# Quantum Correlations and Quantum Non-Locality: A Review and a Few New Ideas

^{*}

^{†}

^{‡}

## Abstract

**:**

## 1. Introduction

## 2. Various Questions on Quantum Non-Locality

- (i)
- the case [12] in which states that are non-maximally entangled violate Bell inequalities when using single-particle detectors with non-ideal quantum efficiency below 82%;
- (ii)
- for non-maximally entangled states, the Kullback–Leibler distance with the closest local distribution [56] is larger;
- (iii)
- the simulation of entanglement with non-local resources is more favorable when maximally entangled states are considered rather then the non-maximally ones.

## 3. Non-Locality in Higher Dimensional Spaces

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Bell, J.S. On The Einstein Podolsky Rosen Paradox. Physics
**1964**, 1, 195–200. [Google Scholar] [CrossRef] [Green Version] - Bell, J.S. On the Problem of Hidden Variables in Quantum Mechanics. Rev. Mod. Phys.
**1966**, 38, 477. [Google Scholar] [CrossRef] - Einstein, A.; Podolsky, B.; Rosen, N. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Phys. Rev.
**1935**, 47, 77. [Google Scholar] [CrossRef] [Green Version] - Schrödinger, E. Die gegenwärtige Situation in der Quantenmechanik. Die Naturwissenschaften
**1935**, 23, 807. [Google Scholar] [CrossRef] - Schrödinger, E. Probability relations between separated systems. Proc. Camb. Philos. Soc.
**1936**, 32, 446–452. [Google Scholar] [CrossRef] - Eberhard, P.H. Quantum Theory and Pictures of Reality: Foundations, Interpretations, and New Aspects; Schommers, W., Ed.; Springer: Berlin, Germany, 1989; p. 169. [Google Scholar]
- Bohm, D.; Hiley, B.J.; Goldstein, S. The Undivided Universe: An Ontological Interpretation of Quantum Mechanics; Routledge: New York, NY, USA, 1993. [Google Scholar]
- Cirel’son, B.S. Quantum generalizations of Bell’s inequality. Lett. Math. Phys.
**1980**, 4, 93–100. [Google Scholar] [CrossRef] - Genovese, M. Research on hidden variable theories: A review of recent progresses. Phys. Rep.
**2005**, 413, 319–396. [Google Scholar] [CrossRef] [Green Version] - Genovese, M. Interpretations of Quantum Mechanics and Measurement Problem. Adv. Sci. Lett.
**2010**, 3, 249–258. [Google Scholar] [CrossRef] [Green Version] - Aspect, A.; Dalibard, J.; Roger, G. Experimental Test of Bell’s Inequalities Using Time-Varying Analyzers. Phys. Rev. Lett.
**1982**, 49, 1804. [Google Scholar] [CrossRef] [Green Version] - Eberhard, P.H. Background level and counter efficiencies required for a loophole-free Einstein-Podolsky-Rosen experiment. Phys. Rev. A
**1993**, 47, 2800–2811. [Google Scholar] [CrossRef] - Brida, G.; Genovese, M.; Novero, C.; Predazzi, E. New experimental test of Bell inequalities by the use of a non-maximally entangled photon state. Phys. Lett. A
**2000**, 268, 12–16. [Google Scholar] [CrossRef] [Green Version] - Rowe, M.A.; Kielpinski, D.; Meyer, V.; Sackett, C.A.; Itano, W.M.; Monroe, C.; Wineland, D.J. Experimental violation of a Bell’s inequality with efficient detection. Nature
**2001**, 409, 791–794. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Giustina, M.; Mech, A.; Ramelow, S.; Wittmann, B.; Kofler, J.; Beyer, J.; Lita, A.; Calkins, B.; Gerrits, T.; Nam, S.W.; et al. Bell violation using entangled photons without the fair-sampling assumption. Nature
**2013**, 497, 227–230. [Google Scholar] [CrossRef] [PubMed] - Hensen, B.; Bernien, H.; Dréau, A.E.; Reiserer, A.; Kalb, N.; Blok, M.S.; Ruitenberg, J.; Vermeulen, R.F.L.; Schouten, R.N.; Abellán, C.; et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature
**2015**, 526, 682–686. [Google Scholar] [CrossRef] - Shalm, L.K.; Meyer-Scott, E.; Christensen, B.G.; Bierhorst, P.; Wayne, M.A.; Stevens, M.J.; Gerrits, T.; Glancy, S.; Hamel, D.R.; Allman, M.S.; et al. Strong Loophole-Free Test of Local Realism. Phys. Rev. Lett.
