An Automatic HEp-2 Specimen Analysis System Based on an Active Contours Model and an SVM Classification
Abstract
:Featured Application
Abstract
1. Introduction
1.1. Related Work
1.2. Our Contributions
2. Materials and Methods
2.1. Database
2.2. CAD Workflow
2.3. Fluorescence Intensity Classification
- (1)
- selection of the green channel;
- (2)
- stretching;
- (3)
- median filter (kernel 9 × 9);
- (4)
- maximum entropy threshold;
- (5)
- filling;
- (6)
- remove cells on boundary.
2.4. Cell Segmentation
- (1)
- Pre-segmentation: Aimed at identifying regions of interest ROIs (Regions of Interest).
- (2)
- Randomized Hough transform for ellipse: Aimed at identifying the ellipse that best characterizes the generic cell.
- (3)
- Active contours model: Starting from an elliptic curve, evolve expanding towards the cellular contour.
2.4.1. Pre-Segmentation
- (1)
- selection of the green channel;
- (2)
- anisotropic filter (Ofeli library: http://www.ofeli.org/download);
- (3)
- adaptive thresholding (OpenCV library: adaptive thresholding (OpenCV library: https://docs.opencv.org/3.4/d7/dd0/tutorial_js_thresholding.html));
- (4)
- removal of small ROIs.
2.4.2. Randomized Hough Transform for Ellipses
- (1)
- noise reduction;
- (2)
- grey-scale transform;
- (3)
- edge detection;
- (4)
- binarization.
2.4.3. Active Contours Model
- 15 homogenous;
- 16 speckled;
- 19 nucleolar;
- 15 centromere;
- 23 nuclear dots;
- 7 nuclear membrane.
2.5. Preprocessing for Pattern Classification
2.6. Features Extraction
- (1)
- intensity features;
- (2)
- shape features; and
- (3)
- texture features.
- Intensity features (6 features): Mean value, standard deviation, ratio of the standard deviation to the mean value, entropy, skewness, and kurtosis [44];
- Shape features (12 features): Area, perimeter, convex area, mean radius, standard deviation of radius, ratio of the standard deviation to the mean value, maximum radius, anisotropy, entropy of the contours gradient, fractal index, eccentricity, and circularity [45];
2.7. Features Selection Based on LDA
2.8. Classification
2.9. Functions and Parameters Selection
3. Results and Discussion
3.1. Selection of the SVMs Parameters
3.2. Fluorescence Intensity Results
3.3. Segmentation Results
3.4. Pattern Classification Results
4. Conclusions
- (1)
- Fluorescence intensity classification: This phase performs a categorization of the fluorescent intensity into positive/negative classes. The goal has been achieved by performing a preprocessing phase of the image, extracting a considerable number of features and implementing an SVM classifier. To achieve a reduction in complexity and an appropriate selection of features, the LDA method was used.
- (2)
- Cell segmentation: This phase of the system decomposes the input image, looking for the cells contained in it, without any a-priori knowledge about its intensity level or pattern. In order to address this problem, a method consisting of three steps has been developed—pre-segmentation, initialization by means of a randomized Hough transform, and an active contours model. The average Dice index obtained on the ninety-five images analyzed, was equal to 81.1%. In spite of the remarkable diversity of the patterns analyzed, the method achieves very similar segmentation results for the different patterns, demonstrating a good robustness of the proposed method.
- (3)
- Pattern Classification: This phase receives the individual HEp-2 cells from the cell segmentation phase and categorizes them into a set of fluorescent patterns. For this purpose, regarding the staining patterns classification, the CAD system presented here, adopts a differentiated analysis method for each pattern. Starting from a set of preprocessing functions, all possible couplings, in terms of class accuracy, were evaluated, and the best performing combination for each pattern was chosen. For each class under analysis, a large number of features was extracted and a feature reduction phase, based on linear discriminant analysis (LDA), was performed with the aim of selecting the characteristics able to characterize the specific staining pattern. A classification approach based on the one-against-all (OAA) scheme has been implemented; six Support Vector Machine (SVM) classifiers has been implemented to classify the IIF images. The final decision-making process for the cell-staining pattern association is achieved by using a KNN classifier, having six inputs (the six outputs of SVM classifiers). The image classification was obtained by evaluating the pattern rates at the cell-level.
Author Contributions
Funding
Conflicts of Interest
References
- The Autoimmune Diseas Coordinating Committee. Progress in Autoimmune Diseases Research; National Institutes of Health: Bethesda, MD, USA, 2005; pp. 1–146. Available online: https://www.niaid.nih.gov/sites/default/files/adccfinal.pdf (accessed on 7 December 2018).
