Tone Mapping of High Dynamic Range Images Combining Co-Occurrence Histogram and Visual Salience Detection
Abstract
:1. Introduction
2. Proposed Method
2.1. Construction of Image Co-Occurrrence Histogram
2.2. Estimation of Detail Layer
2.3. Tone Mapping Operator (TMO)
2.4. Chromatic Adaptation Transform (CAT) Based on CMCCAT2000
3. Experimental Results and Evaluations
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
Equation Symbol(s) | |
Symmetric square matrix of size | |
Co-occurrence histogram | |
Probability mass function (PMF) | |
Inverted PMF | |
Total number of nonzero items in | |
Corresponding image saliency | |
Saliency of image gradient orientation | |
Edge-aware weighting | |
Saliency-aware weighting | |
Standard deviation | |
Mean value | |
Base layer of image | |
Detail layer of image | |
Overlapping window | |
Input luminance value | |
Key value. | |
Visual gamma function. | |
TMO final result | |
, , | Corresponding R, G, B for white point |
, , | Corresponding X, Y, Z for white point |
, , | Reference white in reference illumination |
D | Incomplete adaptation |
, | Reference adaptation field |
F | Surround luminance factor |
, , | Cone response function |
References
- Reinhard, E.; Heidrich, W.; Debevec, P.; Pattanaik, S.; Ward, G.; Myszkwski, K. High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting; Morgan Kaufmann: San Mateo, CA, USA, 2010. [Google Scholar]
- Yeganch, H.; Wang, Z. High Dynamic Range Image Tone Mapping by Maximizing a Structural Fidelity Measure; ICASSP: Vancouver, ON, Canada, 2013; pp. 1879–1883. [Google Scholar]
- Yeganch, H.; Wang, Z. Objective quality assessment of tone-mapped images. IEEE Trans. Image Process 2013, 22, 657–667. [Google Scholar] [CrossRef] [PubMed]
- Nawaria, M.; Da Silba, P.; Le Callet, P.; Pepion, R. Tone mapping based HDR compression: Does it affect visual experience? Signal Process. Image Commun. 2014, 29, 257–276. [Google Scholar] [CrossRef]
- Reinhard, E.; Stark, M.; Shirley, P.; Ferwerda, J. Photographic Tone Reproduction for Digital Images. ACM Trans. Graph. 2002, 21, 267–276. [Google Scholar] [CrossRef]
- Fairchild, M.D.; Johnson, G.M. iCAM framework for image appearance, differences and quality. J. Electron. Imaging 2004, 13, 126–138. [Google Scholar] [CrossRef]
- Kuang, J.; Johnson, G.M.; Fairchild, M.D. iCAM06: A refined image appearance model for HDR image rendering. J. Vis. Commun. Image Represent 2007, 18, 406–414. [Google Scholar] [CrossRef]
- Hwi-Gang, K.; Sung-Hark, L.; Tae-Wuk, B.; Kyu-Ik, S. Color saturation compensation in iCAM06 for high-chroma HDR image. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 2011, 94, 2353–2357. [Google Scholar]
- Mantiuk, R.; Tomaszewska, A.; Heidrich, W. Color correction for tone mapping. Comput. Graph. Forum 2009, 28, 193–202. [Google Scholar] [CrossRef]
- Reinhard, E.; Pouli, T.; Kunkel, T.; Long, B.; Ballestad, A.; Damberg, G. Calibrated Image Appearance Reproduction. ACM Trans. Graph. 2012, 31, 201. [Google Scholar] [CrossRef]
- Choi, H.H.; Kim, G.-S.; Yun, B.-J. Modeling a color-rendering operator for high dynamic range images using a cone-response function. J. Electron. Imaging 2015, 24, 053005. [Google Scholar] [CrossRef] [Green Version]
- Cyriac, P.; Kane, D.; Bertalmio, M. Optimized Tone Curve for In-Camera Image Processing. In Proceedings of the IS&T Electronic imaging Conference, San Francisco, CA, USA, 14–18 February 2016. [Google Scholar]
- Hristova, H. Example-Guided Image Editing. Ph.D. Thesis, University of Rennes, Rennes, France, 2017. [Google Scholar]
- Choi, H.-H.; Kim, E.-S.; Yun, B.-J. Tone Mapping High Dynamic Range image using Cone Response Function based on CAM16. In Proceedings of the 2019 Eleventh International Conference on Ubiquitous and Future Network (ICUFN), Zagreb, Croatia, 2–5 July 2019; pp. 639–641. [Google Scholar]
