Enhanced Antifungal Activity of Engineered Proteins via Swapping between Thioredoxin H2 and H3
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Purification of Recombinant AtTrx-H2, -H3, -2N3C and -3N2C Proteins
2.3. Antifungal Assay
2.4. Confocal Laser Scanning Microscopy (CLSM) Analysis
2.5. Reactive Oxygen Species (ROS) Generation
2.6. SYTOX Green Uptake
2.7. Scanning Electron Microscopy (SEM)
3. Results and Discussion
3.1. Purification and Identification of AtTrx-H2, -H3, -2N3C, and -3N2C Proteins
3.2. Antifungal Activities of AtTrx-H2, -H3, -2N3C and -3N2C Proteins
3.3. Intracellular Localization of FAM-Labeled AtTrx Proteins in Fungal Cells
3.4. Intracellular ROS Generation in Fungal Cells
3.5. Membrane-Permeable Effects of AtTrx Proteins in Fungal Cells
3.6. Morphological Changes of C. albicans Cells Caused by AtTrx Proteins
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dos Santos, C.V.; Rey, P. Plant thioredoxins are key actors in the oxidative stress response. Trends Plant Sci. 2006, 11, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Arsova, B.; Hoja, U.; Wimmelbacher, M.; Greiner, E.; Üstün, Ş.; Melzer, M.; Petersen, K.; Lein, W.; Börnke, F. Plastidial thioredoxin z interacts with two fructokinase-like proteins in a thiol-dependent manner: Evidence for an essential role in chloroplast development in Arabidopsis and Nicotiana benthamiana. Plant Cell 2010, 22, 1498–1515. [Google Scholar] [CrossRef] [PubMed]
- Ueoka-Nakanishi, H.; Sazuka, T.; Nakanishi, Y.; Maeshima, M.; Mori, H.; Hisabori, T. Thioredoxin h regulates calcium dependent protein kinases in plasma membranes. FEBS J. 2013, 280, 3220–3231. [Google Scholar] [CrossRef] [PubMed]
- Sweat, T.A.; Wolpert, T.J. Thioredoxin h5 is required for victorin sensitivity mediated by a CC-NBS-LRR gene in Arabidopsis. Plant Cell 2007, 19, 673–687. [Google Scholar] [CrossRef]
- Chi, Y.H.; Paeng, S.K.; Kim, M.J.; Hwang, G.Y.; Melencion, S.M.B.; Oh, H.T.; Lee, S.Y. Redox-dependent functional switching of plant proteins accompanying with their structural changes. Front Plant Sci. 2013, 4, 277. [Google Scholar] [CrossRef] [Green Version]
- Park, S.C.; Jung, Y.J.; Kim, I.R.; Lee, Y.; Kim, Y.M.; Jang, M.K.; Lee, J.R. Functional characterization of thioredoxin h type 5 with antimicrobial activity from Arabidopsis thaliana. Biotechnol. Bioprocess Eng. 2017, 22, 129–135. [Google Scholar] [CrossRef]
- Park, S.K.; Jung, Y.J.; Lee, J.R.; Lee, Y.M.; Jang, H.H.; Lee, S.S.; Park, J.H.; Kim, S.Y.; Moon, J.C.; Lee, S.Y. Heat-shock and redox-dependent functional switching of an h-type Arabidopsis thioredoxin from a disulfide reductase to a molecular chaperone. Plant Physiol. 2009, 150, 552–561. [Google Scholar] [CrossRef]
- Tada, Y.; Spoel, S.H.; Pajerowska-Mukhtar, K.; Mou, Z.; Song, J.; Wang, C.; Zuo, J.; Dong, X. Plant immunity requires conformational charges of NPR1 via S-nitrosylation and thioredoxins. Science 2008, 321, 952–956. [Google Scholar] [CrossRef]
