Enhancement of the Localization Effect during Electrochemical Machining of Inconel 718 by Using an Alkaline Solution
Abstract
1. Introduction
2. Experimental Procedures
2.1. Specimen Preparation
2.2. Electrochemical Analysis
2.3. Current Efficiency Measurement
2.4. SEM (Scanning Electron Microscopy), EDX (Energy-Dispersive X-ray Spectroscopy)
2.5. ECM (Electrochemical Machining) Tests of Revolution Surface
3. Results and Discussion
3.1. Anodic Polarization Curves
3.2. Current Efficiency of Metal Dissolution
3.3. Micro-Morphology
3.4. ECM Results of Revolution Surface
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dudzinski, D.; Devillez, A.; Moufki, A.; Larrouquère, D.; Zerrouki, V.; Vigneau, J. A review of developments towards dry and high speed machining of Inconel 718 alloy. Int. J. Mach. Tools Manuf. 2004, 44, 439–456. [Google Scholar] [CrossRef]
- Grzesik, W.; Nieslony, P.; Habrat, W.; Sieniawski, J.; Laskowski, P. Investigation of tool wear in the turning of Inconel 718 superalloy in terms of process performance and productivity enhancement. Tribol. Int. 2018, 118, 337–346. [Google Scholar] [CrossRef]
- Leone, C.; D’Addona, D.; Teti, R. Tool wear modelling through regression analysis and intelligent methods for nickel base alloy machining. CIRP J. Manuf. Sci. Technol. 2011, 4, 327–331. [Google Scholar] [CrossRef]
- Rajurkar, K.P.; Zhu, D.; McGeough, J.A.; Kozak, J.; DeSilva, A. New developments in electrochemical machining. CIRP Ann. Manuf. Technol. 1999, 48, 567–579. [Google Scholar] [CrossRef]
- Rajurkar, K.P.; Sundaram, M.M.; Malshe, A.P. Review of electrochemical and electrodischarge machining. Proc. CIRP 2013, 6, 13–26. [Google Scholar] [CrossRef]
- Klocke, F.; Zeis, M.; Klink, A.; Veselovac, D. Experimental research on the electrochemical machining of modern titanium- and nickel-based alloys for aero engine components. Proc. CIRP 2013, 6, 368–372. [Google Scholar] [CrossRef]
- Dhobe, S.D.; Doloi, B.; Bhattacharyya, B. Surface characteristics of ECMed titanium work samples for biomedical applications. Int. J. Adv. Manuf. Technol. 2011, 55, 177–188. [Google Scholar] [CrossRef]
- Wang, J.Y.; DeSilva, A.; Yu, Y.Q.; Han, G.J. New approach to enhance the accuracy of ECM high-precision short pulse ECM (HSPECM). J. Mater. Process. Technol. 2004, 149, 382–383. [Google Scholar] [CrossRef]
- Ahn, S.H.; Ryu, S.H.; Choi, D.K.; Chu, C.N. Electro-chemical micro drilling using ultra short pulses. Precis. Eng. 2004, 28, 129–134. [Google Scholar] [CrossRef]
- Jain, V.K.; Lal, G.K.; Kanetkar, Y. Stray current attack and stagnation zones in electrochemical drilling. Int. J. Adv. Manuf. Technol. 2005, 26, 527–536. [Google Scholar] [CrossRef]
- Fang, X.L.; Qu, N.S.; Zhang, Y.D.; Xu, Z.Y.; Zhu, D. Improvement of hole exit accuracy in electrochemical drilling by applying a potential difference between an auxiliary electrode and the anode. J. Mater. Process. Technol. 2014, 214, 556–564. [Google Scholar] [CrossRef]
- Wang, D.Y.; Zhu, Z.W.; Zhu, D.; He, B.; Ge, Y. Reduction of stray currents in counter-rotating electrochemical machining by using a flexible auxiliary electrode mechanism. J. Mater. Process. Technol. 2017, 239, 66–74. [Google Scholar] [CrossRef]
- Hewidy, M.S.; Ebeid, S.J.; El-Taweel, T.A.; Youssef, A.H. Modelling the performance of ECM assisted by low frequency vibrations. J. Mater. Process. Technol. 2007, 189, 466–472. [Google Scholar] [CrossRef]
- Pajak, P.T.; DeSilva, A.; Harrison, D.K.; McGeough, J.A. Precision and efficiency of laser assisted jet electrochemical machining. Precis. Eng. 2006, 30, 288–298. [Google Scholar] [CrossRef]
- He, X.L.; Wang, Y.K.; Wang, Z.L.; Zhao, Q.Z. Micro-hole drilled by EDM-ECM combined processing. Key Eng. Mater. 2013, 562–565, 52–56. [Google Scholar] [CrossRef]
- Haisch, T.; Mittemeijer, E.; Schultze, J.W. Electrochemical machining of the steel 100Cr6 in aqueous NaCl and NaNO3 solutions: Microstructure of surface films formed by carbids. Electrochim. Acta 2001, 47, 235–241. [Google Scholar] [CrossRef]
