Anthropomorphic Prosthetic Hand with Combination of Light Weight and Diversiform Motions
Abstract
:1. Introduction
2. Related Grasp Extraction
2.1. Motion Analysis of Power Grasps
2.2. Motion Analysis of Precision Grasps
2.3. Achievable Grasp Motions
3. Hand Design
3.1. Finger Design
3.2. Thumb Design
3.3. Unactuated Extension
3.4. Passive Hyperextension
4. Experiments
4.1. Grasp Motion Verification Experiment
4.2. Pick-and-Place Experiment
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix A.1. Parameters of Actuators
Motors | Model | Torque (kg/cm) | Weight (g) | Size (mm) | Rotation Degrees (°) |
---|---|---|---|---|---|
Motor 1 | HP-DS13-FMB | 5.5 | 24.5 | 297 × 13 × 33 | −70 to +70 |
Motor 2 | HP-DS095-FMD | 4.5 | 18.3 | 31.5 × 9.5 × 32.7 | |
Motor 3 |
Appendix A.2. Theoretical Calculation
Appendix A.2.1. Elastic Coefficient Calculation
Finger/Phalange | Gravitational Force (N) | ||
---|---|---|---|
MP | PIP | DIP | |
Index | 0.032 | 0.019 | 0.010 |
Middle | 0.034 | 0.025 | 0.011 |
Ring | 0.029 | 0.023 | 0.014 |
Metacarpal of ring finger | 0.058 | ||
Little | 0.023 | 0.018 | 0.014 |
Metacarpal of little finger | 0.113 | ||
CM | MP | IP | |
Thumb | 0.050 | 0.033 | 0.019 |
Elastic Coefficient form the Thumb to Little Finger | Elastic Coefficient (N/mm) |
---|---|
0.019 | |
0.065 | |
0.086 | |
0.072 | |
0.044 |
Appendix A.2.2. Spring Coefficient for Passive Hyperextension
Finger | CM | MP | IP |
---|---|---|---|
Thumb | 50 | 30 | 25 |
MP | PIP | DIP | |
Index | 30 | 20 | 20 |
Middle | 32 | 25 | 22 |
Ring | 30 | 23 | 20 |
Little | 22 | 18 | 20 |
References
- Salisbury, J.K.; Mason, M.T. Robot Hands and the Mechanics of Manipulation; MIT Press: Cambridge, MA, USA, 1985. [Google Scholar]
- Mouri, T.; Endo, T.; Kawasaki, H. Review of gifu hand and its application. Mech. Based Des. Struct. Mach. 2011, 39, 210–228. [Google Scholar] [CrossRef]
- Diftler, M.A.; Radford, N.A.; Mehling, J.S.; Abdallah, M.E.; Bridgwater, L.B.; Sanders, A.M.; Askew, R.S.; Linn, D.M.; Yamokoski, J.D.; Permenter, F.A.; et al. Robonaut 2—The first humanoid robot in space. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 2178–2183. [Google Scholar]
- Grebenstein, M.; Chalon, M.; Hirzinger, G.; Siegwart, R. Antagonistically driven finger design for the anthropomorphic dlr hand arm system. In Proceedings of the 2010 10th IEEE-RAS International Conference on Humanoid Robots, Nashville, TN, USA, 6–8 December 2010; pp. 609–616. [Google Scholar]
- Birglen, L.; Gosselin, C.; Lalibert’e, T. Underactuated Robotic Hands; Springer: Berlin/Heidelberg, Germany; Quebec City, QC, Canada, 2010. [Google Scholar]
- Pons, J.; Rocon, E.; Ceres, R.; Reynaerts, D.; Saro, B.; Levin, S.; Moorleghem, W.V. The manus-hand dextrous robotics upper limb prosthesis: Mechanical and manipulation aspects. Auton. Robots 2004, 16, 143–163. [Google Scholar] [CrossRef]
- Cabas, R.; Cabas, L.M.; Balaguer, C. Optimized design of the underactuated robotic hand. In Proceedings of the 2006 IEEE International Conference on Robotics and Automation, Orlando, FL, USA, 15–19 May 2006; pp. 982–987. [Google Scholar]
- Belter, J.T.; Dollar, A.M. Novel differential mechanism enabling two DoF from a single actuator: Application to a prosthetic hand. In Proceedings of the 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR), Seattle, WA, USA, 24–26 June 2013; pp. 1–6. [Google Scholar]
- Tavakoli, M.; de Almeida, A. Adaptive under-actuated anthropomorphic hand: Isr-softhand. In Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA, 14–18 September 2014; pp. 1629–1634. [Google Scholar]
- Rebollo, D.R.R.; Ponce, P.; Molina, A. From 3 fingers to 5 fingers dexterous hands. Adv. Robot. 2017, 31, 1051–1070. [Google Scholar] [CrossRef]
