Sub-Terahertz Computer Generated Hologram with Two Image Planes
Abstract
:1. Introduction
2. Results
Algorithm 1 Modified Gerchberg–Saxton algorithm. |
|
3. Methods
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Naftaly, M.; Miles, R.; Greenslade, P. THz transmission in polymer materials—A data library. In Proceedings of the 2007 Joint 32nd International Conference on Infrared and Millimeter Waves and the 15th International Conference on Terahertz Electronics, Cardiff, UK, 2–9 September 2007; pp. 819–820. [Google Scholar]
- Busch, S.; Weidenbach, M.; Fey, M.; Schäfer, F.; Probst, T.; Koch, M. Optical properties of 3D printable plastics in the THz regime and their application for 3D printed THz optics. J. Infrared Millim. Terahertz Waves 2014, 35, 993–997. [Google Scholar] [CrossRef]
- Oyama, Y.; Zhen, L.; Tanabe, T.; Kagaya, M. Sub-terahertz imaging of defects in building blocks. Ndt E Int. 2009, 42, 28–33. [Google Scholar] [CrossRef]
- Siemion, A.; Kostrowiecki-Lopata, P.; Pindur, A.; Zagrajek, P.; Sypek, M. Paper on designing costless THz paper optics. Adv. Mater. Sci. Eng. 2016, 2016, 9615698. [Google Scholar] [CrossRef]
- Siemion, A.; Siemion, A.; Suszek, J.; Kowalczyk, A.; Bomba, J.; Sobczyk, A.; Palka, N.; Zagrajek, P.; Kolodziejczyk, A.; Sypek, M. THz beam shaping based on paper diffractive optics. IEEE Trans. Terahertz Sci. Technol. 2016, 6, 568–575. [Google Scholar] [CrossRef]
- Piesiewicz, R.; Jansen, C.; Wietzke, S.; Mittleman, D.; Koch, M.; Kürner, T. Properties of building and plastic materials in the THz range. Int. J. Infrared Millim. Waves 2007, 28, 363–371. [Google Scholar] [CrossRef]
- Zimdars, D.; Valdmanis, J.; White, J.S.; Stuk, G.; Williamson, S.; Winfree, W.P.; Madaras, E.I. Technology and applications of terahertz imaging non-destructive examination: Inspection of space shuttle sprayed on foam insulation. AIP Conf. Proc. 2005, 760, 570–577. [Google Scholar]
- Wietzke, S.; Jördens, C.; Krumbholz, N.; Baudrit, B.; Bastian, M.; Koch, M. Terahertz imaging: A new non-destructive technique for the quality control of plastic weld joints. J. Eur. Opt. Soc.-Rapid Publ. 2007, 2. [Google Scholar] [CrossRef]
- Zhong, S.; Shen, Y.C.; Ho, L.; May, R.K.; Zeitler, J.A.; Evans, M.; Taday, P.F.; Pepper, M.; Rades, T.; Gordon, K.C.; et al. Non-destructive quantification of pharmaceutical tablet coatings using terahertz pulsed imaging and optical coherence tomography. Opt. Lasers Eng. 2011, 49, 361–365. [Google Scholar] [CrossRef] [Green Version]
- Kemp, M.C.; Taday, P.; Cole, B.E.; Cluff, J.; Fitzgerald, A.J.; Tribe, W.R. Security applications of terahertz technology. Int. Soc. Opt. Eng. 2003, 5070, 44–53. [Google Scholar]
- Tonouchi, M. Cutting-edge terahertz technology. Nat. Photonics 2007, 1, 97–105. [Google Scholar] [CrossRef]
- El Haddad, J.; Bousquet, B.; Canioni, L.; Mounaix, P. Review in terahertz spectral analysis. TrAC Trends Anal. Chem. 2013, 44, 98–105. [Google Scholar] [CrossRef]
- Amenabar, I.; Lopez, F.; Mendikute, A. In introductory review to THz non-destructive testing of composite mater. J. Infrared Millim. Terahertz Waves 2013, 34, 152–169. [Google Scholar] [CrossRef]
- Bogue, R. Sensing with terahertz radiation: A review of recent progress. Sens. Rev. 2018, 38, 216–222. [Google Scholar] [CrossRef]
- Zhong, S. Progress in terahertz nondestructive testing: A review. Front. Mech. Eng. 2018, 1–9. [Google Scholar] [CrossRef]
- Nagatsuma, T.; Ducournau, G.; Renaud, C.C. Advances in terahertz communications accelerated by photonics. Nat. Photonics 2016, 10, 371–379. [Google Scholar] [CrossRef] [Green Version]
- Su, K.; Moeller, L.; Barat, R.B.; Federici, J.F. Experimental comparison of terahertz and infrared data signal attenuation in dust clouds. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2012, 29, 2360–2366. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Mandehgar, M.; Grischkowsky, D.R. Broadband THz signals propagate through dense fog. IEEE Photonics Technol. Lett. 2015, 27, 383–386. [Google Scholar] [CrossRef]