- Kinoshita, Y.; Shiota, S.; Kiya, H. Reinhard’s global operator based inverse Tone mapping with one parameter. In Proceedings of the 2017 Eighth International Workshop on Signal Design and Its Applications in Communications (IWSDA), Sapporo, Japan, 24–28 September 2017; pp. 49–53. [Google Scholar]
- Akyuz, A.O.; Reinhard, E. Color appearance in high-dynamic-range imaging. J. Electron. Imaging 2006, 15, 033001. [Google Scholar]
- Lee, S.-H.; Jang, S.-W.; Kim, E.-S.; Sohng, K.-I. The Quantitative Model for Optimal Threshold and Gamma of Display Using Brightness Function. IEICE 2006, 89, 1720–1723. [Google Scholar] [CrossRef]
- Lee, G.-Y.; Lee, S.-H.; Kwon, H.-J.; Sohng, K.I. Visual sensitivity correlated tone reproduction for low dynamic range images in the compression field. Opt. Eng. 2014, 53, 113111. [Google Scholar] [CrossRef] [Green Version]
- Lu, S.; Tan, C.; Lim, J. Robust and Efficient Saliency Modeling from Image Co-Occurrence Histogram. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 36, 195–201. [Google Scholar] [PubMed]
- He, K.; Sun, J.; Tang, X. Guided Image Filtering. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1397–1409. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, A. Region-of-Interest Extraction Based on Saliency Analysis of Co-Occurrence Histogram in High Spatial Resolution Remote Sensing Images. IEEE J. Sel. Top. Appl. Earth Obs. Sens. 2015, 8, 2111–2124. [Google Scholar] [CrossRef]
- Goldstein, S.; Lebowitz, J.L. On the (Boltzmann) entropy of non-equilibrium system. Phys. D Nonlinear Phenom. 2004, 193, 53–66. [Google Scholar] [CrossRef]
- Li, Z.; Zheng, J.; Zhu, Z.; Yao, W.; Wu, S. Weighted Guided Image Filtering. IEEE Trans. Image Process. 2015, 24, 120–129. [Google Scholar] [PubMed]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar]
- Itti, L.; Koch, C.; Niebur, E. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 1254–1259. [Google Scholar] [CrossRef] [Green Version]
- Hurvich, L.M.; Jameson, D. The Perception of Brightness and Darkness; Allyn & Bacon: Boston, MA, USA, 1966. [Google Scholar]
- Li, C.; Luo, M.R.; Rigg, B.; Hunt, R.W.G. CMC 2000 chromatic adaptation transform: CMCCAT2000. Col. Res. Appl. 2002, 27, 49–58. [Google Scholar] [CrossRef]
- ICC3D Version 1.2.9, (c) 2002–2003; Gjovik University College: Gjøvik, Norway, 2002–2003.
- Kang, H.R. Computational Color Technology; SPIE PRESS: Bellingham, WA, USA, 2006. [Google Scholar]
- Ohta, N.; Robertson, A.R. Colorimetry Fundamentals and Applications; Wiley: New York, NY, USA, 2005. [Google Scholar]
- Morovic, J. Color Gamut Mapping; Wiley: New York, NY, USA, 2008. [Google Scholar]
iCAM06 | Reinhard’s Method | Choi’s Method | Proposed Method | |
---|---|---|---|---|
Computational cost | 8.6238 | 1.986 | 5.89 | 29.7170 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, H.-H.; Kang, H.-S.; Yun, B.-J. Tone Mapping of High Dynamic Range Images Combining Co-Occurrence Histogram and Visual Salience Detection. Appl. Sci. 2019, 9, 4658. https://doi.org/10.3390/app9214658
Choi H-H, Kang H-S, Yun B-J. Tone Mapping of High Dynamic Range Images Combining Co-Occurrence Histogram and Visual Salience Detection. Applied Sciences. 2019; 9(21):4658. https://doi.org/10.3390/app9214658
Chicago/Turabian StyleChoi, Ho-Hyoung, Hyun-Soo Kang, and Byoung-Ju Yun. 2019. "Tone Mapping of High Dynamic Range Images Combining Co-Occurrence Histogram and Visual Salience Detection" Applied Sciences 9, no. 21: 4658. https://doi.org/10.3390/app9214658
APA StyleChoi, H.-H., Kang, H.-S., & Yun, B.-J. (2019). Tone Mapping of High Dynamic Range Images Combining Co-Occurrence Histogram and Visual Salience Detection. Applied Sciences, 9(21), 4658. https://doi.org/10.3390/app9214658