# Design and Optimization of Origami-Inspired Orthopyramid-Like Core Panel for Load Damping

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Experimental Work

#### 2.1. Orthopyramid-Like Origami Element Geometry

#### 2.2. Orthopyramid-Like Origami Element and Panel Configurations

## 3. Fabrication of the Panel

## 4. Mechanical Testing Procedure

#### 4.1. Compression Test

#### 4.2. Impact Test

## 5. Finite Element Simulation

#### 5.1. Material Properties

^{3}, Poisson’s ratio v = 0.3, initial yield stress σ

_{y}= 15.56 MPa, ultimate stress σ

_{u}= 38.20 MPa. The sample after tensile testing is shown in Figure 8.

#### 5.2. Simulation of Compression Test

#### 5.3. Simulation of Impact Test

## 6. Result and Discussion

#### 6.1. Result of Compression Test

#### 6.2. Result of Impact Test

#### 6.3. Simulation Result and Comparison

#### 6.4. Optimize the Best Geometric Parameters

## 7. Conclusions and Prospect

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Zhou, X.; Wang, H.; You, Z. Mechanical properties of Miura-based folded cores under quasi-static loads. Thin Wall. Struct.
**2014**, 82, 296–310. [Google Scholar] [CrossRef] - Florence, A.; Jaswin, M.A. Vibration and flexural characterization of hybrid honeycomb core sandwich panels filled with different energy absorbing materials. Mater. Res. Express.
**2019**, 6, 075326. [Google Scholar] [CrossRef] - Birman, V.; Kardomateas, G.A. Review of current trends in research and applications of sandwich structures. Compos. Part B Eng.
**2018**, 142, 221–240. [Google Scholar] [CrossRef] - Sebaey, T.A.; Mandi, E. Crushing behavior of a unit cell of CFRP lattice core for sandwich structures’ application. Thin Wall. Struct.
**2017**, 116, 91–95. [Google Scholar] [CrossRef] - Wang, Y.P.; Gong, X.L.; Xuan, S.H. Study of low-velocity impact response of sandwich panels with shear-thickening gel cores. Smart Mater. Struct.
**2018**, 27, 065008. [Google Scholar] [CrossRef] [Green Version] - Yu, B.; Han, B.; Su, P.; Ni, C.; Zhang, Q.; Lu, T. Graded square honeycomb as sandwich core for enhanced mechanical performance. Mater. Des.
**2016**, 89, 642–652. [Google Scholar] [CrossRef] - Kumar, S.; Renji, K. Estimation of strains in composite honeycomb sandwich panels subjected to low frequency diffused acoustic field. J. Sound Vib.
**2019**, 449, 84–97. [Google Scholar] [CrossRef] - Wang, Z.; Li, Z.; Xiong, W. Experimental investigation on bending behavior of honeycomb sandwich panel with ceramic tile face-sheet. Compos. Part B Eng.
**2019**, 164, 280–286. [Google Scholar] [CrossRef] - Pan, G.; Zhang, P.; Liu, J. Experimental and numerical analyses on the dynamic response of aluminum foam core sandwich panels subjected to localized air blast loading. Mar. Struct.
**2019**, 65, 343–361. [Google Scholar] - Yin, H.; Wen, G. Crashworthiness optimization design of honeycomb based on simplified basic folding element method. J. Mech. Eng.
**2011**, 47, 93–100. [Google Scholar] [CrossRef] - Hao, J.; Wu, X.; Liu, W. Modeling and verification of sandwich beam with wooden skin and honey-comb core subjected to transverse loading. Sci. Silvae Sin.
**2019**, 50, 128–137. [Google Scholar] - Seeliger, H.W. Aluminium foam sandwich (AFS) ready for market introduction. Adv. Eng. Mater.
**2010**, 6, 448–451. [Google Scholar] [CrossRef] - Xin, F.; Lu, T. Analytical modeling of fluid loaded orthogonally rib-stiffened sandwich structures: Sound transmission. J. Mech. Phys. Sol.