**2015**, 115, 250402. [Google Scholar] [CrossRef] - Giustina, M.; Versteegh, M.A.M.; Wengerowsky, S.; Handsteiner, J.; Hochrainer, A.; Phelan, K.; Steinlechner, F.; Kofler, J.; Larsson, J.; Abellán, C.; et al. Significant-Loophole-Free Test of Bell’s Theorem with Entangled Photons. Phys. Rev. Lett.
**2015**, 115, 250401. [Google Scholar] [CrossRef] - Quantum Information, Computation and Cryptography; Benatti, F.; Fannes, M.; Floreanini, R.; Petritis, D. (Eds.) Springer: Berlin, Germany, 2010. [Google Scholar]
- Genovese, M. Real applications of quantum imaging. J. Opt.
**2016**, 18, 073002. [Google Scholar] [CrossRef] [Green Version] - Abramsky, S.; Brandenburger, A. The sheaf-theoretic structure of non-locality and contextuality. New J. Phys.
**2011**, 13, 113036. [Google Scholar] [CrossRef] - Gisin, N. Is realism compatible with true randomness? arXiv
**2010**, arXiv:1012.2536. [Google Scholar] - Leggett, A.J. Nonlocal Hidden-Variable Theories and Quantum Mechanics: An Incompatibility Theorem. Found. Phys.
**2003**, 33, 1469–1493. [Google Scholar] [CrossRef] - Gröblacher, G.; Paterek, T.; Kaltenbaek, R.; Brukner, C.; Zukowski, M.; Aspelmeyer, M.; Zeilinger, A. An experimental test of non-local realism. Nature
**2007**, 446, 871–875. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Branciard, C.; Brunner, N.; Gisin, N.; Kurtsiefer, C.; Lamas-Linares, A.; Ling, A.; Scarani, V. Testing quantum correlations versus single-particle properties within Leggetts model and beyond. Nat. Phys.
**2008**, 4, 681–685. [Google Scholar] [CrossRef] - Wiseman, H.M.; Jones, S.J.; Doherty, A.C. Steering, Entanglement, Nonlocality, and the Einstein-Podolsky-Rosen Paradox. Phys. Rev. Lett.
**2009**, 98, 140402. [Google Scholar] [CrossRef] [PubMed] - Popescu, S. Nonlocality beyond quantum mechanics. Nat. Phys.
**2014**, 10, 264–270. [Google Scholar] [CrossRef] - Khrennikov, A. Quantum versus classical entanglement: eliminating the issue of quantum nonlocality. arXiv
**2019**, arXiv:1909.00267. [Google Scholar] - Haag, R. On quantum theory. Int. J. Quant. Inf.
**2019**, 17, 1950037. [Google Scholar] [CrossRef] - Zukowsky, M.; Zeilinger, A.; Horne, M.A.; Ekert, A.K. “Event-ready-detectors” Bell experiment via entanglement swapping. Phys. Rev. Lett.
**1993**, 71, 4287. [Google Scholar] [CrossRef] - Clauser, J.F.; Horne, M.A. Experimental consequences of objective local theories. Phys. Rev. D
**1974**, 10, 526. [Google Scholar] [CrossRef] - Clauser, J.F.; Horne, M.A.; Shimony, A.; Holt, R.A. Proposed Experiment to Test Local Hidden-Variable Theories. Phys. Rev. Lett.
**1970**, 23, 880. [Google Scholar] [CrossRef] [Green Version] - Barrett, J.; Linden, N.; Massar, S.; Pironio, S.; Popescu, S.; Roberts, D. Nonlocal correlations as an information-theoretic resource. Phys. Rev. A
**2005**, 71, 022101. [Google Scholar] [CrossRef] [Green Version] - Mermin, N.D. Quantum mysteries revisited. Am. J. Phys.
