Raman Spectroscopic Study of Coal Samples during Heating
Abstract
:Featured Application
Abstract
1. Introduction
2. Experimental
2.1. Raman Spectrometer
2.2. Coal Samples and Preparation
3. Results and Discussion
3.1. Room Temperature Raman Spectra of a Typical Coal Sample
3.2. Microstructure of Coals of Varying Ranks
3.3. In Situ High-Temperature Study of Different Coals by RAMAN
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Potgietero-Vermaak, S.; Maledi, N.; Wagner, N.; Van Heerden, J.H.P.; Van Grieken, R.; Potgieter, J.H. Raman spectroscopy for the analysis of coal: A review. J. Raman Spectrosc. 2011, 42, 123–129. [Google Scholar] [CrossRef]
- Xu, J.; Tang, H.; Su, S.; Liu, J.W.; Xu, K.; Qian, K.; Wang, Y.; Zhou, Y.B.; Hu, S.; Zhang, A.C.; et al. A study of the relationships between coal structures and combustion characteristics: The insights from micro-Raman spectroscopy based on 32 kinds of Chinese coals. Appl. Energy 2018, 212, 46–56. [Google Scholar] [CrossRef]
- Zhou, X.-B.; Long, Z.; Liang, S.; He, Y.; Yi, L.Z.; Li, D.L.; Liang, D.Q. In situ Raman analysis on the dissociation behavior of mixed CH4-CO2 hydrates. Energy Fuels 2016, 30, 1279–1286. [Google Scholar]
- Green, P.D.; Johnson, C.A.; Thomas, K.M. Application of laser Raman microprobe spectroscopy to the chaaracterization of coals and cokes. Fuel 1983, 62, 1013–1023. [Google Scholar] [CrossRef]
- Tuinstra, F.; Koenig, J.L. Raman spectrum of graphite. J. Chem. Phys. 1970, 53, 1126–1130. [Google Scholar] [CrossRef]
- Friedel, R.A.; Carlson, G.L. Difficult carbonaceous materials and their infra-red and Raman spectra. Reassignments for coal spectra. Fuel 1972, 51, 194–198. [Google Scholar] [CrossRef]
- Johnson, C.A.; Patrick, J.W.; Thomas, K.M. Characterization of coal chars by Raman spectroscopy, X-ray diffraction and reflectance measurements. Fuel 1986, 65, 1284–1290. [Google Scholar] [CrossRef]
- Rouzaud, J.N.; Oberlin, A.; Beny-Bassez, C. Carbon films: Structure and microtexture (optical and electron microscopy, Raman spectroscopy). Thin Solid Films 1983, 105, 75–96. [Google Scholar] [CrossRef]
- Angoni, K. Remarks on the structure of carbon materials on the basis of Raman spectra. Carbon 1993, 31, 537–547. [Google Scholar] [CrossRef]
- Zhang, S.; Luo, Y.G.; Li, C.Z.; Wang, Y.G. Changes in char reactivity due to char-oxygen and char-steam reactions using victorian brown coal in a fixed-bed reactor. Chin. J. Chem. Eng. 2015, 33, 385–390. [Google Scholar] [CrossRef]
- Morga, R.; Jelonek, I.; Kruszewska, K. Relationship between coking coal quality and its micro-Raman spectral characteristics. Int. J. Coal Geol. 2014, 134–135, 17–23. [Google Scholar] [CrossRef]
- Sheng, C.D. Char structure characterised by Raman spectroscopy and its correlations with combustion reactivity. Fuel 2007, 86, 2316–2324. [Google Scholar] [CrossRef]
- Zhu, H.-L.; Yu, G.-S.; Guo, Q.-H.; Wang, X.-J. In Situ Raman spectroscopy study on catalytic pyrolysis of a bituminous coal. Energy Fuels 2017, 31, 5817–5827. [Google Scholar] [CrossRef]