- Bizzaro, N.; Antico, A.; Platzgummer, S.; Tonutti, E.; Bassetti, D.; Pesente, F.; Tozzoli, R.; Tampoia, M.; Villalta, D. Automated antinuclear immunofluorescence antibody screening: A comparative study of six computer-aided diagnostic systems. Autoimmun. Rev. 2014, 13, 292–298. [Google Scholar] [CrossRef] [PubMed]
- Agmon-Levin, N.; Damoiseaux, J.; Kallenberg, C.; Sack, U.; Witte, T.; Herold, M.; Bossuyt, X.; Musset, L.; Cervera, R.; Plaza-Lopez, A.; et al. International recommendations for the assessment of autoantibodies to cellular antigens referred to as anti-nuclear antibodies. Ann. Rheumatic Dis. 2014, 73, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Hiemann, R.; Büttner, T.; Krieger, T.; Roggenbuck, D.; Sack, U.; Conrad, K. Challenges of automated screening and differentiation of non-organ specific autoantibodies on HEp-2 cells. Autoimmun. Rev. 2009, 9, 17–22. [Google Scholar] [CrossRef]
- Willitzki, A.; Hiemann, R.; Peters, V.; Sack, U.; Schierack, P.; Rödiger, S.; Anderer, U.; Conrad, K.; Bogdanos, D.P.; Reinhold, D.; Roggenbuck, D. New platform technology for comprehensive serological diagnostics of autoimmune diseases. Clin. Dev. Immunol. 2012, 2012, 284740. [Google Scholar] [CrossRef] [PubMed]
- Ciatto, S.; Cascio, D.; Fauci, F.; Magro, R.; Raso, G.; Ienzi, R.; Martinelli, F.; Simone, M.V. Computer-assisted diagnosis (CAD) in mammography: Comparison of diagnostic accuracy of a new algorithm (Cyclopus®, Medicad) with two commercial systems. Radiol. Med. 2009, 114, 626–635. [Google Scholar] [CrossRef] [PubMed]
- Cascio, D.; Fauci, F.; Iacomi, M.; Raso, G.; Magro, R.; Castrogiovanni, D.; Filosto, G.; Ienzi, R.; Vasile, M.S. Computer-aided diagnosis in digital mammography: Comparison of two commercial systems. Imaging Med. 2014, 6, 13–20. [Google Scholar] [CrossRef]
- Hobson, P.; Lovell, B.C.; Percannella, G.; Saggese, A.; Vento, M.; Wiliem, A. Computer Aided Diagnosis for Anti-Nuclear Antibodies HEp-2 images: Progress and challenges. Pattern Recogn. Lett. 2016, 82, 3–11. [Google Scholar] [CrossRef]
- Hiemann, R.; Hilger, N.; Sack, U.; Weigert, M. Objective quality evaluation of fluorescence images to optimize automatic image acquisition. Cytometry Part A 2006, 69, 182–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cordelli, E.; Soda, P. Color to gray scale staining pattern representation in IIF. In Proceedings of the 24th International Symposium on Computer-Based Medical Systems, Bristol, UK, 27–30 June 2011; pp. 1–6. [Google Scholar]
- Huang, Y.L.; Chung, C.W.; Hsieh, T.Y.; Jao, Y.L. Outline detection for the HEp-2 cell in indirect immunofluorescence images using watershed segmentation. In Proceedings of the IEEE International Conference on Sensor Networks, Washington, DC, USA, 11–13 June 2008; pp. 423–427. [Google Scholar]
- Creemers, C.; Guerti, K.; Geerts, S.; Van Cotthem, K.; Ledda, A.; Spruyt, V. Hep-2 cell pattern segmentation for the support of autoimmune disease diagnosis. In Proceedings of the Fourth International Symposium on Applied Sciences in Biomedical and Communication Technologies, Barcelona, Spain, 26–29 October 2011; pp. 1–5. [Google Scholar]
- Foggia, P.; Percannella, G.; Soda, P.; Vento, M. Benchmarking hep-2 cells classification methods. IEEE Trans. Med. Imaging 2013, 32, 1878–1889. [Google Scholar] [CrossRef]
- Foggia, P.; Percannella, G.; Saggese, A.; Vento, M. Pattern recognition in stained HEp-2 cells: Where are we now? Pattern Recogn. 2014, 47, 2305–2314. [Google Scholar] [CrossRef]
- Lovell, B.C.; Percannella, G.; Vento, M.; Wiliem, A. Performance Evaluation of Indirect Immunofluorescence Image Analysis Systems, ICPR Workshop Technical Report. 2014. Available online: https://dl.acm.org/citation.cfm?id=2680609&picked=prox (accessed on 7 December 2018).