**1990**, 58, 731–734. [Google Scholar] [CrossRef] - Greenberger, D.M.; Horne, M.A.; Zeilinger, A. Going Beyond Bells Theorem. In Bell’s Theorem, Quantum Theory and Conceptions of the Universe; Kafatos, M., Ed.; Springer: Dordrecht, The Netherlands, 1989; Volume 37. [Google Scholar]
- Greenberger, D.M.; Horne, M.A.; Shimony, A.; Zeilinger, A. Bells theorem without inequalities. Am. J. Phys.
**1990**, 58, 1131–1143. [Google Scholar] [CrossRef] - Coecke, B.; Duncan, R.; Kissinger, A.; Wang, Q. Strong Complementarity and Non-locality in Categorical Quantum Mechanics. In Proceedings of the 27th Annual ACM/IEEE Symposium on Logic in Computer Science, New Orleans, LA, USA, 25–28 June 2012. [Google Scholar] [CrossRef] [Green Version]
- Hardy, L. Nonlocality for two particles without inequalities for almost all entangled states. Phys. Rev. Lett.
**1993**, 71, 1665–1668. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Stapp, H.P. A Bell-type theorem without hidden variables. Am. J. Phys.
**2004**, 72, 30. [Google Scholar] [CrossRef] - Branciard, C.; Gisin, N.; Pironio, S. Characterizing the Nonlocal Correlations Created via Entanglement Swapping. Phys. Rev. Lett.
**2010**, 104, 170401. [Google Scholar] [CrossRef] [PubMed] - Cavalvanti, E.G.; Wiseman, H.M. Bell nonlocality, signal locality and unpredictability (or What Bohr could have told Einstein at Solvay had he known about Bell experiments). Found. Phys.
**2012**, 42, 1329–1338. [Google Scholar] [CrossRef] [Green Version] - Hall, M. Complementary contributions of indeterminism and signaling to quantum correlations. Phys. Rev. A
**2010**, 82, 062117. [Google Scholar] [CrossRef] [Green Version] - Srikanth, R. Operational nonlocality. arXiv
**2018**, arXiv:1811.12409. [Google Scholar] - Aravinda, S.; Srikanth, R. Extending quantum mechanics entails extending special relativity. J. Phys. A Math. Theor.
**2016**, 49, 205302. [Google Scholar] [CrossRef] [Green Version] - Salart, D.; Baas, A.; Branciard, C.; Gisin, N.; Zbinden, H. Testing the speed of ‘spooky action at a distance’. Nature
**2008**, 454, 861–864. [Google Scholar] [CrossRef] - Cocciaro, B.; Faetti, S.; Fronzoni, L. Improved lower bound on superluminal quantum communication. Phys. Rev. A
**2018**, 97, 052124. [Google Scholar] [CrossRef] [Green Version] - Bancal, J.-D.; Pironio, S.; Acin, A.; Liang, Y.-C.; Scarani, V.; Gisin, N. Quantum non-locality based on finite-speed causal influences leads to superluminal signalling. Nat. Phys.
**2012**, 8, 867–870. [Google Scholar] [CrossRef] - Ghirardi, G.; Rimini, A.; Weber, T. Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D
**1986**, 34, 470. [Google Scholar] [CrossRef] [PubMed] - Vertesi, T.; Brunner, N. Quantum Nonlocality Does Not Imply Entanglement Distillability. Phys. Rev. Lett.
**2012**, 18, 030403. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Werner, R.F. Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A
**1989**, 40, 4277. [Google Scholar] [CrossRef] [PubMed] - Liang, Y.-C.; Vertesi, T.; Brunner, N. Semi-device-independent bounds on entanglement. Phys. Rev. A
**2011**, 83, 022108. [Google Scholar] [CrossRef] [Green Version] - Junge, M.; Palazuelos, C. Large Violation of Bell Inequalities with Low Entanglement. Commun. Math. Phys.
**2011**, 306, 695. [Google Scholar] [CrossRef] [Green Version] - Vidick, T.; Wehner, S. More nonlocality with less entanglement. Phys. Rev. A
**2011**, 83, 052310. [Google Scholar] [CrossRef] [Green Version] - Christensen, B.G.; Liang, Y.-C.; Brunner, N.; Gisin, N.; Kwiat, P.G. Exploring the Limits of Quantum Nonlocality with Entangled Photons. Phys. Rev. X
**2015**, 5, 041052. [Google Scholar] [CrossRef] [Green Version] - Methot, A.A.; Scarani, V. An anomaly of non-locality. Quant. Inf. Comput.
