An Analytical Framework in OFDM Wireless Networks Servicing Random or Quasi-Random Traffic
Abstract
:1. Introduction
2. The P-S Multirate Loss Model—A Review
3. The P-S Multirate Loss Model under Restricted Accessibility
3.1. The Analytical Model
3.2. The Case of the BR Policy (P-S/BR Model)
4. The Quasi-Random P-S Multirate Loss Model with Restricted Accessibility
4.1. The Analytical Model
4.2. Performance Measures Calculation
4.3. The Case of the BR Policy (qr-P-S/BR Model)
4.4. The Case of the CS Policy (qr-P-S Model)
5. Performance Evaluation
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Moscholios, I.D.; Logothetis, M.D. Efficient Multirate Teletraffic Loss Models beyond Erlang; Wiley IEEE Press: Hoboken, NJ, USA, 2019. [Google Scholar] [CrossRef]
- Stasiak, M.; Głąbowski, M.; Wisniewski, A.; Zwierzykowski, P. Modeling and Dimensioning of Mobile Networks: From GSM to LTE; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar] [CrossRef]
- Shioda, S. Fundamental trade-offs between resource separation and resource share for quality of service guarantees. IET Netw. 2014, 3, 4–15. [Google Scholar] [CrossRef]
- Bouloukakis, G.; Moscholios, I.D.; Georgantas, N.; Issarny, V. Performance modeling of the middleware overlay infrastructure of mobile things. In Proceedings of the 2017 IEEE International Conference on Communications (ICC), Paris, France, 21–25 May 2017. [Google Scholar] [CrossRef] [Green Version]
- Tadayon, N.; Kaddoum, G. Packet-level modeling of cooperative diversity: A queueing network approach. IEEE Access 2018, 6, 35223–35242. [Google Scholar] [CrossRef]
- Benson, K.; Bouloukakis, G.; Issarny, V.; Mehrotra, S.; Moscholios, I.; Venkatasubramanian, N. FIREDEX: A prioritized IoT data exchange middleware for emergency response. In Proceedings of the ACM/IFIP/USENIX 19th International Middleware Conference, Rennes, France, 10–14 December 2018. [Google Scholar] [CrossRef] [Green Version]
- Hanczewski, S.; Stasiak, M.; Weissenberg, J. Non-full-available queueing model of an EON node. Opt. Switch. Netw. 2019, 33, 131–142. [Google Scholar] [CrossRef]
- Xue, J.; Yan, F.; Riska, A.; Smirni, E. Scheduling data analytics work with performance guarantees: Queuing and machine learning models in synergy. Clust. Comput. 2016, 19, 849–864. [Google Scholar] [CrossRef]
- Ataie, E.; Gianniti, E.; Ardagna, D.; Movaghar, A. A combined analytical modeling machine learning approach for performance prediction in mapreduce jobs in cloud environment. In Proceedings of the 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (IEEE SYNASC), Timisoara, Romania, 24–27 September 2016. [Google Scholar] [CrossRef]
- Abbasi, A.; Jin, H.; Wu, S. A software-defined cloud resource management framework. In Proceedings of the Asia-Pacific Services Computing Conference, Bangkok, Thailand, 7–9 December 2015. [Google Scholar] [CrossRef]
- Abbasi, A.; Jin, H. v-Mapper: An application-aware resource consolidation scheme for cloud data centers. Future Internet 2018, 10, 90. [Google Scholar] [CrossRef] [Green Version]
- Vardakas, J.; Zorba, N.; Verikoukis, C. Power demand control scenarios for smart grid applications with finite number of appliances. Appl. Energy 2016, 162, 83–98. [Google Scholar] [CrossRef]
- Moscholios, I.; Vassilakis, V.; Logothetis, M.; Boucouvalas, A. State-dependent bandwidth sharing policies for wireless multirate loss networks. IEEE Trans. Wirel. Commun. 2017, 16, 5481–5497. [Google Scholar] [CrossRef] [Green Version]
- Głąbowski, M.; Kmiecik, D.; Stasiak, M. Modelling of multiservice networks with separated resources and overflow of adaptive traffic. Wirel. Commun. Mob. Comput. 2018, 2018, 17. [Google Scholar] [CrossRef]
