Towards Deep Integration of Electronics and Photonics
Abstract
1. Introduction
2. Perspective Materials
3. Building Blocks of Hybrid Integrated Circuits
4. From Macroscopic to Microscopic Integration
5. More Quasiparticles
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Thomson, D.; Zilkie, A.; Bowers, J.E.; Komljenovic, T.; Reed, G.T.; Vivien, L.; Marris-Morini, D.; Cassan, E.; Virot, L.; Fédéli, J.M.; et al. Roadmap on silicon photonics. J. Opt. 2016, 18, 073003. [Google Scholar] [CrossRef]
- Su, T.A.; Neupane, M.; Steigerwald, M.L.; Venkataraman, L.; Nuckolls, C. Chemical principles of single-molecule electronics. Nat. Rev. Mater. 2016, 1, 16002. [Google Scholar] [CrossRef]
- Stockman, M.I.; Kneipp, K.; Bozhevolny, S.I.; Saha, S.; Dutta, A.; Ndukaife, J.; Kinsey, N.; Reddy, H.; Guler, U.; Shalaev, V.M.; et al. Roadmap on plasmonics. J. Opt. 2018, 20, 043001. [Google Scholar] [CrossRef]
- Novotny, L.; Hecht, B. Principles of Nano-Optics; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Maier, S.A. Plasmonics: Fundamentals and Applications; Springer Science & Business Media: New York, NY, USA, 2007. [Google Scholar]
- Agranovich, V.; Mills, D. Surface Polaritons; North-Holland Publishing Company: New York, NY, USA, 1982. [Google Scholar]
- Ritchie, R.H. Plasma losses by fast electrons in thin films. Phys. Rev. 1957, 106, 874. [Google Scholar] [CrossRef]
- Powell, C.; Swan, J. Effect of oxidation on the characteristic loss spectra of aluminum and magnesium. Phys. Rev. 1960, 118, 640. [Google Scholar] [CrossRef]
- Scholl, J.A.; Koh, A.L.; Dionne, J.A. Quantum plasmon resonances of individual metallic nanoparticles. Nature 2012, 483, 421. [Google Scholar] [CrossRef] [PubMed]
- Pitarke, J.; Silkin, V.; Chulkov, E.; Echenique, P. Theory of surface plasmons and surface-plasmon polaritons. Rep. Prog. Phys. 2006, 70, 1. [Google Scholar] [CrossRef]
- Nie, S.; Emory, S.R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 1997, 275, 1102–1106. [Google Scholar] [CrossRef] [PubMed]
- Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L.T.; Itzkan, I.; Dasari, R.R.; Feld, M.S. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 1997, 78, 1667. [Google Scholar] [CrossRef]
- Liu, N.; Tang, M.L.; Hentschel, M.; Giessen, H.; Alivisatos, A.P. Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nat. Mater. 2011, 10, 631. [Google Scholar] [CrossRef] [PubMed]
- Stockman, M.I. Nanoplasmonic sensing and detection. Science 2015, 348, 287–288. [Google Scholar] [CrossRef] [PubMed]
- Barnes, W.L.; Dereux, A.; Ebbesen, T.W. Surface plasmon subwavelength optics. Nature 2003, 424, 824. [Google Scholar] [CrossRef] [PubMed]
- Ozbay, E. Plasmonics: Merging photonics and electronics at nanoscale dimensions. Science 2006, 311, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Gramotnev, D.K.; Bozhevolnyi, S.I. Plasmonics beyond the diffraction limit. Nat. Photonics 2010, 4, 83. [Google Scholar] [CrossRef]
- Stockman, M.I. Nanoplasmonics: Past, present, and glimpse into future. Opt. Express 2011, 19, 22029–22106. [Google Scholar] [CrossRef] [PubMed]
- Davis, T.J.; Gómez, D.E.; Roberts, A. Plasmonic circuits for manipulating optical information. Nanophotonics 2017, 6, 543–559. [Google Scholar] [CrossRef]