**2007**, 7, 157–170. [Google Scholar] - Acin, A.; Gill, R.; Gisin, N. Optimal Bell Tests Do Not Require Maximally Entangled States. Phys. Rev. Lett.
**2005**, 95, 210402. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Liang, Y.-C.; Masanes, L.; Rosset, D. All entangled states display some hidden nonlocality. Phys. Rev. A
**2012**, 86, 052115. [Google Scholar] [CrossRef] [Green Version] - Masanes, L.; Liang, Y.-C.; Doherty, A.C. All Bipartite Entangled States Display Some Hidden Nonlocality. Phys. Rev. Lett.
**2008**, 100, 090403. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Navascues, M.; Vertesi, T. Activation of Nonlocal Quantum Resources. Phys. Rev. Lett.
**2011**, 106, 060403. [Google Scholar] [CrossRef] [Green Version] - Buscemi, F. All Entangled Quantum States Are Nonlocal. Phys. Rev. Lett.
**2012**, 108, 200401. [Google Scholar] [CrossRef] [Green Version] - Giampaolo, S.M.; Streltsov, A.; Roga, W.; Bruß, D.; Illuminati, F. Quantifying nonclassicality: Global impact of local unitary evolutions. Phys. Rev. A
**2013**, 87, 012313. [Google Scholar] [CrossRef] [Green Version] - Dakic, B.; Vedral, V.; Brukner, C. Necessary and Sufficient Condition for Nonzero Quantum Discord. Phys. Rev. Lett.
**2010**, 105, 190502. [Google Scholar] [CrossRef] - Cavalcanti, D.; Skrzypczyk, P.; Šupic, I. All Entangled States can Demonstrate Nonclassical Teleportation. Phys. Rev. Lett.
**2017**, 119, 110501. [Google Scholar] [CrossRef] [Green Version] - Brassard, G.; Cleve, R.; Tapp, A. Cost of Exactly Simulating Quantum Entanglement with Classical Communication. Phys. Rev. Lett.
**1999**, 83, 1874. [Google Scholar] [CrossRef] [Green Version] - Steiner, M. Towards quantifying non-local information transfer: Finite-bit non-locality. Phys. Lett. A
**2000**, 270, 239–244. [Google Scholar] [CrossRef] [Green Version] - Colbech, R.; Renner, R. Hidden Variable Models for Quantum Theory Cannot Have Any Local Part. Phys. Rev. Lett.
**2008**, 101, 050403. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Elitzur, A.; Popescu, S.; Rohrlich, D. Quantum nonlocality for each pair in an ensemble. Phys. Lett. A
**1992**, 162, 25–28. [Google Scholar] [CrossRef] - Scarani, V. Local and nonlocal content of bipartite qubit and qutrit correlations. Phys. Rev. A
**2008**, 77, 042112. [Google Scholar] [CrossRef] [Green Version] - Branciard, C.; Gisin, N.; Scarani, V. Local content of bipartite qubit correlations. Phys. Rev. A
**2010**, 81, 022103. [Google Scholar] [CrossRef] [Green Version] - Brunner, N.; Gisin, N.; Popescu, S.; Scarani, V. Simulation of partial entanglement with nonsignaling resources. Phys. Rev. A
**2008**, 78, 052111. [Google Scholar] [CrossRef] [Green Version] - Amselem, E.; Danielsen, L.E.; Lopez-Tarrida, A.J.; Portillo, J.R.; Bourennane, M.; Cabello, A. Experimental Fully Contextual Correlations. Phys. Rev. Lett.
**2012**, 108, 200405. [Google Scholar] [CrossRef] [PubMed] - Portmann, S.; Branciard, C.; Gisin, N. Local content of all pure two-qubit states. Phys. Rev. A
**2012**, 86, 012104. [Google Scholar] [CrossRef] [Green Version] - Brunner, N.; Cavalcanti, D.; Salles, A.; Skrzypczyk, P. Bound Nonlocality and Activation. Phys. Rev. Lett.
**2011**, 106, 020402. [Google Scholar] [CrossRef] [Green Version] - Aolita, L.; Gallego, R.; Acín, A.; Chiuri, A.; Vallone, G.; Mataloni, P.; Cabello, A. Fully nonlocal quantum correlations. Phys. Rev. A
**2012**, 85, 032107. [Google Scholar] [CrossRef] [Green Version] - Barrett, J.; Pironio, S. Popescu-Rohrlich Correlations as a Unit of Nonlocality. Phys. Rev. Lett.