- Henry, D.G.; Jarvis, I.; Gillmore, G.; Stephenson, M. A rapid method for determining organic matter maturity using Raman spectroscopy: Application to Carboniferous organic-rich mudstones and coals. Int. J. Coal Geol. 2019, 203, 87–98. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Li, Z.S. Raman spectroscopic study of chemical structure and thermal maturity of vitrinite from a suite of Australia coals. Fuel 2019, 241, 188–198. [Google Scholar] [CrossRef]
- Li, K.; Rimmer, S.M.; Liu, Q.F.; Zhang, Y.M. Micro-Raman spectroscopy of microscopically distinguishable components of naturally graphitized coals from Central Hunan Province, China. Energy Fuels 2019, 33, 1037–1048. [Google Scholar] [CrossRef]
- Lupoi, J.S.; Hackley, P.C.; Birsic, E.; Fritz, L.P.; Solotky, L.; Weislogel, A.; Schlaegle, S. Quantitative evaluation of vitrinite reflectance in shale using Raman spectroscopy and multivariate analysis. Fuel 2019, 254, 115573. [Google Scholar] [CrossRef]
- Liu, X.H.; Zheng, Y.; Liu, Z.H.; Ding, H.R.; Huang, X.H.; Zheng, C.G. Study on the evolution of the char structure during hydrogasification process using Raman spectroscopy. Fuel 2015, 157, 97–106. [Google Scholar] [CrossRef]
- Xin, H.H.; Wang, D.M.; Qi, X.Y.; Qi, G.S.; Dou, G.L. Structural characteristics of coal functional groups using quantum chemistry for quantification of infrared spectra. Fuel Process. Technol. 2014, 118, 287–295. [Google Scholar] [CrossRef]
- Bogdanowicz, K.A.; Pirone, D.; Prats-Reig, J.; Ambrogi, V.; Reina, J.A.; Giamberini, M. In situ Raman spectroscopy as a tool for structural insight into Cation Non-Ionomeric polymer interactions during Ion transport. Polymers 2018, 10, 416. [Google Scholar] [CrossRef]
- Tselev, A.; Ivanov, I.N.; Lavrik, N.V.; Belianinov, A.; Jesse, S.; Mathews, J.P.; Mitchell, G.D.; Kalinin, S.V. Mapping internal structure of coal by confocal micro-Raman spectroscopy and scanning microwave microscopy. Fuel 2014, 126, 32–37. [Google Scholar] [CrossRef]
- Baysal, M.; Yürüm, A.; Yıldız, B.; Yürüm, Y. Structure of some western Anatolia coals investigated by FTIR, Raman, 13C solid state NMR spectroscopy and X-ray diffraction. Int. J. Coal Geol. 2016, 163, 166–176. [Google Scholar] [CrossRef]
- Wang, S.; Li, T.-T.; Wu, L.P.; Zhang, L.; Dong, L.; Hu, X.; Li, C.Z. Second -order Raman spectroscopy of char during gasification. Fuel Process. Technol. 2015, 135, 105–111. [Google Scholar] [CrossRef]
- Liu, L.; Cao, Y.; Liu, Q.C. Kinetics studies and structure characteristics of coal char under pressurized CO2 gasification conditions. Fuel 2015, 146, 103–110. [Google Scholar] [CrossRef]
- Lu, L.; Sahajwalla, V.; Kong, C.; Harris, D. Quantitative X-ray diffraction analysis and its application to various coals. Carbon 2001, 39, 1821–1833. [Google Scholar] [CrossRef]
- Wang, J.; You, J.L.; Sobol, A.A.; Lu, L.M.; Wang, M.; Wu, J.; Lv, X.W.; Wan, S.m. In-situ high temperature Raman spectroscopic study on the structural evolutions of Na2W2O7 from the crystalline to molten states. and its correlations with combustion reactivity. J. Raman Spectrosc. 2016, 48, 298–304. [Google Scholar] [CrossRef]