- Abd El-atty, S.; Gharsseldien, Z.; Lizos, K. Predictive reservation for handover optimization in two-tier heterogeneous cellular networks. Wirel. Pers. Commun. 2018, 98, 1637–1661. [Google Scholar] [CrossRef]
- Efstratiou, P.; Moscholios, I. User mobility in a 5G cell with quasi-random traffic under the complete sharing and bandwidth reservation policies. Autom. Control Comp. Sci. 2019, 53, 376–386. [Google Scholar] [CrossRef]
- Vahidi, V.; Saberinia, E. OFDM high speed train communication systems in 5G cellular networks. In Proceedings of the 15th IEEE Annual Consumer Communications Networking Conference (IEEE CCNC), Las Vegas, NV, USA, 12–15 January 2018. [Google Scholar] [CrossRef]
- Zhang, L.; Xiao, A.; Molu, M.; Tafazolli, R. Filtered OFDM systems, algorithms, and performance analysis for 5G and beyond. IEEE Trans. Commun. 2018, 66, 1205–1218. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Liang, Y.; Zhang, R.; Pei, Y. Modulation in the air: Backscatter communication over ambient OFDM carrier. IEEE Trans. Commun. 2018, 66, 1219–1233. [Google Scholar] [CrossRef] [Green Version]
- Na, Z.; Wang, Y.; Xiong, M.; Liu, X.; Xia, J. Modeling and throughput analysis of an ADO-OFDM based relay-assisted VLC system for 5G networks. IEEE Access 2018, 6, 17586–17594. [Google Scholar] [CrossRef]
- Lu, W.; Fang, S.; Hu, S.; Liu, X.; Li, B.; Na, Z.; Gong, Y. Energy efficiency optimization for OFDM based 5G wireless networks with simultaneous wireless information and power transfer. IEEE Access 2018, 6, 75937–75946. [Google Scholar] [CrossRef]
- Sultana, A.; Fernando, X.; Zhao, L. Power allocation using geometric water filling for OFDM-based cognitive radio networks. In Proceedings of the 2016 IEEE 84th Vehicular Technology Conference (IEEE VTC-Fall), Montreal, QC, Canada, 18–21 September 2016. [Google Scholar] [CrossRef]
- Paik, C.; Suh, Y. Generalized queueing model for call blocking probability and resource utilization in OFDM wireless networks. IEEE Commun. Let. 2011, 15, 767–769. [Google Scholar] [CrossRef]
- Pla, V.; Martinez-Bauset, J.; Casares-Giner, V. Comments on call blocking probability and bandwidth utilization of OFDM subcarrier allocation in next-generation wireless networks. IEEE Commun. Lett. 2008, 12, 349. [Google Scholar] [CrossRef]
- Chen, J.; Chen, W. Call blocking probability and bandwidth utilization of OFDM subcarrier allocation in next-generation wireless networks. IEEE Commun. Lett. 2006, 10, 82–84. [Google Scholar] [CrossRef]
- Moscholios, I.; Vassilakis, V.; Panagoulias, P.; Logothetis, M. On call blocking probabilities and resource utilization in OFDM wireless networks. In Proceedings of the 2018 11th International Symposium on Communication Systems, Networks Digital Signal Processing (CSNDSP), Budapest, Hungary, 18–20 July 2018. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiao, Y.; Chen, H. Queueing analysis for OFDM subcarrier allocation in broadband wireless multiservice networks. IEEE Trans. Wirel. Commun. 2008, 7, 3951–3961. [Google Scholar] [CrossRef]
- Kaufman, J.; Rege, K. Blocking in a shared resource environment with batched Poisson arrival processes. Perf. Eval. 1996, 24, 249–263. [Google Scholar] [CrossRef]
- Moscholios, I.; Logothetis, M. The Erlang multirate loss model with batched Poisson arrival processes under the bandwidth reservation policy. Comput. Commun. 2010, 33, S167–S179. [Google Scholar] [CrossRef]
- Moscholios, I.; Vassilakis, V.; Sarigiannidis, P. Performance modelling of a multirate loss system with batched Poisson arrivals under a probabilistic threshold policy. IET Netw. 2018, 7, 242–247. [Google Scholar] [CrossRef]