**2005**, 95, 140401. [Google Scholar] [CrossRef] [Green Version] - Jones, N.S.; Masanes, L. Interconversion of nonlocal correlations. Phys. Rev. A
**2005**, 72, 052312. [Google Scholar] [CrossRef] [Green Version] - Forster, M.; Wolf, S. Bipartite units of nonlocality. Phys. Rev. A
**2011**, 84, 042112. [Google Scholar] [CrossRef] [Green Version] - Forster, M.; Winkler, S.; Wolf, S. Distilling Nonlocality. Phys. Rev. Lett.
**2009**, 102, 120401. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Brunner, N.; Skrzypczyk, P. Nonlocality Distillation and Postquantum Theories with Trivial Communication Complexity. Phys. Rev. Lett.
**2009**, 102, 160403. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Gallego, R.; Wurflinger, L.E.; Acin, A.; Navascues, M. Operational Framework for Nonlocality. Phys. Rev. Lett.
**2012**, 109, 070401. [Google Scholar] [CrossRef] [Green Version] - Popescu, S.; Rhorlich, D. Quantum nonlocality as an axiom. Found. Phys.
**1994**, 24, 379. [Google Scholar] [CrossRef] - Buhrman, H.; Cleve, R.; Massar, S.; de Wolf, R. Nonlocality and communication complexity. Rev. Mod. Phys.
**2010**, 82, 665. [Google Scholar] [CrossRef] [Green Version] - Wehner, S. Tsirelson bounds for generalized Clauser-Horne-Shimony-Holt inequalities. Phys. Rev. A
**2006**, 73, 022110. [Google Scholar] [CrossRef] [Green Version] - Braunstein, S.L.; Caves, C. Wringing out better Bell inequalities. Ann. Phys.
**1990**, 202, 22–26. [Google Scholar] [CrossRef] - Cabello, A. Maximum quantum nonlocality between systems that never interacted. Phys. Lett. A
**2012**, 337, 64–68. [Google Scholar] [CrossRef] [Green Version] - Navascués, M.; Guryanova, Y.; Hoban, M.J.; Acín, A. Almost quantum correlations. Nat. Comm.
**2015**, 6, 6288. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Brassard, G.; Buhrman, H.; Linden, N.; Methot, A.A.; Tapp, A.; Unger, F. Limit on Nonlocality in Any World in Which Communication Complexity Is Not Trivial. Phys. Rev. Lett.
**2006**, 96, 250401. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Gisin, N. Hidden quantum nonlocality revealed by local filters. Phys. Lett. A
**1996**, 210, 151–156. [Google Scholar] [CrossRef] - Marcovitch, S.; Reznik, B.; Vaidman, L. Quantum-mechanical realization of a Popescu-Rohrlich box. Phys. Rev. A
**2007**, 75, 022102. [Google Scholar] [CrossRef] [Green Version] - Chen, Y.-A.; Yang, T.; Zhang, A.; Zhao, Z.; Cabello, A.; Pan, J.-W. Experimental Violation of Bell’s Inequality beyond Tsirelson’s Bound. Phys. Rev. Lett.
**2006**, 97, 170408. [Google Scholar] [CrossRef] [Green Version] - Cabello, A. Violating Bell’s Inequality Beyond Cirel’son’s Bound. Phys. Rev. Lett.
**2002**, 88, 060403. [Google Scholar] [CrossRef] [Green Version] - Masanes, L.I.; Acin, A.; Gisin, N. General properties of nonsignaling theories. Phys. Rev. A
**2006**, 73, 012112. [Google Scholar] [CrossRef] [Green Version] - Wolf, M.M.; Perez-Garcia, D.; Fernandez, C. Measurements Incompatible in Quantum Theory Cannot Be Measured Jointly in Any Other No-Signaling Theory. Phys. Rev. Lett.
**2009**, 103, 230402. [Google Scholar] [CrossRef] [Green Version] - Quintino, M.T.; Vértesi, T.; Brunner, N. Joint Measurability, Einstein-Podolsky-Rosen Steering, and Bell Nonlocality. Phys. Rev. Lett.