- Reichheld, J.P.; Mestres-Ortega, D.; Laloi, C.; Meyer, Y. The multigenic family of thioredoxin h in Arabidopsis thaliana: Specific expression and stress response. Plant Physiol. Biochem. 2002, 40, 685–690. [Google Scholar] [CrossRef]
- Wong, J.H.; Cai, N.; Balmer, Y.; Tanaka, C.K.; Vensel, W.H.; Hurkman, W.J.; Buchanan, B.B. Thioredoxin targets of developing wheat seeds identified by complementary proteomic approaches. Phytochemistry 2004, 65, 1629–1640. [Google Scholar] [CrossRef]
- Jung, Y.J.; Chi, Y.H.; Chae, H.B.; Shin, M.R.; Lee, E.S.; Cha, J.Y.; Paeng, S.K.; Lee, Y.; Park, J.H.; Kim, W.Y. Analysis of Arabidopsis thioredoxin-h isotypes identifies discrete domains that confer specific structural and functional properties. Biochem. J. 2013, 456, 13–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, K.; Liu, C.; Kim, B.G.; Lee, D.Y. Synthetic fusion protein design and applications. Biotechnol. Adv. 2015, 33, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Boman, H.; Wade, D.; Boman, I.; Wåhlin, B.; Merrifield, R. Antibacterial and antimalarial properties of peptides that are cecropin-melittin hybrids. FEBS Lett. 1989, 259, 103–106. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.M.; Kim, N.H.; Lee, J.W.; Jang, J.S.; Park, Y.H.; Park, S.C.; Jang, M.K. Novel chimeric peptide with enhanced cell specificity and anti-inflammatory activity. Biochem. Biophys. Res. Commun. 2015, 463, 322–328. [Google Scholar] [CrossRef]
- Che, Y.Z.; Li, Y.R.; Zou, H.S.; Zou, L.F.; Zhang, B.; Chen, G.Y. A novel antimicrobial protein for plant protection consisting of a Xanthomonas oryzae harpin and active domains of cecropin A and melittin. Microb. Biotechnol. 2011, 4, 777–793. [Google Scholar] [CrossRef]
- Erbse, A.; Yifrach, O.; Jones, S.; Lund, P.A. Chaperone activity of a chimeric GroEL protein that can exist in a single or double ring form. J. Biol. Chem. 1999, 274, 20351–20357. [Google Scholar] [CrossRef]
- Manoharadas, S.; Witte, A.; Bläsi, U. Antimicrobial activity of a chimeric enzybiotic towards Staphylococcus aureus. J. Biotechnol. 2009, 139, 118–123. [Google Scholar] [CrossRef]
- Wheeldon, I.R.; Campbell, E.; Banta, S. A chimeric fusion protein engineered with disparate functionalities—Enzymatic activity and self–assembly. J. Mol. Biol. 2009, 392, 129–142. [Google Scholar] [CrossRef]
- Park, S.C.; Kim, I.R.; Hwang, J.E.; Kim, J.Y.; Jung, Y.J.; Choi, W.; Lee, Y.; Jang, M.K.; Lee, J.R. Functional mechanisms underlying the antimicrobial activity of the Oryza sativa Trx-like protein. Int. J. Mol. Sci. 2019, 20, 1413. [Google Scholar] [CrossRef]
- Semighini, C.P.; Harris, S.D. Methods to detect apoptotic-like cell death in filamentous fungi. Methods Mol. Biol. 2010, 638, 269–279. [Google Scholar]
- Zasloff, M. Antimicrobial peptides of multicellular organisms: My perspective. Adv. Exp. Med. Biol. 2019, 1117, 3–6. [Google Scholar] [PubMed]
- Tang, S.S.; Prodhan, Z.H.; Biswas, S.K.; Le, C.F.; Sekaran, S.D. Antimicrobial peptides from different plant sources: Isolation, characterisation, and purification. Phytochemistry 2018, 154, 94–105. [Google Scholar] [CrossRef] [PubMed]