**2010**, 58, 1374–1396. [Google Scholar] [CrossRef] - Hýsek, Š.; Frydrych, M.; Herclík, M.; Louda, P.; Fridrichová, L.; Le Van, S.; Le Chi, H. Fire-Resistant Sandwich-Structured Composite Material Based on Alternative Materials and Its Physical and Mechanical Properties. Materials
**2019**, 12, 1432. [Google Scholar] [CrossRef] [PubMed] - Hýsek, Š.; Frydrych, M.; Herclík, M.; Fridrichová, L.; Louda, P.; Knížek, R.; Le Van, S.; Le Chi, H. Permeable Water-Resistant Heat Insulation Panel Based on Recycled Materials and Its Physical and Mechanical Properties. Molecules
**2019**, 24, 3300. [Google Scholar] [CrossRef] - Herrmann, A.S.; Zahlen, P.C.; Zuardy, I. Sandwich structures technology in commerical aviation: Present applications and future trends. J. Sandw. Struct. Mater.
**2005**, 7, 13–26. [Google Scholar] - Sab, K.; Lebée, A. Transverse shear stiffness of a chevron folded core used in sandwich construction. Int. J. Sol. Struct.
**2010**, 47, 2620–2629. [Google Scholar] [Green Version] - Elder, T.; Rozairo, D.; Croll, A.B. Origami inspired mechanics: Measuring modulus and force recovery with bent polymer films. Macromolecules
**2019**, 52, 690–699. [Google Scholar] [CrossRef] - Peraza-Hernandez, E.A.; Hartl, D.J.; Malak, R.J., Jr.; Lagoudas, D.C. Origami-inspired active structures: A synthesis and review. Smart Mater. Struct.
**2014**, 23, 094001. [Google Scholar] [CrossRef] - Turner, N.; Goodwine, B.; Sen, M. A review of origami applications in mechanical engineering. Proc Inst. Mech. Eng. C
**2016**, 230, 2345–2362. [Google Scholar] [CrossRef] - Ma, J.; Hou, D.; Chen, Y. Quasi-static axial crushing of thin-walled tubes with a kite-shape rigid origami pattern: Numerical simulation. Thin Wall. Struct.
**2016**, 100, 38–47. [Google Scholar] [CrossRef] - Schenk, M. Folded Shell Structures. Ph.D. Thesis, Clare College University of Cambridge, Cambridge, UK, 2011. [Google Scholar]
- Schenk, M.; Guest, S.D. Geometry of Miura-folded metamaterials. Proc. Natl. Acad. Sci. USA
**2013**, 110, 3276–3281. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Eidini, M.; Paulino, G.H. Unraveling metamaterial properties in zigzag-base folded sheets. Sci. Adv.
**2015**, 1, e1500224. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Hernandez, E.A.P.; Hartl, D.J.; Lagoudas, D.C. Design of origami structures with smooth folds. In Proceedings of the ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Stove, VT, USA, 28–30 September 2016. [Google Scholar]
- Tachi, T. Designing freeform origami tessellations by generalizing Resch’s patterns. J. Mech. Design.
**2013**, 135, 111006. [Google Scholar] [CrossRef] - Feng, H.; Ma, J.; Chen, Y.; You, Z. Twist of tubular mechanical metamaterials based on waterbomb origami. Sci. Rep.
**2018**, 8, 9522. [Google Scholar] [CrossRef] [PubMed] - Cai, J.; Deng, X.; Xu, Y.; Feng, J. Motion analysis of a foldable barrel vault based on regular and irregular yoshimura origami. J. Mech. Robot.
**2016**, 8, 021017. [Google Scholar] [CrossRef] - Zakirov, I.I. Study of creasing parameters at shaping of folded cores in sandwich panels. Russ. Aeronaut.
**2013**, 56, 191–193. [Google Scholar] [CrossRef] - Zakirov, I.M.; Alekseev, K.A.; Kayumov, R.A.; Gainutdinov, I.R. Some possible techniques for improving the strength characteristics of folded cores from sheet composite materials. Russ. Aeronaut.
**2009**, 52, 347–350. [Google Scholar] [CrossRef] - Kayumov, R.A.; Zakirov, I.M.; Alekseev, K.P.; Alekseev, K.A.; Zinnurov, R.A. Determination of load-carrying capacity in panels with chevron-type cores. Russ. Aeronaut.
**2007**, 50, 357–361. [Google Scholar] [CrossRef] - Wang, F.; Guo, X.; Xu, J.; Zhang, Y.; Chen, C.Q. Patterning curved three-dimensional structures with programmable kirigami designs. Int. J. Appl. Mech.