- Liu, K.; Ye, C.R.; Khan, S.; Sorger, V.J. Review and perspective on ultrafast wavelength-size electro–optic modulators. Laser Photonics Rev. 2015, 9, 172–194. [Google Scholar] [CrossRef]
- Johnson, P.B.; Christy, R.W. Optical constants of the noble metals. Phys. Rev. B 1972, 6, 4370. [Google Scholar] [CrossRef]
- West, P.R.; Ishii, S.; Naik, G.V.; Emani, N.K.; Shalaev, V.M.; Boltasseva, A. Searching for better plasmonic materials. Laser Photonics Rev. 2010, 4, 795–808. [Google Scholar] [CrossRef]
- Naik, G.V.; Shalaev, V.M.; Boltasseva, A. Alternative Plasmonic Materials: Beyond Gold and Silver. Adv. Mater. 2013, 25, 3264–3294. [Google Scholar] [CrossRef] [PubMed]
- Bhatta, H.L.; Aliev, A.E.; Drachev, V.P. New mechanism of plasmons specific for spin-polarized nanoparticles. Sci. Rep. 2019, 9. [Google Scholar] [CrossRef] [PubMed]
- Soref, R.; Peale, R.E.; Buchwald, W. Longwave plasmonics on doped silicon and silicides. Opt. Express 2008, 16, 6507–6514. [Google Scholar] [CrossRef] [PubMed]
- Dionne, J.A.; Sweatlock, L.A.; Sheldon, M.T.; Alivisatos, A.P.; Atwater, H.A. Silicon-based plasmonics for on-chip photonics. IEEE J. Sel. Top. Quantum Electron. 2010, 16, 295–306. [Google Scholar] [CrossRef]
- Noginov, M.; Gu, L.; Livenere, J.; Zhu, G.; Pradhan, A.; Mundle, R.; Bahoura, M.; Barnakov, Y.A.; Podolskiy, V. Transparent conductive oxides: Plasmonic materials for telecom wavelengths. Appl. Phys. Lett. 2011, 99, 021101. [Google Scholar] [CrossRef]
- Exarhos, G.J.; Zhou, X.D. Discovery-based design of transparent conducting oxide films. Thin Solid Films 2007, 515, 7025–7052. [Google Scholar] [CrossRef]
- Kulkarni, A.; Knickerbocker, S. Estimation and verification of the electrical properties of indium tin oxide based on the energy band diagram. J. Vac. Sci. Technol. A Vac. Surf. Films 1996, 14, 1709–1713. [Google Scholar] [CrossRef]
- Michelotti, F.; Dominici, L.; Descrovi, E.; Danz, N.; Menchini, F. Thickness dependence of surface plasmon polariton dispersion in transparent conducting oxide films at 1.55 μm. Opt. Lett. 2009, 34, 839–841. [Google Scholar] [CrossRef] [PubMed]
- Franzen, S.; Rhodes, C.; Cerruti, M.; Gerber, R.W.; Losego, M.; Maria, J.P.; Aspnes, D. Plasmonic phenomena in indium tin oxide and ITO-Au hybrid films. Opt. Lett. 2009, 34, 2867–2869. [Google Scholar] [CrossRef] [PubMed]
- Niu, X.; Hu, X.; Chu, S.; Gong, Q. Epsilon-Near-Zero Photonics: A New Platform for Integrated Devices. Adv. Opt. Mater. 2018, 6, 1701292. [Google Scholar] [CrossRef]
- Caspani, L.; Kaipurath, R.; Clerici, M.; Ferrera, M.; Roger, T.; Kim, J.; Kinsey, N.; Pietrzyk, M.; Di Falco, A.; Shalaev, V.; et al. Enhanced Nonlinear Refractive Index in ϵ-Near-Zero Materials. Phys. Rev. Lett. 2016, 116, 233901. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.; De Leon, I.; Boyd, R. Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region. Science 2016, 352, 795–797. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wang, Z.; Wu, K.; Ye, H. Tunable near-infrared epsilon-near-zero and plasmonic properties of Ag-ITO co-sputtered composite films. Sci. Technol. Adv. Mater. 2018, 19, 174–184. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Mak, C.L.; Dai, J.; Li, K.; Ye, H.; Leung, C.W. ITO/Au/ITO sandwich structure for near-infrared plasmonics. ACS Appl. Mater. Interfaces 2014, 6, 15743–15752. [Google Scholar] [CrossRef] [PubMed]
