Fault Diagnosis of Railway Point Machines Using the Locally Connected Autoencoder
Abstract
:1. Introduction
2. Related Works
3. Methodology
3.1. Current Signals of Railway Point Machines
- The start-up phase: An activating signal transmitted from the control center is received by the point machine. The asynchronous short-circuit three-phase motor starts up. One can find a current surge in this phase.
- The unlocking phase: At the beginning of the throwing process, the switch rail is unlocked. The current signal is observed to be gradually declined.
- The switch phase: The actual throwing process begins. The switch rail smoothly moves on the shifting plate.
- The locking phase: At the end of the throwing movement, when the switch rail arrives at the end position, one keep-and-detect slide engages with the end position notch and locks the retention clutch. Simultaneously, a signal is sent from the point machine to report the successful operation.
3.2. The Proposed Locally Connected Autoencoder
3.3. The Proposed Weighting Strategy
4. Fault Data Analysis
- A stacked denoising autoencoder with L2 regularization (STDAE-150-50) [27], which adopts a two layer structure, with the first and the second layer containing, respectively, 150 and 50 units.
- A sparse denoising autoencoder with L1 and L2 regularizations (SPDAE-80) [28], in which the number of units is set to 80.
- Two gated recurrent unit-based sequence to sequence autoencoders [29]. In the network structure, 100 units are employed in the encoder as well as the decoder. The autoencoders with 40 hidden units and 70 hidden units are named as GRU-40 and GRU-70, respectively.
- The proposed fault diagnosis scheme without the weighting strategy.
4.1. Feature Representations of Different Approaches
4.2. Analysis Results of Fault Diagnosis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Perera, C.; Zaslavsky, A.; Christen, P.; Georgakopoulos, D. Context Aware Computing for The Internet of Things: A Survey. IEEE Commun. Surv. Tutor. 2014, 16, 414–454. [Google Scholar] [CrossRef]
- Reis, M.S.; Gins, G. Industrial Process Monitoring in the Big Data/Industry 4.0 Era: from Detection, to Diagnosis, to Prognosis. Processes 2017, 5, 35. [Google Scholar] [CrossRef]
- Jin, X.; Zhao, M.; Chow, T.W.S.; Pecht, M. Motor Bearing Fault Diagnosis Using Trace Ratio Linear Discriminant Analysis. IEEE Trans. Ind. Electron. 2013, 61, 2441–2451. [Google Scholar] [CrossRef]
- Feng, J. Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data. Mech. Syst. Signal Process. 2016, 72, 303–315. [Google Scholar]
- Pacheco, F.; Oliveira, J.V.D.; Sanchez, R.V.; Cerrada, M.; Cabrera, D.; Li, C.; Zurita, G.; Artes, M. A statistical comparison of neuroclassifiers and feature selection methods for gearbox fault diagnosis under realistic conditions. Neurocomputing 2016, 194, 192–206. [Google Scholar] [CrossRef]
- Famurewa, S.M.; Zhang, L.; Asplund, M. Maintenance analytics for railway infrastructure decision support. J. Qual. Maint. Eng. 2017, 23, 310–325. [Google Scholar] [CrossRef]
- Asada, T.; Roberts, C.; Koseki, T. An algorithm for improved performance of railway condition monitoring equipment: Alternating-current point machine case study. Transp. Res. Part Emerg. Technol. 2013, 30, 81–92. [Google Scholar] [CrossRef]
- Lee, J.; Choi, H.; Park, D.; Chung, Y.; Kim, H.Y.; Yoon, S. Fault Detection and Diagnosis of Railway Point Machines by Sound Analysis. Sensors 2016, 16, 549. [Google Scholar] [CrossRef]
