Investigation of the Internal Structure of Fiber Reinforced Geopolymer Composite under Mechanical Impact: A Micro Computed Tomography (µCT) Study
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Micro Computed Tomography
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Boerckel, J.D.; Mason, D.E.; McDermott, A.M.; Alsberg, E. Microcomputed tomography: Approaches and applications in bioengineering. Stem. Cell. Res. Ther. 2014, 5, 144. [Google Scholar] [CrossRef] [PubMed]
- Stauber, M.; Müller, R. Micro-computed tomography: A method for the non-destructive evaluation of the three-dimensional structure of biological specimens. Methods Mol. Biol. 2008, 455, 273–292. [Google Scholar] [CrossRef] [PubMed]
- Gapiński, B.; Wieczorowski, M.; Grzelka, M.; Alonso, P.A.; Bermúdez Tomé, A. The application of micro computed tomography to assess quality of parts manufactured by means of rapid prototyping. Polimery 2017, 62, 53–59. [Google Scholar] [CrossRef]
- Garcea, S.C.; Wang, Y.; Withers, P.J. X-ray computed tomography of polymer composites. Compos. Sci. Technol. 2018, 156, 305–319. [Google Scholar] [CrossRef]
- Davidovits, J. Geopolymers. J. Therm. Anal. 1991, 37, 1633–1656. [Google Scholar] [CrossRef]
- Palankar, N.; Ravi Shankar, A.U.; Mithun, B.M. Studies on eco-friendly concrete incorporating industrial waste as aggregates. Int. J. Sustain. Built Environ. 2015, 4, 378–390. [Google Scholar] [CrossRef] [Green Version]
- Samal, S.; Thanh, N.P.; Petríková, I.; Marvalová, B. Improved mechanical properties of various fabric-reinforced geocomposite at elevated temperature. JOM 2015, 67, 1478–1485. [Google Scholar] [CrossRef]
- Samal, S.; Thanh, N.P.; Marvalová, B.; Petríková, I. Thermal Characterization of Metakaolin-Based Geopolymer. JOM 2017, 69, 2480–2484. [Google Scholar] [CrossRef]
- Natali, A.; Manzia, S.; Bignozzi, M.C. Novel fiber-reinforced composite materials based on sustainable geopolymer matrix. Procedia Eng. 2011, 21, 1124–1131. [Google Scholar] [CrossRef] [Green Version]
- Nematollahi, B.; Ranade, R.; Sanjayan, J.; Ramakrishnan, S. Thermal and mechanical properties of sustainable lightweight strain hardening geopolymer composites. Arch. Civ. Mech. Eng. 2017, 17, 55–64. [Google Scholar] [CrossRef]
- Blanco, I. The Rediscovery of POSS: A Molecule Rather than a Filler. Polymers 2018, 10, 904. [Google Scholar] [CrossRef]
- Samal, S.; Reichmann, D.; Petríková, I.; Marvalová, B. Low Velocity Impact on Fiber Reinforced Geocomposites. Appl. Mech. Mat. 2016, 827, 145–148. [Google Scholar] [CrossRef]
- Samal, S.; Marvalová, B.; Petríková, I.; Vallons, K.A.M.; Lomov, S.V.; Rahier, H. Impact and post impact behavior of fabric reinforced geopolymer composite. Constr. Build. Mater. 2016, 127, 111–124. [Google Scholar] [CrossRef]
- Pelivanov, I.; Ambrozinski, L.; Khomenko, A.; Koricho, E.G.; Cloud, G.L.; Haq, M.; O’Donnell, M. High resolution imaging of impacted CFRP composites with a fiber-optic laser-ultrasound scanner. Photoacoustics 2016, 4, 55–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samal, S.; Thanh, N.P.; Petríková, I.; Marvalová, B.; Vallons, K.A.M.; Lomov, S.V. Correlation of microstructure and mechanical properties of various fabric reinforced geo-polymer composites after exposure to elevated temperature. Ceram. Int. 2015, 41, 12115–12129. [Google Scholar] [CrossRef]
- Pasupathy, K.; Berndt, M.; Castel, A.; Sanjayan, J.; Pathmanathan, R. Carbonation of a blended slag-fly ash geopolymer concrete in field conditions after 8 years. Constr. Build. Mater. 2016, 25, 661–669. [Google Scholar] [CrossRef]
- Sisodia, S.M.; Garcea, S.C.; George, A.R.; Fullwood, D.T.; Spearing, S.M.; Gamstedt, E.K. High-resolution computed tomography in resin infused woven carbon fibre composites with voids. Compos. Sci. Technol. 2016, 131, 12–21. [Google Scholar] [CrossRef] [Green Version]
- Tan, K.T.; Watanabe, N.; Iwahori, Y. X-ray radiography and micro-computed tomography examination of damage characteristics in stitched composites subjected to impact loading. Compos. Part B 2011, 42, 874–884. [Google Scholar] [CrossRef]
- Ullah, H.; Harland, A.R.; Silberschmidt, V.V. Dynamic bending behaviour of woven composites for sports products: Experiments and damage analysis. Mater. Des. 2015, 88, 149–156. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Burnett, T.L.; Chai, Y.; Soutis, C.; Hogg, P.J.; Withers, P.J. X-ray computed tomography study of kink bands in unidirectional composites. Compos. Struct. 2017, 160, 917–924. [Google Scholar] [CrossRef] [Green Version]
