Laser Processed Oxygen-Free High-Conductivity Copper with Ti and Ti–Zr–V–Hf Films Applied in Neutron Tube
Abstract
:1. Introduction
2. Experiments and Methods
2.1. Sample Preparation
2.2. Film Deposition
2.3. Characterization Method
3. Results and Discussion
3.1. SEM and XPS Results
3.2. SEY Results
3.3. Thermal Conductivity Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yurkov, D.I.; Dulatov, A.K.; Lemeshko, B.D.; Golikov, A.V.; Andreev, D.A.; Mikhailov, Y.V.; Selifanov, A.N. Pulsed neutron generators based on the sealed chambers of plasma focus design with D and DT fillings. J. Phys. Conf. Ser. 2015, 653, 012019. [Google Scholar] [CrossRef]
- Xiaohui, M.; Zhiwei, D. The dynamic study on the influence of secondary electrons on ion beam quality. High Power Laser Part. Beams 2018, 30, 114005. [Google Scholar]
- Rashchikov, V.I.; Shikanov, A.E. Compact plasma reflex triode for neutron generation. IEEE T. Plasma Sci. 2019, 47, 1279–1282. [Google Scholar] [CrossRef]
- Jianlin, K.; Meng, L.; Changgeng, Z. Deuteron induced secondary electron emission from titanium deuteride surface. Nucl. Instrum. Meth. B 2012, 280, 1–4. [Google Scholar] [CrossRef]
- Falabella, S.; Tang, V.; Ellsworth, J.L.; Mintz, J.M. Protective over coatings on thin-film titanium targets for neutron generators. Nucl. Instrum. Meth. A 2014, 736, 107–111. [Google Scholar] [CrossRef]
- Xiao, K.; Ran, H.; Zeng, Q.; Xiang, W.; Mei, L. Development of high yield neutron generator. At. Energy Sci. Technol. 2012, 46, 713–717. [Google Scholar]
- Dazhi, J.; Zhonghai, Y.; Jingyi, D. Simulation for suppression of secondary electrons in neutron generator. J. Univ. Electron. Sci. Technol. China 2009, 38, 83–86. [Google Scholar]
- Jing, W.; Ping, D. Princeple and method of controlling second production of electrons from target surface. J. Chang. Univ. 2003, 23, 107–110. [Google Scholar]
- Valizadeh, R.; Malyshev, O.B.; Wang, S.; Zolotovskaya, S.A.; Allan Gillespie, W.; Abdolvand, A. Low secondary electron yield engineered surface for electron cloud mitigation. Appl. Phys. Lett. 2014, 105, 231605. [Google Scholar] [CrossRef]
- Tal-Gutelmacher, E.; Pundt, A.; Kirchheim, R. The effect of residual hydrogen on hydrogenation behavior of titanium thin films. Scr. Mater. 2010, 62, 709–712. [Google Scholar] [CrossRef]
- Gillich, D.J.; Kovanen, A.; Danon, Y. Deuterated target comparison for pyroelectric crystal D–D nuclear fusion experiments. J. Nucl. Mater. 2010, 405, 181–185. [Google Scholar] [CrossRef]
- Malyshev, O.B.; Valizadeh, R.; Jones, R.M.A. Effect of coating morphology on the electron stimulated desorption from Ti-Zr-Hf-V nonevaporable-getter-coated stainless steel. Vacuum 2012, 86, 2035–2039. [Google Scholar] [CrossRef]
- Malyshev, O.B.; Valizadeh, R.; Hannah, A.N. Pumping properties of Ti-Zr-Hf-V non-evaporable getter coating. Vacuum 2014, 100, 26–28. [Google Scholar] [CrossRef]
- Malyshev, O.B.; Valizadeh, R.; Hogan, B.T.; Hannah, A.N. Electron-stimulated desorption from polished and vacuum fired 316LN stainless steel coated with Ti-Zr-Hf-V. J. Vac. Sci. Technol. A 2014, 32, 061601. [Google Scholar] [CrossRef]
- Bacon, F.M.; Riedel, A.A. Intense neutron source target test facility: A 200 kV, 200 mA dc, deuterium ion accelerator. IEEE T. Nucl. Sci. 1979, 26, 1505–1508. [Google Scholar] [CrossRef]
- Reijonen, J. Neutron generators developed at LBNL for homeland security and imaging applications. Nucl. Instrum. Meth. B 2007, 261, 272–276. [Google Scholar] [CrossRef]
- Wang, J.; Gao, Y.; Fan, J.; You, Z.; Wang, S.; Xu, Z. Study on the effect of laser parameters on the SEY of aluminum alloy. IEEE T. Nucl. Sci. 2019, 66, 609–615. [Google Scholar] [CrossRef]
- Alger, D.L.; Steinberg, R. A Proposed Method for Regeneration of Neutron Producing Targets, within an Accelerator, by Ion Sputtering Techniques; NASA Technical Note; National Aeronautics and Space Administration: Washington, DC, USA, 1970; pp. 1–18.