- Xu, T.; Wang, H.; Yuan, T.; Zhou, M. BDD-Based Synthesis of Fail-Safe Supervisory Controllers for Safety-Critical Discrete Event Systems. IEEE Trans. Intell. Transp. Syst. 2016, 17, 2385–2394. [Google Scholar] [CrossRef]
- Xu, T.; Wang, G.; Wang, H.; Yuan, T.; Zhong, Z. Gap Measurement of Point Machine Using Adaptive Wavelet Threshold and Mathematical Morphology. Sensors 2016, 16, 2006. [Google Scholar] [CrossRef]
- Sa, J.; Choi, Y.; Chung, Y.; Lee, J.; Park, D. Aging Detection of Electrical Point Machines Based on Support Vector Data Description. Symmetry 2017, 9, 290. [Google Scholar] [CrossRef]
- Kim, H.; Sa, J.; Chung, Y.; Park, D.; Yoon, S. Fault diagnosis of railway point machines using dynamic time warping. Electron. Lett. 2016, 52, 818–819. [Google Scholar] [CrossRef]
- Vileiniskis, M.; Remenyte Prescott, R.; Rama, D. A fault detection method for railway point systems. Proc. Inst. Mech. Eng. Part F: J. Rail Rapid Transit 2018, 230, 852–865. [Google Scholar] [CrossRef]
- Sa, J.; Choi, Y.; Chung, Y.; Kim, H.Y.; Park, D.; Yoon, S. Replacement Condition Detection of Railway Point Machines Using an Electric Current Sensor. Sensors 2017, 17, 263. [Google Scholar] [CrossRef]
- Feng, J.; Lei, Y.; Guo, L.; Lin, J.; Xing, S. A neural network constructed by deep learning technique and its application to intelligent fault diagnosis of machines. Neurocomputing 2017, 272, 619–628. [Google Scholar]
- Kim, J.; Kim, H.; Park, D.; Chung, Y. Modelling of fault in RPM using the GLARMA and INGARCH model. Electron. Lett. 2018, 54, 297–299. [Google Scholar] [CrossRef]
- Mikolov, T.; Corrado, G.; Chen, K.; Dean, J. Efficient Estimation of Word Representations in Vector Space. In Proceedings of the Workshop at ICLR, Scottsdale, AZ, USA, 2–4 May 2013; pp. 1–12. [Google Scholar]
- Wang, X.; Zhang, S.; Lei, Z.; Liu, S.; Guo, X.; Li, S. Ensemble Soft-margin Softmax Loss for Image Classification. In Proceedings of the the 27th International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 13–19 July 2018; pp. 992–998. [Google Scholar]
- Shaw, D.C. A universal approach to Points Condition Monitoring. In Proceedings of the 4th IET International Conference on Railway Condition Monitoring, Derby, UK, 18–20 June 2008; pp. 1–6. [Google Scholar]
- Thirukovalluru, R.; Dixit, S.; Sevakula, R.K.; Verma, N.K.; Salour, A. Generating feature sets for fault diagnosis using denoising stacked auto-encoder. In Proceedings of the IEEE International Conference on Prognostics and Health Management, Ottawa, ON, Canada, 20–22 June 2016; pp. 1–7. [Google Scholar]
- Schulz, H.; Cho, K.; Raiko, T.; Behnke, S. Two-layer contractive encodings for learning stable nonlinear features. Neural Netw. 2015, 64, 4–11. [Google Scholar] [CrossRef]
- Chen, Z.; Li, W. Multisensor Feature Fusion for Bearing Fault Diagnosis Using Sparse Autoencoder and Deep Belief Network. IEEE Trans. Instrum. Meas. 2017, 66, 1693–1702. [Google Scholar] [CrossRef]
- Pang, S.; Yang, X. A Cross-Domain Stacked Denoising Autoencoders for Rotating Machinery Fault Diagnosis under Different Working Conditions. IEEE Access 2019, 7, 77277–77292. [Google Scholar] [CrossRef]
- Wu, X.; Jiang, G.; Wang, X.; Xie, P.; Li, X. A Multi-Level-Denoising Autoencoder Approach for Wind Turbine Fault Detection. IEEE Access 2019, 7, 59376–59387. [Google Scholar] [CrossRef]
