Carbonation of Natural Wollastonite at Non-Ambient Conditions Relevant for CCS—the Possible Use as Cementitious Material in Wellbores
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Analytical Methods
2.3. Experimental Setup
3. Results
3.1. PXRD Analysis
3.2. DSC-TG/MS Measurements
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IPCC. The Intergovernmental Panel on Climate Change. Special Report. Available online: https://www.ipcc.ch/sr15/ (accessed on 22 January 2019).
- NOAA. Earth System Research Laboratory. Trends in Atmospheric Carbon Dioxide. Available online: https://www.esrl.noaa.gov/gmd/ccgg/trends/ (accessed on 3 December 2018).
- Benson, S.M.; Orr, F.M., Jr. Carbon Dioxide Capture and Storage. MRS Bull. 2008, 33, 303–305. [Google Scholar] [CrossRef]
- Locher, F. Zement—Grundlagen der Herstellung und Verwendung, 1st ed.; Verlag Bau + Technik GmbH: Düsseldorf, Germany, 2000; p. 522. ISBN 978-3-7640-0400-2. [Google Scholar]
- Taylor, H.F.W. Cement Chemistry, 2nd ed.; Thomas Telford Publishing, Thomas Telford Services Ltd.: London, UK, 1997; p. 459. ISBN 0-7277-2592-0. [Google Scholar]
- Svensson, K.; Neumann, A.; Menezes, F.F.; Lempp, C.; Pöllmann, H. The Conversion of Wollastonite to CaCO3 Considering Its Use for CCS Application as Cementitious Material. Appl. Sci. 2018, 8, 304. [Google Scholar] [CrossRef]
- Svensson, K.; Neumann, A.; Menezes, F.; Lempp, C.; Pöllmann, H. Wollastonite a CS-Cement—Curing by Carbonation—Use as Well Cement. In Proceedings of the 40th ICMA Conference on Cement Microscopy, Deerfield, FL, USA, 13–17 May 2018. [Google Scholar]
- Svensson, K.; Neumann, A.; Menezes, F.; Lempp, C.; Pöllmann, H. Quantitative evaluation of the carbonation of Wollastonite. In Proceedings of the 20th Ibausil Conference, Weimar, Germany, 12–14 September 2018. [Google Scholar]
- Pöllmann, H. Mineralogical strategies to reduce CO2 in the fabrication of alternative cements. In Proceedings of the IBAUSIL Conference Replication, Weimar, Germany, 16–18 September 2015; Volume 1, pp. 111–129. [Google Scholar]
- Rice, J.; Ferry, J. Buffering, Infiltration, and the Control of Intensive Variables during Metamorphism. Rev. Mineral. 1982, 10, 263–326. [Google Scholar]
- CLUSTER. Joint Research Project CLUSTER. Available online: www.bgr.bund.de/CLUSTER/ (accessed on 3 September 2018).
- Svensson, K.; Neumann, A.; Pöllmann, H.; Menezes, F.; Lempp, C. Curing by carbonatisation of Wollastonite. GDCh-Conf. Bauchem. 2017, 52, 80–83. [Google Scholar]
- Gartner, E.; Hirao, H. A review of alternative approaches to the reduction of CO2 emissions associated with the manufacture of the binder phase in concrete. Cem. Concr. Res. 2015, 78, 126–142. [Google Scholar] [CrossRef]
- Vilani, C.; Spragg, R.; Tokpatayeva, R.; Olek, J.; Weiss, W. Characterizing the Pore Structure of Carbonated Natural Wollastonite. In Proceedings of the 4th International Conference on the Durability of Concrete Structures, Purdue University, West Lafayette, IN, USA, 24–26 July 2014. [Google Scholar]
- Sahu, S.; DeCristofaro, N. Solidia CementTM–Part One of a Two-Part Series Exploring the Chemical Properties and Performance Results of Sustainable Solidia CementTM and Solidia ConcreteTM; Solidia Technologies: Piscataway, NJ, USA, 2013; pp. 1–12. [Google Scholar]
- Abbasi, E.; Hassanzadeh, A.; Abbasian, J. Regenerable MgO-based surbent for high temperature CO2 removal from syngas: 2. Two-zone variable diffusivity shrinking core model with expanding product layer. Fuel 2013, 105, 128–134. [Google Scholar] [CrossRef]
- Longo, R.C.; Cho, K.; Brüner, P.; Welle, A.; Gerdes, A.; Thissen, P. Carbonation of Wollastonite(001) Competing Hydration: Microscopic Insights from Ion Spectroscopy and Density Dunctional Theory. Am. Chem. Soc. App. Mater. Interfaces 2015, 7, 4706–4712. [Google Scholar] [CrossRef] [PubMed]
- Bube, C.; Metz, V.; Bohnert, E.; Garbev, K.; Schild, D.; Kienzler, B. Long-Term cement corrosion in chloride-rich solutions relevant to radioactive waste disposal in rock salt–Leaching experiments and thermodynamic simulations. Phys. Chem. Earth 2013, 64, 87–94. [Google Scholar] [CrossRef]
- Jain, J.; Deo, O.; Sahu, S.; DeCristofaro, N. Solidia CementTM–Part Two of a Series Exploring the Chemical Properties and Performance Results of Sustainable Solidia CementTM and Solidia ConcreteTM; Solidia Technologies: Piscataway, NJ, USA, 2014; pp. 1–17. [Google Scholar]