- Pollard, R.; Murphy, A.; Hendren, W.; Evans, P.; Atkinson, R.; Wurtz, G.; Zayats, A.; Podolskiy, V.A. Optical nonlocalities and additional waves in epsilon-near-zero metamaterials. Phys. Rev. Lett. 2009, 102, 127405. [Google Scholar] [CrossRef] [PubMed]
- Ju, L.; Geng, B.; Horng, J.; Girit, C.; Martin, M.; Hao, Z.; Bechtel, H.A.; Liang, X.; Zettl, A.; Shen, Y.R.; et al. Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol. 2011, 6, 630–634. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Li, X.; Chandra, B.; Tulevski, G.; Wu, Y.; Freitag, M.; Zhu, W.; Avouris, P.; Xia, F. Tunable infrared plasmonic devices using graphene/insulator stacks. Nat. Nanotechnol. 2012, 7, 330–334. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Badioli, M.; Alonso-González, P.; Thongrattanasiri, S.; Huth, F.; Osmond, J.; Spasenović, M.; Centeno, A.; Pesquera, A.; Godignon, P.; et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 2012, 487, 77. [Google Scholar] [CrossRef] [PubMed]
- Fei, Z.; Rodin, A.; Andreev, G.; Bao, W.; McLeod, A.; Wagner, M.; Zhang, L.; Zhao, Z.; Thiemens, M.; Dominguez, G.; et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 2012, 487, 82. [Google Scholar] [CrossRef] [PubMed]
- Grigorenko, A.; Polini, M.; Novoselov, K. Graphene plasmonics. Nat. Photonics 2012, 6, 749. [Google Scholar] [CrossRef]
- Ni, G.; McLeod, A.; Sun, Z.; Wang, L.; Xiong, L.; Post, K.; Sunku, S.; Jiang, B.Y.; Hone, J.; Dean, C.R.; et al. Fundamental limits to graphene plasmonics. Nature 2018, 557, 530. [Google Scholar] [CrossRef] [PubMed]
- Wilk, G.D.; Wallace, R.M.; Anthony, J. High-κ gate dielectrics: Current status and materials properties considerations. J. Appl. Phys. 2001, 89, 5243–5275. [Google Scholar] [CrossRef]
- Robertson, J. High dielectric constant oxides. Eur. Phys. J. Appl. Phys. 2004, 28, 265–291. [Google Scholar] [CrossRef]
- Bohr, M.T.; Chau, R.S.; Ghani, T.; Mistry, K. The high-k solution. IEEE Spectr. 2007, 44, 29–35. [Google Scholar] [CrossRef]
- Okamoto, K.; Niki, I.; Shvartser, A.; Narukawa, Y.; Mukai, T.; Scherer, A. Surface-plasmon-enhanced light emitters based on InGaN quantum wells. Nat. Mater. 2004, 3, 601. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Bozhevolnyi, S.I. Radiation guiding with surface plasmon polaritons. Rep. Prog. Phys. 2012, 76, 016402. [Google Scholar] [CrossRef] [PubMed]
- Kolesov, R.; Grotz, B.; Balasubramanian, G.; Stöhr, R.J.; Nicolet, A.A.; Hemmer, P.R.; Jelezko, F.; Wrachtrup, J. Wave–particle duality of single surface plasmon polaritons. Nat. Phys. 2009, 5, 470. [Google Scholar] [CrossRef]
- Alam, M.Z.; Aitchison, J.S.; Mojahedi, M. A marriage of convenience: Hybridization of surface plasmon and dielectric waveguide modes. Laser Photonics Rev. 2014, 8, 394–408. [Google Scholar] [CrossRef]
- Nezhad, M.P.; Tetz, K.; Fainman, Y. Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides. Opt. Express 2004, 12, 4072–4079. [Google Scholar] [CrossRef] [PubMed]