**2014**, 113, 160402. [Google Scholar] [CrossRef] [Green Version] - Uola, R.; Moroder, T.; Gühne, O. Joint Measurability of Generalized Measurements Implies Classicality. Phys. Rev. Lett.
**2014**, 113, 160403. [Google Scholar] [CrossRef] [Green Version] - Stevens, N.; Busch, P. Steering, incompatibility, and Bell-inequality violations in a class of probabilistic theories. Phys. Rev. A
**2014**, 89, 022123. [Google Scholar] [CrossRef] [Green Version] - Karthik, H.S.; Usha Devi, A.R.; Rajagopal, A.K. Joint measurability, steering, and entropic uncertainty. Phys. Rev. A
**2015**, 91, 012115. [Google Scholar] [CrossRef] [Green Version] - Te’eni, A.; Peled, B.Y.; Cohen, E.; Carmi, A. Multiplicative Bell inequalities. Phys. Rev. A
**2019**, 99, 040102(R). [Google Scholar] [CrossRef] [Green Version] - Carmi, A.; Herasymenko, Y.; Cohen, E.; Snizhko, K. Bounds on nonlocal correlations in the presence of signaling and their application to topological zero modes. New J. Phys.
**2019**, 21, 073032. [Google Scholar] [CrossRef] [Green Version] - Quintino, M.T.; Bowles, J.; Hirsch, F.; Brunner, N. Incompatible quantum measurements admitting a local-hidden-variable model. Phys. Rev. A
**2016**, 93, 052115. [Google Scholar] [CrossRef] [Green Version] - Hirsch, F.; Quintino, M.T.; Brunner, N. Quantum measurement incompatibility does not imply Bell nonlocality. Phys. Rev. A
**2018**, 97, 012129. [Google Scholar] [CrossRef] [Green Version] - Oppenheim, J.; Wehner, S. The Uncertainty Principle Determines the Nonlocality of Quantum Mechanics. Science
**2010**, 330, 1072. [Google Scholar] [CrossRef] [Green Version] - Banik, M.; Rajjak Gazi, M.; Ghosh, S.; Kar, G. Degree of complementarity determines the nonlocality in quantum mechanics. Phys. Rev. A
**2013**, 87, 052125. [Google Scholar] [CrossRef] [Green Version] - Bush, M.; Heinosaari, T.; Schultz, J.; Stevens, N. Comparing the degrees of incompatibility inherent in probabilistic physical theories. Eur. Phys. J.
**2013**, 103, 10002. [Google Scholar] [CrossRef] - Carmi, A.; Cohen, E. On the Significance of the Quantum Mechanical Covariance Matrix. Entropy
**2018**, 20, 500. [Google Scholar] [CrossRef] [Green Version] - Aharonov, Y.; Albert, D.Z.; Vaidman, L. How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett.
**1988**, 60, 1351. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Piacentini, F.; Avella, A.; Gramegna, M.; Lussana, R.; Villa, F.; Tosi, A.; Brida, G.; Degiovanni, I.; Genovese, M. Investigating the Effects of the Interaction Intensity in a Weak Measurement. Sci. Rep.
**2018**, 8, 6959. [Google Scholar] [CrossRef] - Piacentini, F.; Avella, A.; Levi, M.P.; Gramegna, M.; Brida, G.; Degiovanni, I.P.; Cohen, E.; Lussana, R.; Villa, F.; Tosi, A.; et al. Measuring Incompatible Observables by Exploiting Sequential Weak Values. Phys. Rev. Lett.
**2016**, 117, 170402. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Carmi, A.; Cohen, E. Relativistic independence bounds nonlocality. Sci. Adv.
**2019**, 5, eaav8370. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Saunders, D.J.; Jones, S.J.; Wiseman, H.M.; Pryde, G.J. Experimental EPR-steering using Bell-local states. Nat. Phys.
**2010**, 6, 845–849. [Google Scholar] [CrossRef] [Green Version] - Meng, H.-X.; Zhou, J.; Ren, C.; Su, H.Y.; Chen, J.-L. Chained Einstein-Podolsky Rosen steering inequalities with improved visibility. Int. J. Quantum Inf.
**2018**, 16, 1850034. [Google Scholar] [CrossRef] [Green Version] - Ou, Z.Y.; Pereira, S.F.; Kimble, H.J.; Peng, K.C. Realization of the Einstein-Podolsky-Rosen paradox for continuous variables. Phys. Rev. Lett.