- Mao, K.W.; Hoare, J.P. The anodic dissolution of mild steel in solutions containing both Cl- and NaNO3-ions. Corros. Sci. 1973, 13, 799–803. [Google Scholar] [CrossRef]
- Datta, M.; Landolt, D. Film breakdown on nickel under transpassive dissolution conditions in sodium nitrate solutions. J. Electrochem. Soc. 1971, 124, 483–489. [Google Scholar] [CrossRef]
- Pa, P.S. Super finishing with ultrasonic and magnetic assistance in electrochemical micro-machining. Electrochim. Acta 2009, 54, 6022–6027. [Google Scholar] [CrossRef]
- De Silva, A.K.M.; Altena, H.S.J.; McGeough, J.A. Influence of electrolyte concentration on copying accuracy of precision-ECM. CIRP Ann. 2003, 52, 165–168. [Google Scholar] [CrossRef]
- Béjar, M.A.; Eterovich, F. Wire-electrochemical cutting with a NaNO3 electrolyte. J. Mater. Process. Technol. 1995, 55, 417–420. [Google Scholar] [CrossRef]
- Makino, E.; Motoi, N.; Sato, T. Effects of cobalt on high rate dissolution behaviour of nickel-base superalloys in NaNO3 and NaCl solutions. Precis. Eng. 1983, 5, 65–72. [Google Scholar] [CrossRef]
- Schneider, M.; Schubert, N.; Höhn, S.; Michaelis, A. Anodic dissolution behavior and surface texture development of cobalt under electrochemical machining conditions. Electrochim. Acta 2013, 106, 279–287. [Google Scholar] [CrossRef]
- Wang, D.Y.; Zhu, Z.W.; Bao, J.; Zhu, D. Reduction of stray corroison by using iron coating in NaNO3 solution during electrochemical machining. Int. J. Adv. Manuf. Technol. 2015, 76, 1365–1370. [Google Scholar] [CrossRef]
- Wang, D.Y.; Zhu, Z.W.; Wang, N.F.; Zhu, D.; Wang, H.R. Investigation of the electrochemical dissolution behavior of Inconel 718 and 304 stainless steel at low current density in NaNO3 solution. Electrochim. Acta 2015, 156, 301–307. [Google Scholar] [CrossRef]
- Schubert, N.; Schneider, M.; Michealis, A. The mechanism of anodic dissolution of cobalt in neutral and alkaline electrolyte at high current density. Electrochim. Acta 2013, 113, 748–754. [Google Scholar] [CrossRef]
- Doche, M.L.; Rameau, J.J.; Durand, R.; Novel-Cattin, F. Electrochemical behavior of aluminum in concentrated NaOH solutions. Corros. Sci. 1999, 41, 805–826. [Google Scholar] [CrossRef]
- Wang, D.Y.; Zhu, Z.W.; Wang, H.R.; Zhu, D. Convex shaping process simulation during counter-rotating electrochemical machining by using the finite element method. Chin. J. Aeronaut. 2016, 29, 534–541. [Google Scholar] [CrossRef]
- Wang, D.Y.; Zhu, Z.W.; He, B.; Zhu, D.; Fang, Z.D. Counter-rotating electrochemical machining of a combustor casing part using a frustum cone-like cathode tool. J. Manuf. Processes 2018, 35, 614–623. [Google Scholar] [CrossRef]
- Sikora, E.; Macdonald, D.D. Nature of the passive film on nickel. Electrochim. Acta 2002, 48, 69–77. [Google Scholar] [CrossRef]
- Datta, M.; Mathieu, H.J.; Landolt, D. AEX/XPS study of transpassive films on iron in nitrate solution. J. Electrochem. Soc. 1984, 131, 2484–2489. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Applied voltage | 20 V |
Electrolyte | 106 g/L NaNO3, 106 g/L NaNO3 + 30 g/L NaOH |
Diameter of cathode tool | 200 mm |
Initial minimum inter-electrode gap | 0.5 mm |
Rotational speed | 10 rpm |
Machining time | 5 min |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; He, B.; Cao, W. Enhancement of the Localization Effect during Electrochemical Machining of Inconel 718 by Using an Alkaline Solution. Appl. Sci. 2019, 9, 690. https://doi.org/10.3390/app9040690
Wang D, He B, Cao W. Enhancement of the Localization Effect during Electrochemical Machining of Inconel 718 by Using an Alkaline Solution. Applied Sciences. 2019; 9(4):690. https://doi.org/10.3390/app9040690
Chicago/Turabian StyleWang, Dengyong, Bin He, and Wenjian Cao. 2019. "Enhancement of the Localization Effect during Electrochemical Machining of Inconel 718 by Using an Alkaline Solution" Applied Sciences 9, no. 4: 690. https://doi.org/10.3390/app9040690
APA StyleWang, D., He, B., & Cao, W. (2019). Enhancement of the Localization Effect during Electrochemical Machining of Inconel 718 by Using an Alkaline Solution. Applied Sciences, 9(4), 690. https://doi.org/10.3390/app9040690