Rock Dynamic Crack Propagation under Different Loading Rates Using Improved Single Cleavage Semi-Circle Specimen
Abstract
:1. Introduction
2. Material and Experiment
2.1. Material
2.2. SHPB Test System
2.3. ISCSC Configuration
2.4. Experiment Results and Analysis
3. Numerical Simulation
3.1. Numerical Simulation Model
3.2. Numerical Simulation Results
3.3. Numerical Simulation Analysis
4. Crack Propagation DSIF in Complete Process
4.1. Finite Element Models
4.2. Calculation Method of Dynamic SIFs
5. Conclusions
- The crack arrest position is predictable in ISCSC specimens, which can be applied in investigating dynamic crack propagation behavior and measuring crack propagation DSIF in a complete process.
- The symmetrical holes have a significant effect on the crack propagation behavior and the extrusion caused by their deformation seriously restricts the propagation of the main crack.
- The crack propagation velocity increases with the loading rate, and the effect of the symmetrical holes on a propagating crack is magnified by the increase in loading rate.
- The arrest DSIF is larger than average propagation DSIF, but smaller than initiation DSIF. The crack propagation DSIF in the whole process has an entire increase with the rising loading rate.
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, X.P.; Wong, L.N.Y. Cracking Processes in Rock-Like Material Containing a Single Flaw Under Uniaxial Compression: A Numerical Study Based on Parallel Bonded-Particle Model Approach. Rock Mech. Rock Eng. 2012, 45, 711–737. [Google Scholar] [CrossRef]
- Nezhad, M.M.; Fisher, Q.J.; Gironacci, E.; Rezania, M. Experimental Study and Numerical Modeling of Fracture Propagation in Shale Rocks During Brazilian Disk Test. Rock Mech. Rock Eng. 2018, 51, 1755–1775. [Google Scholar] [CrossRef]
- Gironacci, E.; Nezhad, M.M.; Rezania, M.; Lancioni, G. A non-local probabilistic method for modeling of crack propagation. Int. J. Mech. Sci. 2018, 144, 897–908. [Google Scholar] [CrossRef]
- Nezhad, M.M.; Gironacci, E.; Rezania, M.; Khalili, N. Stochastic modelling of crack propagation in materials with random properties using isometric mapping for dimensionality reduction of nonlinear data sets. Int. J. Numer. Methods Eng. 2017, 113, 656–680. [Google Scholar] [CrossRef]
- Shao, J.F.; Zhu, Q.Z.; Su, K. Modeling of creep in rock materials in terms of material degradation. Comput. Geotech. 2003, 30, 549–555. [Google Scholar] [CrossRef]
- Banadaki, M.M.D.; Mohanty, B. Numerical simulation of stress wave induced fractures in rock. Int. J. Impact Eng. 2012, 40, 16–25. [Google Scholar] [CrossRef]
- Alam, M.; Grimm, B.; Parmigiani, J.P. Effect of incident angle on crack propagation at interfaces. Eng. Fract. Mech. 2016, 162, 155–163. [Google Scholar] [CrossRef]
- Bleyer, J.; Rouxlanglois, C.; Molinari, J.F. Dynamic crack propagation with a variational phase-field model: Limiting speed, crack branching and velocity-toughening mechanisms. Int. J. Fract. 2017, 204, 79–100. [Google Scholar] [CrossRef]
- Carpiuc-Prisacari, A.; Poncelet, M.; Kazymyrenko, K.; Leclerc, H.; Hild, F. A complex mixed-mode crack propagation test performed with a 6-axis testing machine and full-field measurements. Eng. Fract. Mech. 2017, 176, 1–22. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, Z.; Meng, W.; Peng, Y.; Lei, Z.; Dong, Y. Study of rock dynamic fracture toughness by using VB-SCSC specimens under medium-low speed impacts. Eng. Fract. Mech. 2017, 181, 52–64. [Google Scholar] [CrossRef]
- Haeri, H.; Shahriar, K.; Marji, M.F.; Moarefvand, P. Experimental and numerical study of crack propagation and coalescence in pre-cracked rock-like disks. Int. J. Rock Mech. Min. Sci. 2014, 67, 20–28. [Google Scholar] [CrossRef]