**1992**, 68, 3663. [Google Scholar] [CrossRef] [Green Version] - Bowen, W.P.; Schnabel, R.; Lam, P.K.; Ralph, T.C. Experimental Investigation of Criteria for Continuous Variable Entanglement. Phys. Rev. Lett.
**2003**, 90, 043601. [Google Scholar] [CrossRef] [Green Version] - Hald, J.; Sorensen, J.L.; Schori, C.; Polzik, E.S. Spin Squeezed Atoms: A Macroscopic Entangled Ensemble Created by Light. Phys. Rev. Lett.
**1999**, 83, 1319–1322. [Google Scholar] [CrossRef] - Howell, J.C.; Bennink, R.S.; Bentley, S.J.; Boyd, R.W. Realization of the Einstein-Podolsky-Rosen Paradox Using Momentum- and Position-Entangled Photons from Spontaneous Parametric Down Conversion. Phys. Rev. Lett.
**2004**, 92, 210403. [Google Scholar] [CrossRef] [Green Version] - Reid, M.D. Demonstration of the Einstein-Podolsky-Rosen paradox using nondegenerate parametric amplification. Phys. Rev. A
**1988**, 40, 913. [Google Scholar] [CrossRef] [PubMed] - Reid, M.D.; Drummond, P.D.; Bowen, W.P.; Cavalcanti, E.G.; Lam, P.K.; Bachor, H.A.; Andersen, U.L.; Leuchs, G. Colloquium: The Einstein-Podolsky-Rosen paradox: From concepts to applications. Rev. Mod. Phys.
**2009**, 81, 1727. [Google Scholar] [CrossRef] [Green Version] - Smith, D.H.; Gillett, G.; de Almeida, M.P.; Branciard, C.; Fedrizzi, A.; Weinhold, T.J.; Lita, A.; Calkins, B.; Gerrits, T.; Wiseman, H.M.; et al. Conclusive quantum steering with superconducting transition-edge sensors. Nat. Commun.
**2012**, 3, 625. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Walborn, S.P.; Salles, A.; Gomes, R.M.; Toscano, F.; Souto Ribeiro, P.H. Revealing Hidden Einstein-Podolsky-Rosen Nonlocality. Phys. Rev. Lett.
**2011**, 106, 130402. [Google Scholar] [CrossRef] [PubMed] - Sainz, A.B.; Brunner, N.; Cavalcanti, D.; Skrzypczyk, P.; Vértesi, T. Postquantum Steering. Phys. Rev. Lett.
**2015**, 115, 190403. [Google Scholar] [CrossRef] [Green Version] - Fritz, T. Nonlocality with less complementarity. Phys. Rev. A
**2012**, 85, 022102. [Google Scholar] [CrossRef] [Green Version] - Short, A.J.; Popescu, S.; Gisin, N. Entanglement swapping for generalized nonlocal correlations. Phys. Rev. A
**2006**, 73, 012101. [Google Scholar] [CrossRef] [Green Version] - Barrett, J. Information processing in generalized probabilistic theories. Phys. Rev. A
**2007**, 75, 032304. [Google Scholar] [CrossRef] [Green Version] - Pitowsky, I. Geometry of quantum correlations. Phys. Rev. A
**2008**, 77, 062109. [Google Scholar] [CrossRef] [Green Version] - Linden, N.; Popescu, S.; Short, A.J.; Winter, A. Quantum Nonlocality and Beyond: Limits from Nonlocal Computation. Phys. Rev. Lett.
**2007**, 99, 180502. [Google Scholar] [CrossRef] [Green Version] - Gisin, N. Impossibility of covariant deterministic nonlocal hidden-variable extensions of quantum theory. Phys. Rev. A
**2011**, 83, 020102. [Google Scholar] [CrossRef] [Green Version] - Palazuelos, C. Superactivation of Quantum Nonlocality. Phys. Rev. Lett.
**2012**, 109, 190401. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Junge, M.; Palazuelos, C.; Perez-Garcia, D.; Villanueva, I.; Wolf, M.M. Operator Space Theory: A Natural Framework for Bell Inequalities. Phys. Rev. Lett.