- Zheng, J.Z.; Rosa, S.D.L.; Dollar, A.M. An Investigation of Grasp Type and Frequency in Daily Household and Machine Shop Tasks. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 4169–4175. [Google Scholar]
- Belter, J.T.; Segil, J.L.; Dollar, A.M.; Weir, R.F. Mechanical design and performance specifications of anthropomorphic prosthetic hands: A review. J. Rehabil. Res. Dev. 2013, 50, 599–618. [Google Scholar] [CrossRef]
- Light, C.M.; Chappell, P.H. Development of a lightweight and adaptable multiple-axis hand prosthesis. Med. Eng. Phys. 2000, 22, 679–684. [Google Scholar] [CrossRef]
- Massa, B.; Roccella, S.; Carrozza, M.C.; Dario, P. Design and development of an underactuated prosthetic hand. In Proceedings of the 2002 IEEE International Conference on Robotics and Automation, Washington, DC, USA, 11–15 May 2002; pp. 3374–3379. [Google Scholar]
- Dechev, N.; Cleghorn, W.L.; Naumann, S. Multiple finger, passive adaptive grasp prosthetic hand. Mech. Mach. Theory 2001, 36, 1157–1173. [Google Scholar] [CrossRef]
- Xu, Z.; Todorov, E. Design of a highly biomimetic anthropomorphic robotic hand towards artificial limb regeneration. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 3485–3492. [Google Scholar]
- Mouri, T.; Kawasaki, H.; Yoshikawa, K.; Takai, J.; Ito, S. Anthropomorphic Robot Hand Gifu Hand III. In Proceedings of the International Conference on Control, Automation and Systems, Muju, Korea, 16–19 October 2002; pp. 1288–1293. [Google Scholar]
- Fukaya, N.; Toyama, S.; Asfour, T.; Dillmann, R. Design of the TUAT/Karlsruhe humanoid hand. In Proceedings of the 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Takamatsu, Japan, 31 October–5 November 2000; Volume 3, pp. 1754–1759. [Google Scholar]
- Biddiss, E.; Beaton, D.; Chau, T. Consumer design priorities forupper limb prosthetics. Disabil. Rehabil. Assist. Technol. 2007, 2, 346–357. [Google Scholar] [CrossRef] [PubMed]
- Kontoudis, G.P.; Liarokapis, M.V.; Zisimatos, A.G.; Mavrogiannis, C.I.; Kyriakopoulos, K.J. Open-Source, Anthropomorphic, Underactuated Robot Hands with a Selectively Lockable Differential Mechanism: Towards Affordable Prostheses. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015; pp. 5857–5862. [Google Scholar]
- Santello, M.; Flanders, M.; Soechting, J.F. Postural hand synergies for tool use. J. Neurosci. 1998, 18, 10105–10115. [Google Scholar] [CrossRef] [PubMed]
- Cutkosky, M.R. On grasp choice, grasp models, and the design of hands for manufacturing tasks. IEEE Trans. Robot. Autom. 1989, 5, 269–279. [Google Scholar] [CrossRef]
- Napier, J. The prehensile movements of the human hand. J. Bone Joint Surg. 1956, 38, 902–913. [Google Scholar] [CrossRef]
- Feix, T. Anthropomorphic Hand Optimization Based on a Latent Space Analysis. Master’s Thesis, Technische Universitt Wien, Vienna, Austria, 2011. [Google Scholar]
- Ishikawa, Y.; Yu, W.; Yokoi, H. Development of robot hands with an adjustable power transmitting mechanism. Intell. Eng. Syst. Neural Netw. 2000, 10, 631–636. [Google Scholar]
- Kato, R.; Yokoi, H.; Arai, T. Competitive learning method for robust EMG-to-motion classifier. Intell. Auton. Syst. 2006, 9, 946–953. [Google Scholar]
- Kato, R.; Nishikawa, D.; Yu, W.; Yokoi, H.; Kakazu, Y. Evaluation of biosignal processing method for welfare assisting devices Evaluation of EMG information extraction processing using entropy. J. Robot. Mech. 2002, 14, 573–580. [Google Scholar] [CrossRef]
- Jiang, Y.; Sakoda, S.; Hoshigawa, S.; Ye, H.; Yabuki, Y.; Nakamura, T.; Ishihara, M.; Takagi, T.; Takayama, S.; Yokoi, H. Development and evaluation of simplified EMG prosthetic hands. In Proceedings of the 2014 IEEE International Conference on Robotics and Biomimetics, Bali, Indonesia, 5–10 December 2014; pp. 1368–1373. [Google Scholar]