- Nanni, L.; Lumini, A.; Dos Santos, F.L.C.; Paci, M.; Hyttinen, J. Ensembles of dense and dense sampling descriptors for the HEp-2 cells classification problem. Pattern Recogn. Lett. 2016, 82, 28–35. [Google Scholar] [CrossRef]
- Ensafi, S.; Lu, S.; Kassim, A.A.; Tan, C.L. Accurate HEp-2 cell classification based on Sparse Coding of Superpixels. Pattern Recogn. Lett. 2016, 82, 64–71. [Google Scholar] [CrossRef]
- Cascio, D.; Taormina, V.; Cipolla, M.; Fauci, F.; Vasile, M.; Raso, G. HEp-2 Cell Classification with heterogeneous classes-processes based on K-Nearest Neighbours. In Proceedings of the IEEE 1st Workshop on Pattern Recognition Techniques for Indirect Immunofluorescence Images ICPR, Stockholm, Sweden, 24 August 2014; pp. 10–15. [Google Scholar]
- Cascio, D.; Taormina, V.; Cipolla, M.; Bruno, S.; Fauci, F.; Raso, G. A multi-process system for HEp-2 cells classification based on SVM. Pattern Recogn. Lett. 2016, 82, 56–63. [Google Scholar] [CrossRef]
- Rigon, A.; Buzzulini, F.; Soda, P.; Onofri, L.; Arcarese, L.; Iannello, G.; Afeltra, A. Novel opportunities in automated classification of antinuclear antibodies on HEp-2 cells. Autoimmun. Rev. 2011, 10, 647–652. [Google Scholar] [CrossRef] [PubMed]
- Voigt, J.; Krause, C.; Rohwäder, E.; Saschenbrecker, S.; Hahn, M.; Danckwardt, M.; Feirer, C.; Ens, K.; Fechner, K.; Barth, E.; Martinetz, T. Automated indirect immunofluorescence evaluation of antinuclear autoantibodies on HEp-2 cells. Clin. Dev. Immunol. 2012, 2012, 651058. [Google Scholar] [CrossRef] [PubMed]
- Di Cataldo, S.; Tonti, S.; Bottino, A.; Ficarra, E. ANAlyte: A modular image analysis tool for ANA testing with indirect immunofluorescence. Comput. Methods Programs Biomed. 2016, 128, 86–99. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.C.; Lu, C.F.; Hsieh, T.Y.; Lin, Y.J.; Taur, J.S.; Chen, Y.F. Design of a Computer-Assisted System to Automatically Detect Cell Types Using ANA IIF Images for the Diagnosis of Autoimmune Diseases. J. Med. Syst. 2015, 39, 117. [Google Scholar] [CrossRef]
- Benammar Elgaaied, A.; Cascio, D.; Bruno, S.; Ciaccio, M.C.; Cipolla, M.; Fauci, A.; Morgante, R.; Taormina, V.; Gorgi, Y.; Marrakchi Triki, R.; et al. Computer-assisted classification patterns in autoimmune diagnostics: The, A.I.D.A. Project. Biomed. Res. Int. 2016, 2016, 2073076. [Google Scholar] [CrossRef] [PubMed]
- Furnkranz, J.; Round, R. Classification. J. Mach. Learn. Res. 2002, 2, 721–747. [Google Scholar]
- Chan, E.K.; Damoiseaux, J.; Carballo, O.G.; Conrad, K.; de Melo Cruvinel, W.; Francescantonio, P.L.; Fritzler, M.J.; Herold, M.; Mimori, T.; Satoh, M.; et al. Report of the first international consensus on standardized nomenclature of antinuclear antibody HEp-2 cell patterns 2014–2015. Front. Immunol. 2015, 6, 412. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Luan, S.; Nagai, L.A.E.; Su, R.; Zou, Q. Exploring sequence-based features for the improved prediction of DNA N4-methylcytosine sites in multiple species. Bioinformatics 2018. [Google Scholar] [CrossRef] [PubMed]
- Manavalan, B.; Basith, S.; Shin, T.H.; Choi, S.; Kim, M.O.; Lee, G. MLACP: Machine-learning-based prediction of anticancer peptides. Oncotarget 2017, 8, 77121–77136. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Chen, H.; Su, R. M6APred-EL: A Sequence-Based Predictor for Identifying N6-methyladenosine Sites Using Ensemble Learning. Mol. Ther. Nucleic Acids 2018, 12, 635–644. [Google Scholar] [CrossRef]
- Manavalan, B.; Shin, T.H.; Kim, M.O.; Lee, G. PIP-EL: A New Ensemble Learning Method for Improved Proinflammatory Peptide Predictions. Front. Immunol. 2018, 9, 1783. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Zhou, C.; Chen, H.; Song, J.; Su, R. ACPred-FL: A sequence-based predictor using effective feature representation to improve the prediction of anti-cancer peptides. Bioinformatics 2018, 34, 4007–4016. [Google Scholar] [CrossRef] [PubMed]