**2017**, 84, 061007. [Google Scholar] [CrossRef] - Nasser, H.; Lebee, A.; Monasse, L. Curvature, metric and parametrization of origami tessellations: Theory and application to the eggbox pattern. Proc. R. Soc. A Math. Phys. Eng. Sci.
**2017**, 473, 20160705. [Google Scholar] [CrossRef] [PubMed] - Zhang, P.; Li, X.; Wang, Z.; Zhao, L.; Yan, X. Dynamic blast loading response of sandwich beam with origami-inspired core. Res. Phys.
**2018**, 10, 946–955. [Google Scholar] [CrossRef] - Kshad, M.A.E.; Naguib, H.E. Development and modeling of multi-phase polymeric origami inspired architecture by using pre-molded geometrical features. Smart Mater. Struct.
**2017**, 26, 025012. [Google Scholar] [CrossRef] - Kshad, M.A.E.; Popinigis, C.; Naguib, H.E. 3D printing of Ron-Resch-like origami cores for compression and impact load damping. Smart Mater. Struct.
**2019**, 28, 015027. [Google Scholar] [CrossRef] - Saito, K.; Nojima, T.; Hagiwara, I. Relation between geometrical patterns and mechanical properties in newly developed light-weight core panels. Trans. JSME. A
**2008**, 74, 1580–1586. [Google Scholar] [CrossRef] - Li, D.; Dai, N.; Tang, Y.; Dong, G.; Zhao, Y. Design and optimization of graded cellular structures with triply periodic level surface-based topological shapes. J. Mech. Des.
**2019**, 141, 071402. [Google Scholar] [CrossRef] - Liu, J.T.; Feng, Y.X.; Zheng, H.; Tan, J.R. Innovative design of regular unit-cell and energy-absorbing features under impact of polyhedron sandwich structure. Chin. J. Mech.
**2017**, 53, 147–156. [Google Scholar] [CrossRef] - Qiu, H.; Gao, Y.C.; Feng, Y.X.; Zheng, H.; Tan, J.R. The evolutionary mechanism of unit cell: Parameterizations of polyhedron sandwich structure based on rigid origami. In Proceedings of the 18th International Conference on Geometry and Graphics, Milan, Italy, 3–7 August 2018; pp. 701–710. [Google Scholar]
- Yap, Y.L.; Yeong, W.Y. Shape recovery effect of 3D printed polymeric honeycomb. Virt. Phys. Prototyp.
**2015**, 10, 91–99. [Google Scholar] [CrossRef] - Li, S.; Fang, H.; Sadeghi, S.; Bhovad, P.; Wang, K.W. Architected origami materials: How folding creates sophisticated mechanical properties. Adv. Mater.
**2019**, 31, 1805282. [Google Scholar] [CrossRef] - Zadpoor, A.A. Mechanical meta-materials. Mater. Horiz.
**2016**, 3, 371–381. [Google Scholar] [CrossRef] [Green Version] - Zeng, S.; Gao, Y.; Feng, Y.; Zheng, H.; Qiu, H.; Tan, J. Programming the deformation of a temperature-driven bilayer structure in 4D printing. Smart Mater. Struct.
**2019**, 28, 105031. [Google Scholar] [CrossRef] - Evans, A.G.; Hutchinson, J.W.; Fleck, N.A.; Ashby, M.F.; Wadley, H.N.G. The topological design of multifunctional cellular metals. Prog. Mater. Sci.
**2001**, 46, 309–327. [Google Scholar] [CrossRef] - Lahoz-Beltra, R. Quantum genetic algorithms for computer scientists. Computers
**2016**, 5, 24. [Google Scholar] [CrossRef] - Gao, Y.; Feng, Y.; Wang, Q.; Zheng, H.; Tan, J. A multi-objective decision making approach for dealing with uncertainty in EOL product recovery. J. Clean. Prod.
**2018**, 204, 712–725. [Google Scholar] [CrossRef] - Gao, Y.; Feng, Y.; Zhang, Z.; Tan, J. An optimal dynamic interval preventive maintenance scheduling for series systems. Reliab. Eng. Syst. Saf.
**2015**, 142, 19–30. [Google Scholar] [CrossRef] - Feng, Y.; Gao, Y.; Tian, G.; Li, Z.; Hu, H.; Zheng, H. Flexible Process Planning and End-of-Life Decision-Making for Product Recovery Optimization Based on Hybrid Disassembly. IEEE Trans. Autom. Sci. Eng.
**2018**, 99, 1–16. [Google Scholar] [CrossRef]