**2010**, 104, 170405. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Cavalcanti, D.; Acin, A.; Brunner, N.; Vertesi, T. All quantum states useful for teleportation are nonlocal resources. Phys. Rev. A
**2013**, 87, 042104. [Google Scholar] [CrossRef] [Green Version] - Ghirardi, G.C.; Rimini, A.; Weber, T. A general argument against superluminal transmission through the quantum mechanical measurement process. Lett. Nuov. Cim.
**1980**, 27, 293–294. [Google Scholar] [CrossRef] - Hyomony, A. Natural Science and Mathaphysics; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Maudlin, T. Space-Time in the quantum world. In Bohmian Mechanics and Quantum Theory: An Appraisal; Cushing, J.T., Fine, A., Goldstein, S., Eds.; Springer: Berlin, Germany, 1996; pp. 285–307. [Google Scholar]
- Maccone, L. A Fundamental Problem in Quantizing General Relativity. Found. Phys.
**2019**, 49, 1–10. [Google Scholar] [CrossRef] [Green Version] - Aharonov, Y.; Cohen, E.; Elitzur, A.C. Can a Future Choice Affect a Past Measurement’s Outcome? Ann. Phys.
**2015**, 355, 258–268. [Google Scholar] [CrossRef] [Green Version] - Ahn, D.; Myers, C.R.; Ralph, T.C.; Mann, R.B. Quantum state cloning in the presence of a closed timelike curve. Phys. Rev. A
**2013**, 88, 022332. [Google Scholar] [CrossRef] [Green Version] - Lloyd, S.; Maccone, L.; Garcia-Patron, R.; Giovannetti, V.; Shikano, Y.; Pirandola, S.; Rozema, L.A.; Darabi, A.; Soudagar, Y.; Shalm, L.K.; et al. Closed Timelike Curves via Postselection: Theory and Experimental Test of Consistency. Phys. Rev. Lett.
**2011**, 106, 040403. [Google Scholar] [CrossRef] [Green Version] - Genovese, M. Cosmology and Entanglement. Adv. Sci. Lett.
**2009**, 2, 303–309. [Google Scholar] [CrossRef] [Green Version] - Wootters, W.K. “Time” replaced by quantum correlations. Int. J. Theor. Phys.
**1984**, 23, 701–711. [Google Scholar] [CrossRef] - Oreshkov, O.; Costa, F.; Brukner, C. Quantum correlations with no causal order. Nat. Commun.
**2012**, 3, 1092. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Myrvold, W.C. On peaceful coexistence: Is the collapse postulate incompatible with relativity? Stud. Hist. Philos. Sci. Part B
**2002**, 33, 435–466. [Google Scholar] [CrossRef] [Green Version] - Tumulka, R. On spontaneous wave function collapse and quantum field theory. Proc. R. Soc. A
**2006**, 462, 1897–1908. [Google Scholar] [CrossRef] [Green Version] - Hooft, G. Quantum gravity as a dissipative deterministicsystem. Class. Quantum Grav.
**1999**, 16, 3263–3279. [Google Scholar] [CrossRef] [Green Version] - Maldacena, J.; Susskind, L. Cool horizons for entangled black holes. Fort. Phys.
**2013**, 61, 781–811. [Google Scholar] [CrossRef] [Green Version] - Morris, M.S.; Thorne, K.S. Wormholes in spacetime and their use for interstellar travel: A tool for teaching general relativity. Am. J. Phys.
**1988**, 56, 395. [Google Scholar] [CrossRef] [Green Version] - Garattini, R. Self sustained traversable wormholes? Class. Quantum Grav.
**2005**, 22, 1105. [Google Scholar] [CrossRef] [Green Version]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Genovese, M.; Gramegna, M.
Quantum Correlations and Quantum Non-Locality: A Review and a Few New Ideas. *Appl. Sci.* **2019**, *9*, 5406.
https://doi.org/10.3390/app9245406

**AMA Style**

Genovese M, Gramegna M.
Quantum Correlations and Quantum Non-Locality: A Review and a Few New Ideas. *Applied Sciences*. 2019; 9(24):5406.
https://doi.org/10.3390/app9245406

**Chicago/Turabian Style**

Genovese, Marco, and Marco Gramegna.
2019. "Quantum Correlations and Quantum Non-Locality: A Review and a Few New Ideas" *Applied Sciences* 9, no. 24: 5406.
https://doi.org/10.3390/app9245406