- Tam, J.P.; Wang, S.; Wong, K.H.; Tan, W.L. Antimicrobial peptides from plants. Pharmaceuticals (Basel) 2015, 8, 711–757. [Google Scholar] [CrossRef] [PubMed]
- Marion, D.; Bakan, B.; Elmorjani, K. Plant lipid binding proteins: Properties and applications. Biotechnol. Adv. 2007, 25, 195–197. [Google Scholar] [CrossRef] [PubMed]
- Malik, E.; Dennison, S.R.; Harris, F.; Phoenix, D.A. PH dependent antimicrobial peptides and proteins, their mechanisms of action and potential as therapeutic agents. Pharmaceuticals (Basel) 2016, 9, 67. [Google Scholar] [CrossRef]
Fungal Strains | Minimum Inhibitory Concentration (MIC) (μg/mL) | |||||||
---|---|---|---|---|---|---|---|---|
H2 | H3 | 2N3C | 3N2C | |||||
pH 7.2 | pH 5.2 | pH 7.2 | pH 5.2 | pH 7.2 | pH 5.2 | pH 7.2 | pH 5.2 | |
Mold | ||||||||
A. flavus | 150 | 300 | 300 | 150 | >300 | 300 | 150 | 37.5 |
A. fumigatus | 150 | 300 | 300 | 150 | >300 | 300 | 150 | 37.5 |
C. gloeosporioides | 150 | 300 | 300 | 150 | >300 | 150 | 150 | 18.8 |
F. graminearum | 300 | >300 | >300 | 300 | >300 | 37.5 | 300 | 18.8 |
F. moniliforme | 300 | >300 | >300 | 300 | >300 | 37.5 | 300 | 18.8 |
F. oxysporum | 150 | 300 | 300 | 300 | 300 | 37.5 | 300 | 9.4 |
F. solani | 150 | 300 | >300 | 300 | >300 | 37.5 | >300 | 9.4 |
P. verrucosum | 150 | 300 | 75 | 37.5 | 300 | 75 | 75 | 18.8 |
T. harzianum | 150 | 300 | 300 | 150 | 300 | 150 | 150 | 18.8 |
T. rubrum | 300 | >300 | 300 | 150 | 300 | 150 | 150 | 18.8 |
T. viride | 300 | >300 | 300 | 150 | >300 | 150 | 150 | 18.8 |
Yeast | ||||||||
C. albicans | 150 | 300 | 150 | 37.5 | 150 | 75 | 37.5 | 18.8 |
C. krusei | 150 | 300 | 150 | 37.5 | 150 | 75 | 75 | 18.8 |
C. parapsilosis | 150 | 300 | 150 | 37.5 | 150 | 75 | 75 | 18.8 |
C. sp. | >300 | >300 | >300 | 150 | 300 | 150 | 150 | 37.5 |
H. zeae | >300 | >300 | >300 | 150 | 300 | 150 | 150 | 37.5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.-Y.; Chi, Y.H.; Kim, I.R.; Kim, H.; Jung, J.H.; Park, S.-C.; Jang, M.-K.; Lee, S.Y.; Lee, J.R. Enhanced Antifungal Activity of Engineered Proteins via Swapping between Thioredoxin H2 and H3. Appl. Sci. 2019, 9, 4766. https://doi.org/10.3390/app9224766
Kim J-Y, Chi YH, Kim IR, Kim H, Jung JH, Park S-C, Jang M-K, Lee SY, Lee JR. Enhanced Antifungal Activity of Engineered Proteins via Swapping between Thioredoxin H2 and H3. Applied Sciences. 2019; 9(22):4766. https://doi.org/10.3390/app9224766
Chicago/Turabian StyleKim, Jin-Young, Yong Hun Chi, Il Ryong Kim, Heabin Kim, Ji Hyun Jung, Seong-Cheol Park, Mi-Kyeong Jang, Sang Yeol Lee, and Jung Ro Lee. 2019. "Enhanced Antifungal Activity of Engineered Proteins via Swapping between Thioredoxin H2 and H3" Applied Sciences 9, no. 22: 4766. https://doi.org/10.3390/app9224766
APA StyleKim, J.-Y., Chi, Y. H., Kim, I. R., Kim, H., Jung, J. H., Park, S.-C., Jang, M.-K., Lee, S. Y., & Lee, J. R. (2019). Enhanced Antifungal Activity of Engineered Proteins via Swapping between Thioredoxin H2 and H3. Applied Sciences, 9(22), 4766. https://doi.org/10.3390/app9224766