- Zhang, C.W.; Gholipour, G.; Mousavi, A.A. Nonlinear dynamic behavior of simply-supported RC beams subjected to combined impact-blast loading. Eng. Struct. 2019, 181, 124–142. [Google Scholar] [CrossRef]
- Gao, D.W.; Zhang, C.W. Theoretical and numerical investigation on in-plane impact performance of chiral honeycomb core structure. J. Struct. Integr. Maint. 2018, 3, 95–105. [Google Scholar] [CrossRef]
- Chong, K.P.; Kuruppu, M.D. New specimen for fracture toughness determination for rock and other materials. Int. J. Fract. 1984, 26, R59–R62. [Google Scholar] [CrossRef]
- Aliha, M.R.M.; Ayatollahi, M.R. Mixed mode I/II brittle fracture evaluation of marble using SCB specimen. Procedia Eng. 2011, 10, 311–318. [Google Scholar] [CrossRef]
- Grégoire, D.; Maigre, H.; Réthoré, J.; Combescure, A. Dynamic crack propagation under mixed-mode loading—Comparison between experiments and X-FEM simulations. Int. J. Solids Struct. 2007, 44, 6517–6534. [Google Scholar] [CrossRef]
- Wang, M.; Zhu, Z.; Dong, Y.; Lei, Z. Study of mixed-mode I/II fractures using single cleavage semicircle compression specimens under impacting loads. Eng. Fract. Mech. 2017, 177, 33–44. [Google Scholar] [CrossRef]
- Ravi-Chandar, K.; Knauss, W.G. An experimental investigation into dynamic fracture: I. Crack initiation and arrest. Int. J. Fract. 1984, 25, 247–262. [Google Scholar] [CrossRef]
- Eberhardt, E.; Stead, D.; Stimpson, B.; Read, R.S. Identifying crack initiation and propagation thresholds in brittle rock. Can. Geotech. J. 1998, 35, 222–233. [Google Scholar] [CrossRef]
- David, G.; Hubert, M.; Alain, C. New experimental and numerical techniques to study the arrest and the restart of a crack under impact in transparent materials. Int. J. Solids Struct. 2009, 46, 3480–3491. [Google Scholar]
- Gao, G.; Yao, W.; Xia, K.; Li, Z. Investigation of the rate dependence of fracture propagation in rocks using digital image correlation (DIC) method. Eng. Fract. Mech. 2015, 138, 146–155. [Google Scholar] [CrossRef]
- Chen, R.; Xia, K.; Dai, F.; Lu, F.; Luo, S.N. Determination of dynamic fracture parameters using a semi-circular bend technique in split Hopkinson pressure bar testing. Eng. Fract. Mech. 2009, 76, 1268–1276. [Google Scholar] [CrossRef]
- Yang, R.; Peng, X.; Yue, Z.; Cheng, C. Dynamic fracture analysis of crack–defect interaction for mode I running crack using digital dynamic caustics method. Eng. Fract. Mech. 2016, 161, 63–75. [Google Scholar] [CrossRef]
- Estevez, R.; Tijssens, M.G.A.; Giessen, E.V.D. Modeling of the competition between shear yielding and crazing in glassy polymers. J. Mech. Phys. Solids 2000, 48, 2585–2617. [Google Scholar] [CrossRef]
- Marsavina, L.; Sadowski, T.; Knec, M. Crack propagation paths in four point bend Aluminium–PMMA specimens. Eng. Fract. Mech. 2013, 108, 139–151. [Google Scholar] [CrossRef]
- Saksala, T.; Hokka, M.; Kuokkala, V.T.; Mäkinen, J. Numerical modeling and experimentation of dynamic Brazilian disc test on Kuru granite. Int. J. Rock Mech. Min. Sci. 2013, 59, 128–138. [Google Scholar] [CrossRef]
- Zhu, Z. Numerical prediction of crater blasting and bench blasting. Int. J. Rock Mech. Min. Sci. 2009, 46, 1088–1096. [Google Scholar] [CrossRef]
- Zhu, Z.; Mohanty, B.; Xie, H. Numerical investigation of blasting-induced crack initiation and propagation in rocks. Int. J. Rock Mech. Min. Sci. 2007, 44, 412–424. [Google Scholar] [CrossRef]
- Zhu, Z.; Chao, W.; Kang, J.; Li, Y.; Meng, W. Study on the mechanism of zonal disintegration around an excavation. Int. J. Rock Mech. Min. Sci. 2014, 67, 88–95. [Google Scholar] [CrossRef]
- Zhu, Z.; Xie, H.; Mohanty, B. Numerical investigation of blasting-induced damage in cylindrical rocks. Int. J. Rock Mech. Min. Sci. 2008, 45, 111–121. [Google Scholar] [CrossRef]