- Noginov, M.; Podolskiy, V.A.; Zhu, G.; Mayy, M.; Bahoura, M.; Adegoke, J.; Ritzo, B.; Reynolds, K. Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium. Opt. Express 2008, 16, 1385–1392. [Google Scholar] [CrossRef] [PubMed]
- Grandidier, J.; Des Francs, G.C.; Massenot, S.; Bouhelier, A.; Markey, L.; Weeber, J.C.; Finot, C.; Dereux, A. Gain-assisted propagation in a plasmonic waveguide at telecom wavelength. Nano Lett. 2009, 9, 2935–2939. [Google Scholar] [CrossRef] [PubMed]
- De Leon, I.; Berini, P. Amplification of long-range surface plasmons by a dipolar gain medium. Nat. Photonics 2010, 4, 382. [Google Scholar] [CrossRef]
- Bergman, D.J.; Stockman, M.I. Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems. Phys. Rev. Lett. 2003, 90, 027402. [Google Scholar] [CrossRef] [PubMed]
- Galanzha, E.I.; Weingold, R.; Nedosekin, D.A.; Sarimollaoglu, M.; Nolan, J.; Harrington, W.; Kuchyanov, A.S.; Parkhomenko, R.G.; Watanabe, F.; Nima, Z.; et al. Spaser as a biological probe. Nat. Commun. 2017, 8, 15528. [Google Scholar] [CrossRef] [PubMed]
- Melikyan, A.; Lindenmann, N.; Walheim, S.; Leufke, P.; Ulrich, S.; Ye, J.; Vincze, P.; Hahn, H.; Schimmel, T.; Koos, C.; et al. Surface plasmon polariton absorption modulator. Opt. Express 2011, 19, 8855–8869. [Google Scholar] [CrossRef] [PubMed]
- Neira, A.D.; Wurtz, G.A.; Zayats, A.V. All-optical switching in silicon photonic waveguides with an epsilon-near-zero resonant cavity. Photonics Res. 2018, 6, B1–B5. [Google Scholar] [CrossRef]
- Qiu, X.; Ruan, X.; Li, Y.; Zhang, F. Indium Tin Oxide Based Dual-Polarization Electro-Optic Intensity Modulator on a Single Silicon Waveguide. J. Lightw. Technol. 2018, 36, 2563–2571. [Google Scholar] [CrossRef]
- Sinatkas, G.; Pitilakis, A.; Zografopoulos, D.C.; Beccherelli, R.; Kriezis, E.E. Transparent conducting oxide electro–optic modulators on silicon platforms: A comprehensive study based on the drift-diffusion semiconductor model. J. Appl. Phys. 2017, 121, 023109. [Google Scholar] [CrossRef]
- Vasudev, A.P.; Kang, J.H.; Park, J.; Liu, X.; Brongersma, M.L. Electro–optical modulation of a silicon waveguide with an “epsilon-near-zero” material. Opt. Express 2013, 21, 26387–26397. [Google Scholar] [CrossRef] [PubMed]
- Zografopoulos, D.; Sinatkas, G.; Lotfi, E.; Shahada, L.; Swillam, M.; Kriezis, E.; Beccherelli, R. Amplitude modulation in infrared metamaterial absorbers based on electro–optically tunable conducting oxides. Appl. Phys. A 2018, 124, 105. [Google Scholar] [CrossRef]
- Ayata, M.; Fedoryshyn, Y.; Heni, W.; Baeuerle, B.; Josten, A.; Zahner, M.; Koch, U.; Salamin, Y.; Hoessbacher, C.; Haffner, C.; et al. High-speed plasmonic modulator in a single metal layer. Science 2017, 358, 630–632. [Google Scholar] [CrossRef] [PubMed]
- Dionne, J.A.; Diest, K.; Sweatlock, L.A.; Atwater, H.A. PlasMOStor: A metal- oxide- Si field effect plasmonic modulator. Nano Lett. 2009, 9, 897–902. [Google Scholar] [CrossRef] [PubMed]