- Ezhilchelvan, P.; Mitrani, I. Multi-class resource sharing with batch arrivals and complete blocking. In Proceedings of the International Conference on Quantitative Evaluation of Systems (QEST), Berlin, Germany, 5–7 September 2017; Lecture Notes in Computer Science. Springer: Cham, Switzerland, 2017; Volume 10503. [Google Scholar] [CrossRef] [Green Version]
- Iversen, V. The exact evaluation of multi-service loss system with access control. Teleteknik 1987, 31, 56–61. [Google Scholar]
- Moscholios, I.; Logothetis, M.; Koukias, M. An ON-OFF multirate loss model of finite sources. IEICE Trans. Commun. 2007, 90, 1608–1619. [Google Scholar] [CrossRef]
- Głąbowski, M.; Kaliszan, A. Convolution algorithm for overflow calculation in integrated services networks. In Proceedings of the 17th Asia Pacific Conference on Communications (APCC), Sabah, Malaysia, 2–5 October 2011. [Google Scholar] [CrossRef]
- Stasiak, M.; Parniewicz, D.; Zwierzykowski, P. Traffic engineering for multicast connections in multiservice cellular network. IEEE Trans. Ind. Inform. 2013, 9, 262–270. [Google Scholar] [CrossRef]
- Moscholios, I.; Vassilakis, V.; Logothetis, M.; Boucouvalas, A. A probabilistic threshold-based bandwidth sharing policy for wireless multirate loss networks. IEEE Wirel. Commun. Lett. 2016, 5, 304–307. [Google Scholar] [CrossRef] [Green Version]
- Głąbowski, M.; Sobieraj, M. Analytical modelling of multiservice switching networks with multiservice sources and resource management mechanisms. Telecom. Syst. 2017, 66, 559–578. [Google Scholar] [CrossRef] [Green Version]
- Iversen, V. Modelling restricted accessibility for wireless multi-service systems. LNCS 2006, 3883, 93–102. [Google Scholar] [CrossRef]
- Pinsky, E.; Conway, A. Computational algorithms for blocking probabilities in circuit-switched networks. Ann. Oper. Res. 1992, 35, 31–41. [Google Scholar] [CrossRef]
- Choudhury, G.; Leung, K.; Whitt, W. An algorithm to compute blocking probabilities in multi-rate multi-class multi-resource loss models. Adv. Appl. Prob. 1995, 27, 1104–1143. [Google Scholar] [CrossRef]
- Caro, F.; Simchi-Levi, D. Optimal static pricing for a tree network. Ann. Oper. Res. 2012, 196, 137–152. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Li, S.; Won, E.; Zukerman, M. Performance analysis of circuit-switched multi-service multi-rate networks with alternative routing. J. Light. Technol. 2014, 32, 179–200. [Google Scholar] [CrossRef]
- Beard, C.; Frost, V. Prioritized resource allocation for stressed networks. IEEE/ACM Trans. Netw. 2001, 9, 618–633. [Google Scholar] [CrossRef]
- Kaufman, J. Blocking in a shared resource environment. IEEE Trans. Commun. 1981, 29, 1474–1481. [Google Scholar] [CrossRef]
- Roberts, J. A service system with heterogeneous user requirements. Performance of Data Communications Systems and Their Applications; North Holland: Amsterdam, The Netherlands, 1981; pp. 423–431. [Google Scholar]
- Vardakas, J.; Moscholios, I.; Logothetis, M.; Stylianakis, V. Performance analysis of OCDMA PON configuration supporting multirate bursty traffic with retrials and QoS differentiation. Opt. Switch. Netw. 2014, 13, 112–123. [Google Scholar] [CrossRef]
- Huang, Y.; Rosberg, Z.; Ko, K.; Zukerman, M. Blocking probability approximations and bounds for best-effort calls in an integrated service system. IEEE Trans. Commun. 2015, 63, 5014–5026. [Google Scholar] [CrossRef]
- Vassilakis, V.; Moscholios, I.; Logothetis, M. Uplink blocking probabilities in priority-based cellular CDMA networks with finite source population. IEICE Trans. Commun. 2016, 99, 1302–1309. [Google Scholar] [CrossRef] [Green Version]