- Vincent, P.; Larochelle, H.; Lajoie, I.; Bengio, Y.; Manzagol, P.A. Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion. J. Mach. Learn. Res. 2010, 11, 3371–3408. [Google Scholar]
- Breunig, M.; Kriegel, H.-P.; Ng, R.; Sander, J. LOF: Identifying Density-Based Local Outliers. ACM Sigmod Rec. 2000, 29, 93–104. [Google Scholar] [CrossRef]
- Lu, C.; Wang, Z.Y.; Qin, W.L.; Ma, J. Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification. Signal Process. 2017, 130, 377–388. [Google Scholar] [CrossRef]
- Sun, W.; Shao, S.; Rui, Z.; Yan, R.; Zhang, X.; Chen, X. A sparse auto-encoder-based deep neural network approach for induction motor faults classification. Measurement 2016, 89, 171–178. [Google Scholar] [CrossRef]
- Bianchi, F.M.; Livi, L.; Mikalsen, K.; Kampffmeyer, M.; Jenssen, R. Learning representations of multivariate time series with missing data. Pattern Recognit. 2019, 96, 106973. [Google Scholar] [CrossRef]
- De Bruin, T.; Verbert, K.; Babuška, R. Railway Track Circuit Fault Diagnosis Using Recurrent Neural Networks. IEEE Trans. Neural Networks Learn. Syst. 2016, 28, 523–533. [Google Scholar] [CrossRef]
- Mika, S.; Schölkopf, B.; Smola, A.; Müller, K.-R.; Scholz, M.; Rätsch, G. Kernel PCA and De-noising in Feature Spaces. In Proceedings of the 1998 Conference on Advances in Neural Information Processing Systems II, Denver, CO, USA, 29 November–4 December 1999; pp. 536–542. [Google Scholar]
- Kriegel, H.-P.; Schubert, M.; Zimek, A. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Las Vegas, NV, USA, 24–27 August 2008; pp. 444–452.
- Wu, M.; Ye, J. A Small Sphere and Large Margin Approach for Novelty Detection Using Training Data with Outliers. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31, 2088–2092. [Google Scholar]
- Gupta, M.; Gao, J.; Aggarwal, C.C.; Han, J. Outlier Detection for Temporal Data: A Survey. IEEE Trans. Knowl. Data Eng. 2014, 26, 2250–2267. [Google Scholar] [CrossRef]
- Rätsch, G.; Onoda, T.; Müller, K.-R. Soft Margins for AdaBoost. Mach. Learn. 2001, 42, 287–320. [Google Scholar] [CrossRef]
- Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2005, 27, 861–874. [Google Scholar] [CrossRef]
k | 60 | 80 | 100 | 140 | 190 |
---|---|---|---|---|---|
Featuresbased | 0.722 | 0.751 | 0.828 | 0.95 | 0.953 |
SPDAE-80 | 0.708 | 0.783 | 0.854 | 0.923 | 0.936 |
STDAE-150-50 | 0.719 | 0.703 | 0.689 | 0.905 | 0.935 |
GRU-40 | 0.881 | 0.903 | 0.909 | 0.903 | 0.907 |
GRU-70 | 0.916 | 0.930 | 0.926 | 0.924 | 0.923 |
Average-I | 0.82 | 0.860 | 0.939 | 0.972 | 0.968 |
Average-II | 0.912 | 0.973 | 0.979 | 0.976 | 0.97 |
Weighted-I | 0.907 | 0.960 | 0.969 | 0.972 | 0.968 |
Weighted-II | 0.949 | 0.981 | 0.979 | 0.976 | 0.968 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Yin, Z.; Tang, T.; Gao, C. Fault Diagnosis of Railway Point Machines Using the Locally Connected Autoencoder. Appl. Sci. 2019, 9, 5139. https://doi.org/10.3390/app9235139
Li Z, Yin Z, Tang T, Gao C. Fault Diagnosis of Railway Point Machines Using the Locally Connected Autoencoder. Applied Sciences. 2019; 9(23):5139. https://doi.org/10.3390/app9235139
Chicago/Turabian StyleLi, Zhen, Zhuo Yin, Tao Tang, and Chunhai Gao. 2019. "Fault Diagnosis of Railway Point Machines Using the Locally Connected Autoencoder" Applied Sciences 9, no. 23: 5139. https://doi.org/10.3390/app9235139
APA StyleLi, Z., Yin, Z., Tang, T., & Gao, C. (2019). Fault Diagnosis of Railway Point Machines Using the Locally Connected Autoencoder. Applied Sciences, 9(23), 5139. https://doi.org/10.3390/app9235139