- Ludewigt, B.A.; Wells, R.P.; Reijonen, J. High-Yield D-T Neutron Generator; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2008; pp. 1–9.
- Chow, V.W.; Mendis, D.A.; Rosenberg, M. Role of grain size and particle velocity distribution in secondary electron emission in space plasmas. J. Geophys. Res. 1993, 98, 19065–19076. [Google Scholar] [CrossRef]
- Baglin, V.; Bojko, J.; Scheuerlein, C.; Gröbner, O.; Taborelli, M.; Henrist, B.; Hilleret, N. The secondary electron yield of technical materials and its variation with surface treatments. In Proceedings of the 7th European Particle Accelerator Conference, Vienna, Austria, 26–30 June 2000; pp. 217–221. [Google Scholar]
- Pivi, M.; King, F.K.; Kirby, R.E.; Raubenheimer, T.O.; Stupakov, G.; Le Pimpec, F. Sharp reduction of the secondary electron emission yield from grooved surfaces. SLAC-PUB 2007, 13020, 1–18. [Google Scholar] [CrossRef]
- Suetsugu, Y.; Fukuma, H.; Shibata, K. Experimental studies on grooved surfaces to suppress secondary electron emission. In Proceedings of the IPAC 10, SLAC National Accelerator Lab., Menlo Park, CA, USA; 2010; pp. 2021–2023. [Google Scholar]
- Montero, I.; Aguilera, L.; Dávila, M.E. Novel types of anti-ecloud surfaces. In Proceedings of the Joint INFN-CERN-EuCARD-AccNet Workshop on Electron-Cloud Effects, La Biodola, Isola d’Elba, Italy, 5–9 June 2012; pp. 153–156. [Google Scholar]
- Montero, I.; Aguilera, L.; Dávila, M.E. Secondary electron emission under electron bombardment from graphene nanoplatelets. Appl. Surf. Sci. 2014, 291, 74–77. [Google Scholar] [CrossRef]
- Nistor, V.; González, L.A.; Aguilera, L. Multipactor suppression by micro-structured gold/silver coatings for space applications. Appl. Surf. Sci. 2014, 315, 445–453. [Google Scholar] [CrossRef]
- Henager, C.H.; Pawlewicz, W.T. Thermal conductivities of thin, sputtered optical films. Appl. Opt. 1993, 32, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Agari, Y.; Uno, T. Estimation on thermal conductivities of filled polymers. J. Appl. Polym. Sci. 1986, 32, 5705–5712. [Google Scholar] [CrossRef]
- Seissa, M.; Mrotzeka, T.; Hutschb, T. Properties and reliability of molybdenum-copper-composites for thermal management applications. In Proceedings of the 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, Las Vegas, NV, USA, 31 May–3 June 2016; pp. 971–976. [Google Scholar]
- White, G.K.; Collocott, S.J. Heat capacity of reference materials: Cu and W. J. Phys. Chem. Ref. Data 1984, 13, 1251–1257. [Google Scholar] [CrossRef]
- Martienssen, W.; Warlimont, H. Springer Handbook of Condensed Matter and Materials Data; Springer: Berlin/Heidelberg, Germany, 2005; p. 296. [Google Scholar]