- Haffner, C.; Chelladurai, D.; Fedoryshyn, Y.; Josten, A.; Baeuerle, B.; Heni, W.; Watanabe, T.; Cui, T.; Cheng, B.; Saha, S.; et al. Low-loss plasmon-assisted electro–optic modulator. Nature 2018, 556, 483. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.W.; Papadakis, G.; Burgos, S.P.; Chander, K.; Kriesch, A.; Pala, R.; Peschel, U.; Atwater, H.A. Nanoscale conducting oxide PlasMOStor. Nano Lett. 2014, 14, 6463–6468. [Google Scholar] [CrossRef] [PubMed]
- Nikolajsen, T.; Leosson, K.; Bozhevolnyi, S.I. Surface plasmon polariton based modulators and switches operating at telecom wavelengths. Appl. Phys. Lett. 2004, 85, 5833–5835. [Google Scholar] [CrossRef]
- Sorger, V.J.; Lanzillotti-Kimura, N.D.; Ma, R.M.; Zhang, X. Ultra-compact silicon nanophotonic modulator with broadband response. Nanophotonics 2012, 1, 17–22. [Google Scholar] [CrossRef]
- Lu, Z.; Zhao, W.; Shi, K. Ultracompact electroabsorption modulators based on tunable epsilon-near-zero-slot waveguides. IEEE Photonics J. 2012, 4, 735–740. [Google Scholar]
- Amin, R.; Khurgin, J.B.; Sorger, V.J. Waveguide-based electro-absorption modulator performance: Comparative analysis. Opt. Express 2018, 26, 15446. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Huo, Y.; Harris, J.S.; Zhou, Z. Ultra-compact and low-loss polarization rotator based on asymmetric hybrid plasmonic waveguide. IEEE Photonics Technol. Lett. 2013, 25, 2081–2084. [Google Scholar] [CrossRef]
- Kim, S.; Qi, M. Polarization rotation and coupling between silicon waveguide and hybrid plasmonic waveguide. Opt. Express 2015, 23, 9968–9978. [Google Scholar] [CrossRef] [PubMed]
- Majumder, A.; Shen, B.; Polson, R.; Menon, R. Ultra-compact polarization rotation in integrated silicon photonics using digital metamaterials. Opt. Express 2017, 25, 19721–19731. [Google Scholar] [CrossRef] [PubMed]
- Pshenichnyuk, I.A.; Kosolobov, S.S.; Maimistov, A.I.; Drachev, V.P. Conversion of light polarisation in asymmetric plasmonic waveguides. Quantum Electron. 2018, 48, 1153. [Google Scholar] [CrossRef]
- An, S.; Kwon, O.K. Integrated InP polarization rotator using the plasmonic effect. Opt. Express 2018, 26, 1305–1314. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.T.; Ju, J.J.; Park, S.; Kim, M.S.; Park, S.K.; Lee, M.H. Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides. Opt. Express 2008, 16, 13133–13138. [Google Scholar] [CrossRef] [PubMed]
- Eftekhari, F.; Gómez, D.E.; Davis, T.J. Measuring subwavelength phase differences with a plasmonic circuit—An example of nanoscale optical signal processing. Opt. Lett. 2014, 39, 2994–2997. [Google Scholar] [CrossRef] [PubMed]
- Tame, M.S.; McEnery, K.; Özdemir, Ş.; Lee, J.; Maier, S.; Kim, M. Quantum plasmonics. Nat. Phys. 2013, 9, 329. [Google Scholar] [CrossRef]
- Pines, D. A collective description of electron interactions: IV. Electron interaction in metals. Phys. Rev. 1953, 92, 626. [Google Scholar] [CrossRef]
- Elson, J.; Ritchie, R. Photon interactions at a rough metal surface. Phys. Rev. B 1971, 4, 4129. [Google Scholar] [CrossRef]
- Huttner, B.; Barnett, S.M. Quantization of the electromagnetic field in dielectrics. Phys. Rev. A 1992, 46, 4306. [Google Scholar] [CrossRef] [PubMed]
- Crowell, J.; Ritchie, R. Radiative decay of Coulomb-stimulated plasmons in spheres. Phys. Rev. 1968, 172, 436. [Google Scholar] [CrossRef]