- Fath, T.; Haas, H. Performance comparison of MIMO techniques for optical wireless communications in indoor environments. IEEE Trans. Commun. 2013, 61, 733–742. [Google Scholar] [CrossRef]
- Khalid, N.; Akan, O.B. Experimental throughput analysis of low-THz MIMO communication channel in 5G wireless networks. IEEE Wirel. Commun. Lett. 2016, 5, 616–619. [Google Scholar] [CrossRef]
- Xu, Z.; Dong, X.; Bornemann, J. Design of a reconfigurable MIMO system for THz communications based on graphene antennas. IEEE Trans. Terahertz Sci. Technol. 2014, 4, 609–617. [Google Scholar] [CrossRef]
- Gao, X.; Dai, L.; Zhang, Y.; Xie, T.; Dai, X.; Wang, Z. Fast channel tracking for terahertz beamspace massive MIMO systems. IEEE Trans. Veh. Technol. 2017, 66, 5689–5696. [Google Scholar] [CrossRef]
- Gesbert, D.; Shafi, M.; Shiu, D.s.; Smith, P.J.; Naguib, A. From theory to practice: An overview of MIMO space-time coded wireless systems. IEEE J. Sel. Areas Commun. 2003, 21, 281–302. [Google Scholar] [CrossRef]
- Amphawan, A. Review of optical multiple-input-multiple-output techniques in multimode fiber. Opt. Eng. 2011, 50, 102001. [Google Scholar] [CrossRef]
- Gospodaric, J.; Kuzmenko, A.; Pimenov, A.; Huber, C.; Suess, D.; Rotter, S.; Pimenov, A. 3D-printed phase waveplates for THz beam shaping. Appl. Phys. Lett. 2018, 112, 221104. [Google Scholar] [CrossRef] [Green Version]
- Xie, Z.; He, J.; Wang, X.; Feng, S.; Zhang, Y. Generation of terahertz vector beams with a concentric ring metal grating and photo-generated carriers. Opt. Lett. 2015, 40, 359–362. [Google Scholar] [CrossRef]
- Salo, J.; Meltaus, J.; Noponen, E.; Salomaa, M.M.; Lönnqvist, A.; Koskinen, T.; Viikari, V.; Säily, J.; Häkli, J.; Ala-Laurinaho, J.; et al. Holograms for shaping radio-wave fields. J. Opt. A Pure Appl. Opt. 2002, 4, S161. [Google Scholar] [CrossRef]
- Kuznetsov, S.A.; Astafev, M.A.; Beruete, M.; Navarro-Cía, M. Planar holographic metasurfaces for terahertz focusing. Sci. Rep. 2015, 5, 7738. [Google Scholar] [CrossRef]
- Gerchberg, R.W. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 1972, 35, 237–246. [Google Scholar]
- Dorsch, R.G.; Lohmann, A.W.; Sinzinger, S. Fresnel ping-pong algorithm for two-plane computer-generated hologram display. Appl. Opt. 1994, 33, 869–875. [Google Scholar] [CrossRef]
- Makowski, M.; Sypek, M.; Kolodziejczyk, A.; Mikula, G. Three-plane phase-only computer hologram generated with iterative Fresnel algorithm. Opt. Eng. 2005, 44, 125805. [Google Scholar] [CrossRef]
- Sypek, M. Light propagation in the Fresnel region. New numerical approach. Opt. Commun. 1995, 116, 43–48. [Google Scholar] [CrossRef]
- Makowski, M.; Ducin, I.; Kakarenko, K.; Kowalczyk, A.; Bieda, M.; Suszek, J. Optimized computation method for real-time holographic formation of color images. Photonics Lett. Pol. 2014, 6, 81–83. [Google Scholar] [CrossRef]
- Jaroszewicz, Z.; Kolodziejczyk, A.; Sypek, M.; Gomez-Reino, C. Non-paraxial analytical solution for the generation of focal curves. J. Mod. Opt. 1996, 43, 617–637. [Google Scholar] [CrossRef]
Setup | FWHM x/y (mm) | (mm) | (mm) | ||
---|---|---|---|---|---|
Setup A | 102/114 | 190 | 480 | 1.27 | 1.65 |
Setup B | 93/96 | 140 | 270 | 0.95 | 0.93 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Surma, M.; Ducin, I.; Zagrajek, P.; Siemion, A. Sub-Terahertz Computer Generated Hologram with Two Image Planes. Appl. Sci. 2019, 9, 659. https://doi.org/10.3390/app9040659
Surma M, Ducin I, Zagrajek P, Siemion A. Sub-Terahertz Computer Generated Hologram with Two Image Planes. Applied Sciences. 2019; 9(4):659. https://doi.org/10.3390/app9040659
Chicago/Turabian StyleSurma, Mateusz, Izabela Ducin, Przemyslaw Zagrajek, and Agnieszka Siemion. 2019. "Sub-Terahertz Computer Generated Hologram with Two Image Planes" Applied Sciences 9, no. 4: 659. https://doi.org/10.3390/app9040659
APA StyleSurma, M., Ducin, I., Zagrajek, P., & Siemion, A. (2019). Sub-Terahertz Computer Generated Hologram with Two Image Planes. Applied Sciences, 9(4), 659. https://doi.org/10.3390/app9040659