- Jain, J.; Atakan, V.; DeChristofaro, N.; Jeong, H.; Olek, J. Performance of Calcium Silicate-Based Carbonated Concretes vs. Hydrated Concretes under Freeze-Thaw Environments; Solidia Technologies: Piscataway, NJ, USA, 2015; pp. 1–8. [Google Scholar]
- Ashraf, W.; Olek, J. Carbonation of hydraulic and non-hydraulic calcium silicates: Potential of utilizing low-lime calcium silicates in cement-based materials. J. Mater. Sci. 2016, 51, 6173–6191. [Google Scholar] [CrossRef]
- Ashraf, W.; Olek, J.; Atakan, V. Carbonation Reaction Kinetics, CO2 Sequestration Capacity, and Microstructure of Hydraulic and Non-Hydraulic Cementitious Binders. In Proceedings of the Fourth International Conference on Sustainable Constructuion Materials and Technologies, Las Vegas, NE, USA, 7–11 August 2016. [Google Scholar]
- Huijgen, W.J.J.; Witkamp, G.-J.; Comans, R.N.J. Mechanisms of aqueous Wollastonite carbonation as a possible CO2 sequestration process. Chem. Eng. Sci. 2006, 61, 4242–4251. [Google Scholar] [CrossRef]
- Rietveld, H.M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 1969, 2, 65–71. [Google Scholar] [CrossRef]
- ICDD. Database Name (Database); Kabekkodu, S., Ed.; International Centre for Diffraction Data: Newtown Square, PA, USA, 2018. [Google Scholar]
- Degen, T.; Sadki, M.; Bron, E.; König, U.; Nénert, G. The Highscore suite. Powder Diffr. 2014, 29, 13–18. [Google Scholar] [CrossRef]
- Döbelin, N.; Kleeberg, R. Profex: A graphical user interface for the Rietveld refinement program BGMN. J. Appl. Crystallogr. 2015, 48, 1573–1580. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, J.; Friedel, P.; Kleeberg, R. BGMN–A new fundamental parameters based Rietveld program for laboratory X-ray sources, it’s use in qualitative analysis and structure investigations. CPD Newsl. 1998, 20, 5–8. [Google Scholar]
- Kitano, Y. The Behavior of Various Inorganic Ions in the Separation of Calcium Carbonate from a Bicarbonate Solution. Bull. Chem. Soc. Jpn. 1962, 35, 1973–1980. [Google Scholar] [CrossRef]
- Kitano, Y.; Okumura, M.; Idogaki, M. Incorporation of sodium, chloride and sulfate with calcium carbonate. Geochem. J. 1975, 9, 75–84. [Google Scholar] [CrossRef]
Phases | Content [wt.%] |
---|---|
Wollastonite | 90.7 ± 0.8 |
Calcite | 1.9 ± 0.2 |
Aragonite | 1.0 ± 0.5 |
Amorphous | 6.4 ± 0.5 |
Temperature [K] | Carbonation Medium | Gas Composition | Pressure [MPa] | Reaction Time [h] |
---|---|---|---|---|
333 | water | CO2 | 2 | 24 |
333 | brine | CO2 | 2 | 24 |
333 | brine | CO2 + SO2 + NO2 | 2 | 0, 3, 6, 12, 18, 24 |
Reaction Time [h] | Gas Composition | Weight Loss [%] | CO2 Content [wt.%] | Calculated Content of CaCO3 [wt.%] |
---|---|---|---|---|
0 | --- | 2.1 | 1.7 | 3.9 |
3 | CO2 + SO2 + NO2 | 7.6 | 7.0 | 16.1 |
6 | CO2 + SO2 + NO2 | 13.4 | 12.2 | 28.0 |
12 | CO2 + SO2 + NO2 | 20.2 | 18.6 | 42.7 |
18 | CO2 + SO2 + NO2 | 22.4 | 21.4 | 49.0 |
24 | CO2 + SO2 + NO2 | 25.9 | 24.4 | 56.0 |
24 | CO2 | 25.7 | 24.3 | 55.8 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Svensson, K.; Neumann, A.; Feitosa Menezes, F.; Lempp, C.; Pöllmann, H. Carbonation of Natural Wollastonite at Non-Ambient Conditions Relevant for CCS—the Possible Use as Cementitious Material in Wellbores. Appl. Sci. 2019, 9, 1259. https://doi.org/10.3390/app9061259
Svensson K, Neumann A, Feitosa Menezes F, Lempp C, Pöllmann H. Carbonation of Natural Wollastonite at Non-Ambient Conditions Relevant for CCS—the Possible Use as Cementitious Material in Wellbores. Applied Sciences. 2019; 9(6):1259. https://doi.org/10.3390/app9061259
Chicago/Turabian StyleSvensson, Kristoff, Andreas Neumann, Flora Feitosa Menezes, Christof Lempp, and Herbert Pöllmann. 2019. "Carbonation of Natural Wollastonite at Non-Ambient Conditions Relevant for CCS—the Possible Use as Cementitious Material in Wellbores" Applied Sciences 9, no. 6: 1259. https://doi.org/10.3390/app9061259
APA StyleSvensson, K., Neumann, A., Feitosa Menezes, F., Lempp, C., & Pöllmann, H. (2019). Carbonation of Natural Wollastonite at Non-Ambient Conditions Relevant for CCS—the Possible Use as Cementitious Material in Wellbores. Applied Sciences, 9(6), 1259. https://doi.org/10.3390/app9061259