- Hong, C.K.; Ou, Z.Y.; Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 1987, 59, 2044. [Google Scholar] [CrossRef] [PubMed]
- Fakonas, J.S.; Lee, H.; Kelaita, Y.A.; Atwater, H.A. Two-plasmon quantum interference. Nat. Photonics 2014, 8, 317. [Google Scholar] [CrossRef]
- Altewischer, E.; Van Exter, M.; Woerdman, J. Plasmon-assisted transmission of entangled photons. Nature 2002, 418, 304. [Google Scholar] [CrossRef] [PubMed]
- Ebbesen, T.W.; Lezec, H.J.; Ghaemi, H.; Thio, T.; Wolff, P.A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 1998, 391, 667. [Google Scholar] [CrossRef]
- Thongrattanasiri, S.; Manjavacas, A.; García de Abajo, F.J. Quantum finite-size effects in graphene plasmons. Acs Nano 2012, 6, 1766–1775. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Esteban, R.; Borisov, A.G.; Baumberg, J.J.; Nordlander, P.; Lezec, H.J.; Aizpurua, J.; Crozier, K.B. Quantum mechanical effects in plasmonic structures with subnanometre gaps. Nat. Commun. 2016, 7, 11495. [Google Scholar] [CrossRef] [PubMed]
- De Leon, N.P.; Lukin, M.D.; Park, H. Quantum plasmonic circuits. IEEE J. Sel. Top. Quantum Electron. 2012, 18, 1781–1791. [Google Scholar] [CrossRef]
- Wiley, B.; Sun, Y.; Xia, Y. Polyol synthesis of silver nanostructures: control of product morphology with Fe (II) or Fe (III) species. Langmuir 2005, 21, 8077–8080. [Google Scholar] [CrossRef] [PubMed]
- Falk, A.L.; Koppens, F.H.; Chun, L.Y.; Kang, K.; de Leon Snapp, N.; Akimov, A.V.; Jo, M.H.; Lukin, M.D.; Park, H. Near-field electrical detection of optical plasmons and single-plasmon sources. Nat. Phys. 2009, 5, 475. [Google Scholar] [CrossRef]
- Chang, D.E.; Sørensen, A.S.; Demler, E.A.; Lukin, M.D. A single-photon transistor using nanoscale surface plasmons. Nat. Phys. 2007, 3, 807. [Google Scholar] [CrossRef]
- Birnbaum, K.M.; Boca, A.; Miller, R.; Boozer, A.D.; Northup, T.E.; Kimble, H.J. Photon blockade in an optical cavity with one trapped atom. Nature 2005, 436, 87. [Google Scholar] [CrossRef] [PubMed]
- Hopfield, J. Theory of the contribution of excitons to the complex dielectric constant of crystals. Phys. Rev. 1958, 112, 1555. [Google Scholar] [CrossRef]
- Pshenichnyuk, S.A.; Rakhmeyev, R.G.; Asfandiarov, N.L.; Komolov, A.S.; Modelli, A.; Jones, D. Can the Electron-Accepting Properties of Odorants Be Involved in Their Recognition by the Olfactory System? J. Phys. Chem. Lett. 2018, 9, 2320–2325. [Google Scholar] [CrossRef] [PubMed]
- Pshenichnyuk, S.A.; Modelli, A.; Komolov, A.S. Interconnections between dissociative electron attachment and electron-driven biological processes. Int. Rev. Phys. Chem. 2018, 37, 125–170. [Google Scholar] [CrossRef]
- Pshenichnyuk, S.A.; Modelli, A.; Vorob’ev, A.S.; Asfandiarov, N.L.; Nafikova, E.P.; Rakhmeyev, R.G.; Galeev, R.V.; Komolov, A.S. Fragmentation of chlorpyrifos by thermal electron attachment: A likely relation to its metabolism and toxicity. Phys. Chem. Chem. Phys. 2018, 20, 22272–22283. [Google Scholar] [CrossRef] [PubMed]
- Pshenichnyuk, S.; Pshenichnyuk, I.; Nafikova, E.; Asfandiarov, N. Dissociative electron attachment in selected haloalkanes. Rapid Commun. Mass Spectrom. 2006, 20, 1097–1103. [Google Scholar] [CrossRef] [PubMed]
