptides: Production and functionality. Int. Dairy J. 2006, 16, 945–960. [Google Scholar] [CrossRef]
- Hafeez, Z.; Cakir-Kiefer, C.; Roux, E.; Perrin, C.; Miclo, L.; Dary-Mourot, A. Strategies of producing bioactive peptides from milk proteins to functionalize fermented milk products. Rev. Artic. Food Res. Int. 2014, 63, 71–80. [Google Scholar] [CrossRef]
- Hajirostamloo, B. Bioactive component in milk and dairy product. Int. Sci. Index Agric. Biosyst. Eng. 2010, 4, 870–874. [Google Scholar]
- Church, F.C.; Swaisgood, H.E.; Porter, D.H.; Catignani, G.L. Spectrophotometric assay using o-phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins. J. Dairy Sci. 1983, 66, 1219–1227. [Google Scholar] [CrossRef]
- Hynes, E.; Ogier, J.C.; Delacroix-Buchet, A. Protocol for the manufacture of miniature washed-curd cheeses under controlled microbiological conditions. Int. Dairy J. 2000, 10, 733–737. [Google Scholar] [CrossRef]
- Cushman, D.W.; Cheung, H.S. Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochem. Pharmacol. 1971, 20, 1637–1648. [Google Scholar] [CrossRef]
- Ramchandran, L.; Shah, N.P. Influence of addition of Raftiline HP® on the growth, proteolytic, ACE-and α-glucosidase inhibitory activities of selected lactic acid bacteria and Bifidobacterium. LWT Food Sci. Technol. 2010, 43, 146–152. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [PubMed]
- Donkor, O.N.; Henriksson, A.; Vasiljevic, T.; Shah, N.P. Proteolytic activity of dairy lactic acid bacteria and probiotics as determinant of growth and in vitro angiotensin-converting enzyme inhibitory activity in fermented milk. Le Lait 2007, 87, 21–38. [Google Scholar] [CrossRef] [Green Version]
- Ong, L.; Henriksson, A.; Shah, N.P. Angiotensin converting enzyme-inhibitory activity in Cheddar cheeses made with the addition of probiotic Lactobacillus casei sp. Le Lait 2007, 87, 149–165. [Google Scholar] [CrossRef]
- Ong, L.; Shah, N.P. Release and identification of angiotensin-converting enzyme-inhibitory peptides as influenced by ripening temperatures and probiotic adjuncts in Cheddar cheeses. LWT Food Sci. Technol. 2008, 41, 1555–1566. [Google Scholar] [CrossRef]
- Pripp, A.H.; Sørensen, R.; Stepaniak, L.; Sørhaug, T. Relationship between proteolysis and angiotensin-I-converting enzyme inhibition in different cheeses. LWT Food Sci. Technol. 2006, 39, 677–683. [Google Scholar] [CrossRef]
- Smacchi, E.; Gobbetti, M. Peptides from several Italian cheeses inhibitory to proteolytic enzymes of lactic acid bacteria, Pseudomonas fluorescens ATCC 948 and to the angiotensin I-converting enzyme. Enzym. Microb. Technol. 1998, 22, 687–694. [Google Scholar] [CrossRef]
- Meira, S.M.M.; Daroit, D.J.; Helfer, V.E.; Corrêa, A.P.F.; Segalin, J.; Carro, S.; Brandelli, A. Bioactive peptides in water-soluble extracts of ovine cheeses from Southern Brazil and Uruguay. Food Res. Int. 2012, 48, 322–329. [Google Scholar] [CrossRef] [Green Version]
- Meisel, H.; Goepfert, A.; Gunther, S. ACE-inhibitory activities in milk products. Milchwissenschaft 1997, 52, 307–311. [Google Scholar]
- Saito, T.; Nakamura, T.; Kitazawa, H.; Kawai, Y.; Itoh, T. Isolation and structural analysis of antihypertensive peptides that exist naturally in Gouda cheese. J. Dairy Sci. 2000, 83, 1434–1440. [Google Scholar] [CrossRef]
- Ong, L.; Shah, N.P. Influence of probiotic Lactobacillus acidophilus and L. helveticus on proteolysis, organic acid profiles, and ACE inhibitory activity of Cheddar cheeses ripened at 4, 8, and 12 °C. J. Food Sci. 2008, 73, M111–M120. [Google Scholar] [CrossRef]
- Stuknytė, M.; Cattaneo, S.; Masotti, F.; De Noni, I. Occurrence and fate of ACE-inhibitor peptides in cheeses and in their digestates following in vitro static gastrointestinal digestion. Food Chem. 2015, 168, 27–33. [Google Scholar] [CrossRef]
- Bernabucci, U.; Catalani, E.; Basiricò, L.; Morera, P. In vitro ACE-inhibitory activity and in vivo antihypertensive effects of water-soluble extract by Parmigiano Reggiano and Grana Padano cheeses. Int. Dairy J. 2014, 37, 16–19. [Google Scholar] [CrossRef]
Cheese Model | |||||
---|---|---|---|---|---|
C | Lba 2499 | Lbr 489 | Lbd 490 | Lbc 2639 | |
1 day | 0.84 ± 0.01 d, D | 0.71 ± 0.02 ab, D | 0.69 ± 0.03 a, D | 0.75 ± 0.06 bc, D | 0.75 ± 0.02 bc, D |
1 week | 0.69 ± 0.05 bc, C | 0.67 ± 0.03 abc, C | 0.65 ± 0.02 ab, C | 0.63 ± 0.06 a, C | 0.67 ± 0.05 abc, C |
3 weeks | 0.59 ± 0.06 ab, B | 0.57 ± 0.03 ab, B | 0.55 ± 0.03 a, B | 0.55 ± 0.06 a, B | 0.57 ± 0.03 a, B |
5 weeks | 0.49 ± 0.05 b, A | 0.45 ± 0.08 ab, A | 0.45 ± 0.03 ab, A | 0.39 ± 0.02 a, A | 0.47 ± 0.02 ab, A |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garbowska, M.; Pluta, A.; Berthold-Pluta, A. Antihypertensive Peptide Activity in Dutch-Type Cheese Models Prepared with Different Additional Strains of Lactobacillus Genus Bacteria. Appl. Sci. 2019, 9, 1674. https://doi.org/10.3390/app9081674
Garbowska M, Pluta A, Berthold-Pluta A. Antihypertensive Peptide Activity in Dutch-Type Cheese Models Prepared with Different Additional Strains of Lactobacillus Genus Bacteria. Applied Sciences. 2019; 9(8):1674. https://doi.org/10.3390/app9081674
Chicago/Turabian StyleGarbowska, Monika, Antoni Pluta, and Anna Berthold-Pluta. 2019. "Antihypertensive Peptide Activity in Dutch-Type Cheese Models Prepared with Different Additional Strains of Lactobacillus Genus Bacteria" Applied Sciences 9, no. 8: 1674. https://doi.org/10.3390/app9081674
APA StyleGarbowska, M., Pluta, A., & Berthold-Pluta, A. (2019). Antihypertensive Peptide Activity in Dutch-Type Cheese Models Prepared with Different Additional Strains of Lactobacillus Genus Bacteria. Applied Sciences, 9(8), 1674. https://doi.org/10.3390/app9081674