- Casares-Giner, V. Some teletraffic issues in optical burst switching with burst segmentation. Electr. Lett. 2016, 52, 941–943. [Google Scholar] [CrossRef]
- Głąbowski, M.; Kaliszan, A.; Stasiak, M. Modelling overflow systems with distributed secondary resources. Comp. Netw. 2016, 108, 171–183. [Google Scholar] [CrossRef]
- Vassilakis, V.; Moscholios, I.; Logothetis, M. Efficient radio resource allocation in SDN/NFV based mobile cellular networks under the complete sharing policy. IET Netw. 2018, 7, 103–108. [Google Scholar] [CrossRef] [Green Version]
- Sagkriotis, S.; Pantelis, S.; Moscholios, I.; Vassilakis, V. Call blocking probabilities in a two-link multi rate loss System for Poisson traffic. IET Netw. 2018, 7, 233–241. [Google Scholar] [CrossRef]
- Vakilinia, S.; Cheriet, M. Preemptive cloud resource allocation modeling of processing jobs. J. Supercomput. 2018, 74, 2116–2150. [Google Scholar] [CrossRef]
- Panagoulias, P.; Moscholios, I. Congestion probabilities in the X2 link of LTE Networks. Telecommun. Syst. 2019, 71, 585–599. [Google Scholar] [CrossRef]
- Francisco, C.; Martins, L.; Medhi, D. Dynamic multicriteria alternative routing for single-and multi-service reservation-oriented networks and its performance. Ann. Telecommun. 2019, 74, 697–715. [Google Scholar] [CrossRef]
- Panagoulias, P.; Moscholios, I.; Logothetis, M. Performance metrics in OFDM wireless networks under the bandwidth reservation policy. In Proceedings of the International Conference on Image Processing and Communications, Bydgoszcz, Poland, 11–13 September 2019. [Google Scholar] [CrossRef]
- Hanczewski, S.; Horiushkina, A.; Stasiak, M.; Weissenberg, J. The analytical model of 5G networks. In Proceedings of the International Conference on Image Processing and Communications, Bydgoszcz, Poland, 11–13 September 2019. [Google Scholar] [CrossRef]
- Chousainov, I.-A.; Moscholios, I.; Kaloxylos, A.; Logothetis, M. Performance evaluation of a C-RAN supporting quasi-random traffic. In Proceedings of the 2019 International Conference on Software, Telecommunications and Computer Networks (Softcom), Split, Croatia, 19–21 September 2019. [Google Scholar] [CrossRef]
- Stamatelos, G.; Hayes, J. Admission control techniques with application to broadband networks. Comp. Commun. 1994, 17, 663–673. [Google Scholar] [CrossRef]
- Simscript III. Available online: http://www.simscript.com (accessed on 8 December 2019).
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panagoulias, P.I.; Moscholios, I.D.; Sarigiannidis, P.G.; Głąbowski, M.; Logothetis, M.D. An Analytical Framework in OFDM Wireless Networks Servicing Random or Quasi-Random Traffic. Appl. Sci. 2019, 9, 5376. https://doi.org/10.3390/app9245376
Panagoulias PI, Moscholios ID, Sarigiannidis PG, Głąbowski M, Logothetis MD. An Analytical Framework in OFDM Wireless Networks Servicing Random or Quasi-Random Traffic. Applied Sciences. 2019; 9(24):5376. https://doi.org/10.3390/app9245376
Chicago/Turabian StylePanagoulias, Panagiotis I., Ioannis D. Moscholios, Panagiotis G. Sarigiannidis, Mariusz Głąbowski, and Michael D. Logothetis. 2019. "An Analytical Framework in OFDM Wireless Networks Servicing Random or Quasi-Random Traffic" Applied Sciences 9, no. 24: 5376. https://doi.org/10.3390/app9245376
APA StylePanagoulias, P. I., Moscholios, I. D., Sarigiannidis, P. G., Głąbowski, M., & Logothetis, M. D. (2019). An Analytical Framework in OFDM Wireless Networks Servicing Random or Quasi-Random Traffic. Applied Sciences, 9(24), 5376. https://doi.org/10.3390/app9245376