- Pshenichnyuk, S.; Lomakin, G.; Fokin, A.; Pshenichnyuk, I.; Asfandiarov, N. Temperature dependence of the mean autodetachment lifetime of the p-benzoquinone molecular radical anion. Rapid Commun. Mass Spectrom. 2006, 20, 383–386. [Google Scholar] [CrossRef] [PubMed]
- Pshenichnyuk, I. Interaction of Electrons with Vibrating Molecules: Molecular Electronic Applications; LAP LAMBERT Academic Publishing: Riga, Latvia, 2012. [Google Scholar]
- Pshenichnyuk, I.A.; Čížek, M. Motor effect in electron transport through a molecular junction with torsional vibrations. Phys. Rev. B 2011, 83, 165446. [Google Scholar] [CrossRef]
- Lagoudakis, K. The Physics of Exciton-Polariton Condensates; EPFL Press: Lausanne, Switzerland, 2013. [Google Scholar]
- Pshenichnyuk, I.A. Pressure-induced vortex rings multiplication as a source of vorticity in superfluids. Lett. Mater. 2015, 5, 385–388. [Google Scholar] [CrossRef][Green Version]
- Pshenichnyuk, I.A.; Berloff, N.G. Inelastic scattering of xenon atoms by quantized vortices in superfluids. Phys. Rev. B 2016, 94, 184505. [Google Scholar] [CrossRef]
- Pshenichnyuk, I. Static and dynamic properties of heavily doped quantum vortices. New J. Phys. 2017, 19, 105007. [Google Scholar] [CrossRef]
- Pshenichnyuk, I.A. Pair interactions of heavy vortices in quantum fluids. Phys. Lett. A 2018, 382, 523–527. [Google Scholar] [CrossRef]
- Berloff, N.G.; Silva, M.; Kalinin, K.; Askitopoulos, A.; Töpfer, J.D.; Cilibrizzi, P.; Langbein, W.; Lagoudakis, P.G. Realizing the classical XY Hamiltonian in polariton simulators. Nat. Mater. 2017, 16, 1120. [Google Scholar] [CrossRef] [PubMed]
- Zasedatelev, A.V.; Baranikov, A.V.; Urbonas, D.; Scafirimuto, F.; Scherf, U.; Stöferle, T.; Mahrt, R.F.; Lagoudakis, P.G. A room-temperature organic polariton transistor. Nat. Photonics 2019, 13, 378. [Google Scholar] [CrossRef]
- Mubeen, S.; Lee, J.; Singh, N.; Krämer, S.; Stucky, G.D.; Moskovits, M. An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nat. Nanotechnol. 2013, 8, 247. [Google Scholar] [CrossRef] [PubMed]
- Balci, S.; Kocabas, C.; Ates, S.; Karademir, E.; Salihoglu, O.; Aydinli, A. Tuning surface plasmon–exciton coupling via thickness dependent plasmon damping. Phys. Rev. B 2012, 86, 235402. [Google Scholar] [CrossRef]
- Gómez, D.E.; Roberts, A.; Davis, T.J.; Vernon, K.C. Surface plasmon hybridization and exciton coupling. Phys. Rev. B 2012, 86, 035411. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pshenichnyuk, I.A.; Kosolobov, S.S.; Drachev, V.P. Towards Deep Integration of Electronics and Photonics. Appl. Sci. 2019, 9, 4834. https://doi.org/10.3390/app9224834
Pshenichnyuk IA, Kosolobov SS, Drachev VP. Towards Deep Integration of Electronics and Photonics. Applied Sciences. 2019; 9(22):4834. https://doi.org/10.3390/app9224834
Chicago/Turabian StylePshenichnyuk, Ivan A., Sergey S. Kosolobov, and Vladimir P. Drachev. 2019. "Towards Deep Integration of Electronics and Photonics" Applied Sciences 9, no. 22: 4834. https://doi.org/10.3390/app9224834
APA StylePshenichnyuk, I. A., Kosolobov, S. S., & Drachev, V. P. (2019). Towards Deep Integration of Electronics and Photonics. Applied Sciences, 9(22), 4834. https://doi.org/10.3390/app9224834