- Manavalan, B.; Shin, T.H.; Lee, G. DHSpred: Support-vector-machine-based human DNase I hypersensitive sites prediction using the optimal features selected by random forest. Oncotarget 2017, 9, 1944–1956. [Google Scholar] [CrossRef]
- Bucci, E.M. Automatic detection of image manipulations in the biomedical literature. Cell Death Dis. 2018, 9, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Da Xu, R.Y.; Kemp, M. Fitting multiple connected ellipses to an image silhouette hierarchically. IEEE Trans. Image Process. 2010, 19, 1673–1682. [Google Scholar] [CrossRef] [PubMed]
- Segundo, M.P.; Silva, L.; Bellon, O.R.P.; Queirolo, C.C. Automatic face segmentation and facial landmark detection in range images. IEEE Trans. Syst. Man Cybern. Syst. 2010, 40, 1319–1330. [Google Scholar] [CrossRef] [PubMed]
- Cosmin, A.; Basca, M.T.; Remus, B. Randomized Hough Transform for Ellipse Detection with Result Clustering. In Proceedings of the IEEE EUROCON, International Conference on “Computer as a Tool”, Belgrade, Serbia and Montenegro, 21–24 November 2005; pp. 1397–1400. [Google Scholar]
- Chan, T.F.; Sandberg, B.Y.; Vese, L.A. Active Contours Without Edges. IEEE Trans. Image Process. 2001, 10, 266–277. [Google Scholar] [CrossRef]
- Dice, L.R. Measures of the amount of ecologic association between species. Ecology 1945, 26, 297–302. [Google Scholar] [CrossRef]
- Chupin, M.; Hammers, A.; Liu, R.S.; Colliot, O.; Burdett, J.; Bardinet, E.; Duncan, J.S.; Garnero, L.; Lemieux, L. Automatic segmentation of the hippocampus and the amygdala driven by hybrid constraints. Method and validation. NeuroImage 2009, 46, 749–761. [Google Scholar] [CrossRef]
- Qiao, Z.; Kewen, X.; Panpan, W.; Wang, H. Lung nodule classification using curvelet transform LDA algorithm and BAT-SVM algorithm. Pattern Recogn. Image Anal. 2017, 27, 855–862. [Google Scholar] [CrossRef]
- Iacomi, M.; Cascio, D.; Fauci, F.; Raso, G. Mammographic images segmentation based on chaotic map clustering algorithm. BMC Med. Imaging 2014, 14, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Fauci, F.; La Manna, A.; Cascio, D.; Magro, R.; Raso, G.; Iacomi, M.; Vasile, M.S. A Fourier Based Algorithm for Microcalcifications Enhancement in Mammographic Images. In Proceedings of the IEEE Nuclear Science Symposium and Medical Imaging Conference, Anaheim, CA, USA, 29 October–3 November 2012; pp. 4388–4391. [Google Scholar]
- Masala, G.L.; Tangaro, S.; Golosio, B.; Oliva, P.; Stumbo, S.; Bellotti, R.; De Carlo, F.; Gargano, G.; Cascio, D.; Fauci, F.; et al. Comparative study of feature classification methods for mass lesion recognition in digitized mammograms. Nuovo Cimento C 2007, 30, 305–316. [Google Scholar]
- Vivona, L.; Cascio, D.; Magro, R.; Fauci, F.; Raso, G. A fuzzy logic C-means clustering algorithm to enhance microcalcifications clusters in digital mammograms. In Proceedings of the IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC); 2011; pp. 3048–3050. [Google Scholar]
- Vivona, L.; Cascio, D.; Fauci, F.; Raso, G. Fuzzy technique for microcalcifications clustering in digital mammograms. BMC Med. Imaging 2014, 14, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Vivona, L.; Cascio, D.; Taormina, V.; Raso, G. Automated approach for indirect immunofluorescence images classification based on unsupervised clustering method. IET Comput. Vis. 2018, 12, 989–995. [Google Scholar] [CrossRef]
- Presti, L.L.; La Cascia, M. Boosting Hankel matrices for face emotion recognition and pain detection. Comput. Vis. Image Underst. 2017, 156, 19–33. [Google Scholar] [CrossRef]