- Samal, S.; Vlach, J.; Kolinova, M.; Kavan, P. Micro-Computed Tomography Characterization of Isotropic Filler Distribution in Magnetorheological Elastomeric Composites. In Advanced Processing and Manufacturing Technologies for Nanostructured and Multifunctional Materials; Ohji, T., Singh, M., Halbig, M., Moon, K., Eds.; Wiley: Hoboken, NJ, USA, 2017; Chapter 7; pp. 57–69. ISBN 9781119321705. [Google Scholar]
- Samal, S.; Kolinova, M.; Blanco, I. The Magneto-Mechanical Behavior of Active Components in Iron-Elastomer Composite. J. Compos. Sci. 2018, 2, 54. [Google Scholar] [CrossRef]
- Benfratello, S.; Fiore, V.; Palizzolo, L.; Scalici, T. Evaluation of continuous filament mat influence on the bending behaviour of GFRP pultruded material via Electronic Speckle Pattern Interferometry. Arch. Civ. Mech. Eng. 2017, 17, 169–177. [Google Scholar] [CrossRef]
- Mayr, G.; Plank, B.; Sekelja, J.; Hendorfer, G. Active thermography as a quantitative method for non-destructive evaluation of porous carbon fiber reinforced polymers. NDT E Int. 2011, 44, 537–543. [Google Scholar] [CrossRef]
- Awaja, F.; Nguyen, M.-T.; Zhang, S.; Arhatari, B. The investigation of inner structural damage of UV and heat degraded polymer composites using X-ray micro CT. Compos. Part A 2011, 42, 408–418. [Google Scholar] [CrossRef]
- Crupi, V.; Epasto, G.; Guglielmino, E. Computed Tomography analysis of damage in composites subjected to impact loading. Frattura ed Integrità Strutturale 2011, 5, 32–41. [Google Scholar] [CrossRef] [Green Version]
- Fidan, S.; Snmazçelik, T.; Avcu, E. Internal damage investigation of the impacted glass/glassaramid fiber reinforced composites by micro-computerized tomography. NDT E Int. 2012, 51, 1–7. [Google Scholar] [CrossRef]
- Patel, D.K.; Waas, A.M. Damage and failure modelling of hybrid three-dimensional textile composites: A mesh objective multi-scale approach. Philos. Trans. A Math. Phys. Eng. Sci. 2016, 374, 20160036. [Google Scholar] [CrossRef]
Reinforcement | Density g/cm3 | Fiber V Fraction % | Matrix V Fraction % | Voids V Fraction % |
---|---|---|---|---|
Carbon | 1.51 | 39 | 40 | 21 |
Basalt | 1.97 | 40 | 45 | 15 |
E-glass | 1.80 | 41 | 37 | 22 |
Source voltage | 100 kV | Exposure | 2849 ms |
Source current | 100 µV | Rotation step | 0.4° |
Image pixel size | 16.0 µm | Scanning position | 18 mm |
Object to source | 193.3 mm | Reconstruction program | Nrecon |
Camera to source | 268.6 mm | Ring artifact correction | 20 |
Beam hardening correction | 0% | Scanning position | 18 mm |
Cone beam angle horizontal | 15.16° | Cone beam angle vertical | 5.17° |
No of projections | 2849 | X-ray spot target | 16 μm |
Total test time | 4 h | Camera Resolution | 1632 × 1092 |
Experimental Parameters | Carbon Composite | E-glass Composite | Basalt Composite |
---|---|---|---|
Number of Layers | 65 | 99 | 86 |
Number of fibers | 174 | 520 | 423 |
Number of closed pores | 0 | 0 | 5 |
Volume of closed pores (mm3) | 0.0 | 0.0 | 0.04 |
Surface of closed pores (mm2) | 0 | 0 | 1.96 |
Closed porosity percentage (%) | 0.0 | 0.0 | 0.06 |
Volume of open pore space (mm3) | 99.61 | 242.37 | 559.99 |
Total porosity % | 17.78 | 43.27 | 89.80 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samal, S.; Kolinova, M.; Rahier, H.; Dal Poggetto, G.; Blanco, I. Investigation of the Internal Structure of Fiber Reinforced Geopolymer Composite under Mechanical Impact: A Micro Computed Tomography (µCT) Study. Appl. Sci. 2019, 9, 516. https://doi.org/10.3390/app9030516
Samal S, Kolinova M, Rahier H, Dal Poggetto G, Blanco I. Investigation of the Internal Structure of Fiber Reinforced Geopolymer Composite under Mechanical Impact: A Micro Computed Tomography (µCT) Study. Applied Sciences. 2019; 9(3):516. https://doi.org/10.3390/app9030516
Chicago/Turabian StyleSamal, Sneha, Marcela Kolinova, Hubert Rahier, Giovanni Dal Poggetto, and Ignazio Blanco. 2019. "Investigation of the Internal Structure of Fiber Reinforced Geopolymer Composite under Mechanical Impact: A Micro Computed Tomography (µCT) Study" Applied Sciences 9, no. 3: 516. https://doi.org/10.3390/app9030516
APA StyleSamal, S., Kolinova, M., Rahier, H., Dal Poggetto, G., & Blanco, I. (2019). Investigation of the Internal Structure of Fiber Reinforced Geopolymer Composite under Mechanical Impact: A Micro Computed Tomography (µCT) Study. Applied Sciences, 9(3), 516. https://doi.org/10.3390/app9030516