- Wang, M.; Wang, F.; Zhu, Z.; Dong, Y.; Mousavi Nezhad, M.; Zhou, L. Modelling of crack propagation in rocks under SHPB impacts using a damage method. Fatigue Fract. Eng. Mater. Struct. 2019, 42, 1699–1710. [Google Scholar] [CrossRef]
- Zhou, L.; Zhu, Z.M.; Dong, Y.Q.; Fan, Y.; Zhou, Q.; Deng, S. The influence of impacting orientations on the failure modes of cracked tunnel. Int. J. Impact Eng. 2019, 125, 134–142. [Google Scholar] [CrossRef]
- Eringen, A.C.; Suhubi, E.S.; Chao, C.C. Elastodynamics, Vol. II, Linear Theory. J. Appl. Mech. 1978, 45, 229. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.B.; Zhao, J. A Review of Dynamic Experimental Techniques and Mechanical Behaviour of Rock Materials. Rock Mech. Rock Eng. 2014, 47, 1411–1478. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.Z.; Yang, J.R.; Zhang, C.G.; Zhou, Y.; Li, L.; Wu, L.Z.; Huang, R.Q. Determination of Dynamic Crack Initiation and Propagation Toughness of a Rock Using a Hybrid Experimental-Numerical Approach. J. Eng. Mech. 2016, 142, 9. [Google Scholar] [CrossRef]
- Dong, Y.Q.; Zhu, Z.M.; Zhou, L.; Ying, P.; Wang, M. Study of mode I crack dynamic propagation behaviour and rock dynamic fracture toughness by using SCT specimens. Fatigue Fract. Eng. Mater. Struct. 2018, 41, 1810–1822. [Google Scholar] [CrossRef]
- Lang, L.; Zhu, Z.M.; Zhang, X.S.; Qiu, H.; Zhou, C.L. Investigation of crack dynamic parameters and crack arresting technique in concrete under impacts. Constr. Build. Mater. 2019, 199, 321–334. [Google Scholar] [CrossRef]
- Shao, J.C.; Xiao, B.L.; Wang, Q.Z.; Ma, Z.Y.; Yang, K. An enhanced FEM model for particle size dependent flow strengthening and interface damage in particle reinforced metal matrix composites. Compos. Sci. Technol. 2011, 71, 39–45. [Google Scholar] [CrossRef]
- Bedon, C.; Santarsiero, M. Laminated glass beams with thick embedded connections—Numerical analysis of full-scale specimens during cracking regime. Compos. Struct. 2018, 195, 308–324. [Google Scholar] [CrossRef]
- Li, H.; Fu, M.W.; Lu, J.; Yang, H. Ductile fracture: Experiments and computations. Int. J. Plast. 2011, 27, 147–180. [Google Scholar] [CrossRef]
- Chen, Y.M. Numerical computation of dynamic stress intensity factors by a Lagrangian finite-difference method (the HEMP code) for cracked bars. Eng. Fract. Mech. 1975, 7, 653–660. [Google Scholar] [CrossRef] [Green Version]
- Tikalsky, P.J. Dynamic Fracture Mechanics; By L.B. Freund; Cambridge University Press: New York, NY, USA, 1990; p. 563. [Google Scholar]
Material | cd (m/s) | cs (m/s) | cR (m/s) | ρ (kg/m3) | Ed (GPa) | K (GPa) | νd |
---|---|---|---|---|---|---|---|
Sandstone | 3630 | 2267 | 2140 | 2797 | 25.97 | 13.53 | 0.18 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.; Wang, M.; Mousavi Nezhad, M.; Qiu, H.; Ying, P.; Niu, C. Rock Dynamic Crack Propagation under Different Loading Rates Using Improved Single Cleavage Semi-Circle Specimen. Appl. Sci. 2019, 9, 4944. https://doi.org/10.3390/app9224944
Wang F, Wang M, Mousavi Nezhad M, Qiu H, Ying P, Niu C. Rock Dynamic Crack Propagation under Different Loading Rates Using Improved Single Cleavage Semi-Circle Specimen. Applied Sciences. 2019; 9(22):4944. https://doi.org/10.3390/app9224944
Chicago/Turabian StyleWang, Fei, Meng Wang, Mohaddeseh Mousavi Nezhad, Hao Qiu, Peng Ying, and Caoyuan Niu. 2019. "Rock Dynamic Crack Propagation under Different Loading Rates Using Improved Single Cleavage Semi-Circle Specimen" Applied Sciences 9, no. 22: 4944. https://doi.org/10.3390/app9224944
APA StyleWang, F., Wang, M., Mousavi Nezhad, M., Qiu, H., Ying, P., & Niu, C. (2019). Rock Dynamic Crack Propagation under Different Loading Rates Using Improved Single Cleavage Semi-Circle Specimen. Applied Sciences, 9(22), 4944. https://doi.org/10.3390/app9224944