- Wang, M.; You, J.L.; Sobol, A.A.; Lu, L.M.; Wang, J.; Xie, Y.F. In-situ studies of structure transformation and Al coordination of KAl(MoO4)(2) during heating by high temperature Raman and Al-27 NMR spectroscopies. Materials 2017, 10, 310. [Google Scholar] [CrossRef]
- Ulyanova, E.V.; Molchanov, A.N.; Prokhorov, I.Y.; Grinyov, V.G. Fine structure of Raman spectra in coals of different rank. Int. J. Coal Geol. 2014, 121, 37–43. [Google Scholar] [CrossRef]
- Shui, H.F.; Wu, Y.; Wang, Z.C.; Lei, Z.P.; Lin, C.H.; Ren, S.B.; Pan, C.X.; Kang, S.G. Hydrothermal treatment of a sub-bituminous coal and its use in coking blends. Energy Fuels 2013, 27, 138–144. [Google Scholar] [CrossRef]
- Lu, L.M.; Kong, C.H.; Sahajwlla, V.; Harris, D. Char structural ordering during pyrolysis and combustion and its influence on char reactivity. Fuel 2002, 81, 1215–1225. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, Z.D.; Zhang, H.Y.; Wang, Y.G.; Xu, X.-Q.; Cheng, L.; Zhang, Y.-M. The catalytic reforming of tar from pyrolysis and gasification of brown coal: Effects of parental carbon materials on the performance of char catalysts. Fuel Process. Technol. 2018, 174, 142–148. [Google Scholar] [CrossRef]
- Maslva, O.A.; Mikheikin, A.S.; Leontiev, I.N. Raman spectra of Taunit carbon nanomaterial. Nanotechnol. Russ. 2010, 5, 641–646. [Google Scholar] [CrossRef]
- Yu, L.W.; You, J.L.; Wang, Y.Y.; Lu, L.M.; Xie, Y.F.; Liu, X.F. Characterization of coal tar and components identification by Raman spectroscopy. J. Fuel Chem. Technol. 2015, 43, 530–536. [Google Scholar]
- Liu, X.F.; You, J.L.; Wang, Y.Y.; Lu, L.M.; Xie, Y.F.; Yu, L.W.; F, Q. Raman spectroscopic study on the pyrolysis of Australian bituminous coal. J. Fuel Chem. Technol. 2014, 42, 270–276. [Google Scholar] [CrossRef]
Sample ID | N (%) | C (%) | H (%) | S (%) | O (%) |
---|---|---|---|---|---|
C1 | 1.84 | 79.69 | 4.67 | 0.27 | 11.50 |
C2 | 1.92 | 77.84 | 4.72 | 0.41 | 7.23 |
C3 | 1.81 | 78.56 | 4.50 | 0.58 | 11.00 |
C4 | 1.88 | 78.54 | 4.26 | 0.75 | 10.70 |
C5 | 2.12 | 76.63 | 5.36 | 0.64 | 9.76 |
C6 | 1.84 | 77.02 | 4.62 | 0.44 | 11.80 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Y.; You, J.; Lu, L.; Wang, M.; Wang, J. Raman Spectroscopic Study of Coal Samples during Heating. Appl. Sci. 2019, 9, 4699. https://doi.org/10.3390/app9214699
Xie Y, You J, Lu L, Wang M, Wang J. Raman Spectroscopic Study of Coal Samples during Heating. Applied Sciences. 2019; 9(21):4699. https://doi.org/10.3390/app9214699
Chicago/Turabian StyleXie, Yingfang, Jinglin You, Liming Lu, Min Wang, and Jian Wang. 2019. "Raman Spectroscopic Study of Coal Samples during Heating" Applied Sciences 9, no. 21: 4699. https://doi.org/10.3390/app9214699
APA StyleXie, Y., You, J., Lu, L., Wang, M., & Wang, J. (2019). Raman Spectroscopic Study of Coal Samples during Heating. Applied Sciences, 9(21), 4699. https://doi.org/10.3390/app9214699