- Yong, X.; Jing, X.; Jiang, Y.; Yokoi, H.; Kato, R. Tendon Drive Finger Mechanisms for an EMG Prosthetic Hand with Two Motors. In Proceedings of the 2014 7th International Conference on BioMedical Engineering and Informatics, Dalian, China, 14–16 October 2014; pp. 466–471. [Google Scholar]
Achievable Grasp Motions | Required Digits Motions | ||||
---|---|---|---|---|---|
Four Fingers | Thumb | ||||
Power | Non-prehensile | Platform Push (15) | Extension | Extension/Abduction | |
Prehensile | Lateral Pinch (16) | Flexion | Flexion/Adduction | ||
Prismatic | Large Diameter (1), Small Diameter (2), Medium Wrap (3) | Flexion | Flexion/Adduction | ||
Adducted Thumb (4), Light Tool (5) | Flexion | Extension/Abduction | |||
Circular | Sphere (11) | Flexion | Flexion/Adduction | ||
Precision | Prismatic | Thumb-2 Finger (8), Thumb Index Finger (9) | Flexion | Flexion/Adduction | |
Circular | Disk (12), Sphere (13), Tripod (14) | Flexion | Flexion/Adduction |
Object | Weight [g] | Shape | Size [mm] |
---|---|---|---|
Card | 4.0 | Thin plate | |
Wood block | 34.5 | Cylinder | 29.4119.6 |
Sponge ball | 24.8 | Sphere | 65.6 |
Foam balls (small) | 0.7 | Ellipsoid | 137.0; 230.0 |
Foam balls (big) | 1.7 | Sphere | 49.4 |
PET bottle | 16.6 | Cylinder | 66.4 162.5 |
Mark pen (big size) | 8.3 | Cylinder | 10.5 141.0 |
Mark pen (small size) | 12.1 | Cylinder | 17.0 118.0 |
| | | | |
(grasp 1) Large Diameter | (grasp 2) Small Diameter | (grasp 3) Medium Wrap | (grasp 4) Adducted Thumb | (grasp 5) Light Tool |
| | | | |
| | | | |
(grasp 8) Thumb-2 Finger | (grasp 9) Thumb Index Finger | (grasp 11) Sphere | (grasp 12) Disk | (grasp 13) Sphere |
| | | | |
| | | ||
(grasp 14) Tripod | (grasp 15) Platform Push | (grasp 16) Lateral Pinch | ||
| | |
| |
(grasp 15) Platform Push | (grasp 16) Lateral Pinch |
| |
| |
(grasp 4) Adducted Thumb | (grasp 14) Tripod |
| |
| | |
(grasp 15) Platform Push | (grasp 16) Lateral Pinch | (grasp 3) Medium Wrap |
| | |
| | |
(grasp 14) Tripod | (grasp 2) Small Diameter | |
| |
| | |
(grasp 15) Platform Push | (grasp 16) Lateral Pinch | (grasp 3) Medium Wrap |
| | |
| | |
(grasp 14) Tripod | (grasp 2) Small Diameter | |
| |
No. | Experimental Objects | Weight (g) | Shape | Size (mm) |
---|---|---|---|---|
(1) | Ball | 11.1 | sphere | 60 |
(2) | AAA battery | 22.7 | Cylinder | 1450 |
(3) | Spoon | 7.9 | Thin plate | 3163 |
(4) | Signet | 10 | Cylinder | 12 58 |
(5) | Mark pen | 14.3 | Cylinder | 16 117 |
(6) | Wood block | 60.9 | Triangle | 10229 |
(7) | Lighter | 13.9 | Cuboid | 8024 11 |
(8) | Glue stick | 19.6 | Cone | 134222 107 |
(9) | USB memory stick | 9.2 | Cuboid | 6119.5 8 |
(10) | Plastic sushi | 35 | Cuboid | 80 22 27 |
(11) | Nail enamel | 43.9 | Cylinder | 22 63 |
(12) | 9 V battery | 52.2 | Cuboid | 4826 17 |
(13) | PET bottle | 235.3 | Cylinder | 65 139 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jing, X.; Yong, X.; Jiang, Y.; Li, G.; Yokoi, H. Anthropomorphic Prosthetic Hand with Combination of Light Weight and Diversiform Motions. Appl. Sci. 2019, 9, 4203. https://doi.org/10.3390/app9204203
Jing X, Yong X, Jiang Y, Li G, Yokoi H. Anthropomorphic Prosthetic Hand with Combination of Light Weight and Diversiform Motions. Applied Sciences. 2019; 9(20):4203. https://doi.org/10.3390/app9204203
Chicago/Turabian StyleJing, Xiaobei, Xu Yong, Yinlai Jiang, Guanglin Li, and Hiroshi Yokoi. 2019. "Anthropomorphic Prosthetic Hand with Combination of Light Weight and Diversiform Motions" Applied Sciences 9, no. 20: 4203. https://doi.org/10.3390/app9204203
APA StyleJing, X., Yong, X., Jiang, Y., Li, G., & Yokoi, H. (2019). Anthropomorphic Prosthetic Hand with Combination of Light Weight and Diversiform Motions. Applied Sciences, 9(20), 4203. https://doi.org/10.3390/app9204203