- Paddock, C.A.; Eesley, G.L. Transient thermo reflectance from thin metal films. J. Appl. Phys. 1986, 60, 285–290. [Google Scholar] [CrossRef]
- Clemens, B.M.; Eesley, G.L.; Paddock, C.A. Time-resolved thermal transport in compositionally modulated metal films. Phys. Rev. B 1988, 37, 1085–1096. [Google Scholar] [CrossRef]
- Gundrum, B.C.; Cahill, D.G.; Averback, R.S. Thermal conductance of metal-metal interfaces. Phys. Rev. B 2015, 72, 245425. [Google Scholar] [CrossRef]
- Kang, Q.; He, X.; Ren, S.; Zhang, L.; Wu, M.; Guo, C.; Qu, X. Effect of molybdenum carbide intermediate layers on thermal properties of copper–diamond composites. J. Alloys Compd. 2013, 576, 380–385. [Google Scholar] [CrossRef]
- Benvenuti, C.; Cazeneuve, J.M.; Chiggiato, P.; Cicoira, F.; Santana, A.E.; Johanek, V.; Fraxedas, J. A novel route to extreme vacua: The non-evaporable getter thin film coatings. Vacuum 1999, 53, 219–225. [Google Scholar] [CrossRef]
- Jat, R.A.; Singh, R.; Parida, S.C.; Das, A.; Agarwal, R.; Mukerjee, S.K.; Ramakumar, K.L. Structural and hydrogen isotope storage properties of Zr-Co-Fe alloy. Int. J. Hydrogen Energy 2015, 40, 5135–5143. [Google Scholar] [CrossRef]
Sample | Film Coatings | Substrates | δmax | Emax/eV | Average Roughness/μm |
---|---|---|---|---|---|
#1 | Without film | laser processed OFHC | 0.99 | 1700 | 7.143 |
#2 | Ti | OFHC | 1.49 | 200 | 0.110 |
#3 | Ti–Zr–V–Hf | OFHC | 1.37 | 300 | 0.131 |
#4 | Ti | laser processed OFHC | 1.34 | 400 | 6.842 |
#5 | Ti–Zr–V–Hf | laser processed OFHC | 1.18 | 400 | 6.902 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Gao, Y.; You, Z.; Fan, J.; Zhang, J.; Yang, S.; Guo, S.; Wang, S.; Xu, Z. Laser Processed Oxygen-Free High-Conductivity Copper with Ti and Ti–Zr–V–Hf Films Applied in Neutron Tube. Appl. Sci. 2019, 9, 4940. https://doi.org/10.3390/app9224940
Wang J, Gao Y, You Z, Fan J, Zhang J, Yang S, Guo S, Wang S, Xu Z. Laser Processed Oxygen-Free High-Conductivity Copper with Ti and Ti–Zr–V–Hf Films Applied in Neutron Tube. Applied Sciences. 2019; 9(22):4940. https://doi.org/10.3390/app9224940
Chicago/Turabian StyleWang, Jie, Yong Gao, Zhiming You, Jiakun Fan, Jing Zhang, Shanghui Yang, Shaoqiang Guo, Sheng Wang, and Zhanglian Xu. 2019. "Laser Processed Oxygen-Free High-Conductivity Copper with Ti and Ti–Zr–V–Hf Films Applied in Neutron Tube" Applied Sciences 9, no. 22: 4940. https://doi.org/10.3390/app9224940
APA StyleWang, J., Gao, Y., You, Z., Fan, J., Zhang, J., Yang, S., Guo, S., Wang, S., & Xu, Z. (2019). Laser Processed Oxygen-Free High-Conductivity Copper with Ti and Ti–Zr–V–Hf Films Applied in Neutron Tube. Applied Sciences, 9(22), 4940. https://doi.org/10.3390/app9224940