**Figure 4.**OL-4-3/4 model as an example. (

**a**) Three-dimensional picture; (

**b**) the top view; (

**c**) the detailed dimensions.

**Figure 5.**The devised panels of different elements. (

**a**) OL-3-1/2; (

**b**) OL-3-3/4; (

**c**) OL-3-5/6; (

**d**) OL-4-1/2; (

**e**) OL-4-3/4; (

**f**) OL-4-5/6; (

**g**) OL-6-1/2; (

**h**) OL-6-3/4; (

**i**) OL-6-5/6.

**Figure 7.**3D-printed core panels. (

**a**) OL-3-1/2; (

**b**) OL-3-3/4; (

**c**) OL-3-5/6; (

**d**) OL-4-1/2; (

**e**) OL-4-3/4; (

**f**) OL-4-5/6; (

**g**) OL-6-1/2; (

**h**) OL-6-3/4; (

**i**) OL-6-5/6.

**Figure 11.**Comparision of stress–strain and Young’s modulus. (

**a**) Stress–strain curves of OL-3; (

**b**) stress–strain curves of OL-4; (

**c**) stress–strain curves of OL-6; (

**d**) Ccmparision of Young’s modulus.

**Figure 16.**The compressive deformation of OL-4-3/4 panel. (

**a**) The whole compressive deformation; (

**b**) the z-directional compressive deformation.

**Figure 17.**The impact simulation of OL-4-3/4 model. (

**a**) The total deformation plastic strain in impact event; (

**b**) The equivalent von-Mises Stress distribution on the panel.

Sample | H (mm) | L (mm) | S (mm) | w |
---|---|---|---|---|

OL-3-1/2 | 10 | 12.25 | 12.25 | 1/2 |

OL-3-3/4 | 10 | 24.50 | 17.32 | 3/4 |

OL-3-5/6 | 10 | 32.85 | 21.44 | 5/6 |

OL-4-1/2 | 10 | 9.10 | 11.90 | 1/2 |

OL-4-3/4 | 10 | 17.96 | 16.16 | 3/4 |

OL-4-5/6 | 10 | 23.93 | 19.65 | 5/6 |

OL-6-1/2 | 10 | 6.05 | 11.69 | 1/2 |

OL-6-3/4 | 10 | 11.89 | 15.54 | 3/4 |

OL-6-5/6 | 10 | 15.82 | 18.72 | 5/6 |

Edge Number | Similarity Parameter | Young’s Modulus (MPa) |
---|---|---|

OL-3 | 1/2 | 2442.9 ± 160.8 |

3/4 | 1399.2 ± 247.3 | |

5/6 | 357.6 ± 117.3 | |

OL-4 | 1/2 | 2632.6 ± 245.2 |

3/4 | 870.8 ± 105.9 | |

5/6 | 290.3 ± 93.8 | |

OL-6 | 1/2 | 2456.5 ± 110.3 |

3/4 | 629.6 ± 97.8 | |

5/6 | 271.7 ± 63.0 |

Edge Number | Similarity Parameter | Specific Modulus of Elasticity (MPa/kg) |
---|---|---|

OL-3 | 1/2 | 195,800 ± 11,340 |

3/4 | 128,300 ± 22,680 | |

5/6 | 66,150 ± 11,660 | |

OL-4 | 1/2 | 203,500 ± 19,330 |

3/4 | 869,100 ± 10,570 | |

5/6 | 30,800± 9955 | |

OL-6 | 1/2 | 199,700 ± 8999 |

3/4 | 64,230 ± 9979 | |

5/6 | 29,360 ± 6811 |

Edge Number | Similarity Parameter | The Maximum Impact Forces (N) |
---|---|---|

OL-3 | 1/2 | 6851.8 ± 122.8 |

3/4 | 5128.6 ± 442.0 | |

5/6 | 4699.6 ± 662.6 | |

OL-4 | 1/2 | 6911.0 ± 80.4 |

3/4 | 3906.4 ± 339.4 | |

5/6 | 3448.2 ± 767.2 | |

OL-6 | 1/2 | 6620.8 ± 191.9 |

3/4 | 3627.0 ± 104.4 | |

5/6 | 2890.3 ± 166.2 |

Edge Number | Similarity Parameter | Maximum Equivalent Strain | Maximum Equivalent Stress (MPa) |
---|---|---|---|

OL-3 | 1/2 | 0.685 | 2330 |

3/4 | 0.550 | 1650 | |

5/6 | 0.453 | 913 | |

OL-4 | 1/2 | 446 | 1970 |

3/4 | 0.544 | 1100 | |

5/6 | 0.676 | 1380 | |

OL-6 | 1/2 | 0.602 | 2890 |

3/4 | 0.692 | 1490 | |

5/6 | 0.422 | 1000 |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Feng, Y.; Li, K.; Gao, Y.; Qiu, H.; Liu, J.
Design and Optimization of Origami-Inspired Orthopyramid-Like Core Panel for Load Damping. *Appl. Sci.* **2019**, *9*, 4619.
https://doi.org/10.3390/app9214619

**AMA Style**

Feng Y, Li K, Gao Y, Qiu H, Liu J.
Design and Optimization of Origami-Inspired Orthopyramid-Like Core Panel for Load Damping. *Applied Sciences*. 2019; 9(21):4619.
https://doi.org/10.3390/app9214619

**Chicago/Turabian Style**

Feng, Yixiong, Kangjie Li, Yicong Gao, Hao Qiu, and Jiatian Liu.
2019. "Design and Optimization of Origami-Inspired Orthopyramid-Like Core Panel for Load Damping" *Applied Sciences* 9, no. 21: 4619.
https://doi.org/10.3390/app9214619