- Basith, S.; Manavalan, B.; Shin, T.H.; Lee, G. iGHBP: Computational identification of growth hormone binding proteins from sequences using extremely randomised tree. Comput. Struct. Biotechnol. J. 2018, 16, 412–420. [Google Scholar] [CrossRef]
- Manavalan, B.; Subramaniyam, S.; Shin, T.H.; Kim, M.O.; Lee, G. Machine-Learning-Based Prediction of Cell-Penetrating Peptides and Their Uptake Efficiency with Improved Accuracy. J. Proteome Res. 2018, 3, 2715–2726. [Google Scholar] [CrossRef]
- Manavalan, B.; Lee, J. SVMQA: Support-vector-machine-based protein single-model quality assessment. Bioinformatics 2017, 33, 2496–2503. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.X.; Dao, F.Y.; Lv, H.; Feng, P.M.; Ding, H. Identifying Phage Virion Proteins by Using Two-Step Feature Selection Methods. Molecules 2018, 23, 2000. [Google Scholar] [CrossRef] [PubMed]
- Talukdar, U.; Hazarika, S.M.; Gan, J.Q. A Kernel Partial least square based feature selection method. Pattern Recogn. 2018, 83, 91–106. [Google Scholar] [CrossRef]
- Feng, Y.Z.; Yu, W.; Chen, W.; Peng, K.K.; Jia, G.F. Invasive weed optimization for optimizing one-agar-for-all classification of bacterial colonies based on hyperspectral imaging. Sens. Actuators B Chem. 2018, 269, 264–270. [Google Scholar] [CrossRef]
- Mohammadzade, H.; Hatzinakos, D. Projection into expression subspaces for face recognition from single sample per person. IEEE Trans. Affect. Comput. 2013, 4, 69–82. [Google Scholar] [CrossRef]
- Chang, C.C.; Lin, C.J. LIBSVM: A Library for Support Vector Machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 27. [Google Scholar] [CrossRef]
- Yasugi, M.; Hossain, B.; Nii, M.; Kobashi, S. Relationship between cerebral aneurysm development and cerebral artery shape. J. Adv. Comput. Intell. Intell. Inform. 2018, 22, 249–255. [Google Scholar] [CrossRef]
- Hsu, C.-W.; Chang, C.C.; Lin, C.J. A Practical Guide to Support Vector Classification; Department of Computer Science National Taiwan University: Taipei, Taiwan, 2003. [Google Scholar]
- Tonti, S.; Di Cataldo, S.; Bottino, A.; Ficarra, E. An automated approach to the segmentation of HEp-2 cells for the indirect immunofluorescence ANA test. Comput. Med. Imaging Graph. 2015, 40, 62–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, S.; Maji, P. A Modified Rough-Fuzzy Clustering Algorithm with Spatial Information for HEp-2 Cell Image Segmentation. In Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Shenzhen, China, 15–18 December 2016. [Google Scholar]
- Percannella, G.; Soda, P.; Vento, M. A classification-based approach to segment HEp-2 cells. In Proceedings of the 25th International Symposium on Computer-Based Medical Systems, Roma, Italy, 20–21 June 2012. [Google Scholar]
Abbreviation | Function Description | Reference |
---|---|---|
Nt | Nothing | - |
Fs | FAS (Filter Alternate Sequential) | http://www.pkuwwt.tk/ofeli/doc/index.html |
Eq | Equalization | http://docs.opencv.org |
Ch | CLAHE (Contrast Limited Adaptive Histogram Equalization) | http://docs.opencv.org |
Md | Median filter | http://docs.opencv.org |
Gs | Gaussian filter | http://docs.opencv.org |
Ge | Gaussian-Enhancement: | http://docs.opencv.org |
Di | Dilatation | http://docs.opencv.org |
Er | Erosion | http://docs.opencv.org |
Ng | Nagao | http://www.pkuwwt.tk/ofeli/doc/index.html |
Bl | Bilateral | http://docs.opencv.org |
Op | Opening | http://docs.opencv.org |
Cn | Contrast normalization | - |
First Function | Second Function | Classification Category |
---|---|---|
Er | Ch | homogenous |
Di | Cn | speckled |
Er | Ch | Nucleolar |
Di | Cn | Centromere |
Fs | Nt | nuclear dots |
Fs | Nt | nucleolar membrane |
Class | C | γ |
---|---|---|
homogenous | 256.0 | 0.125 |
speckled | 32.0 | 0.25 |
centromere | 256.0 | 0.25 |
Nucleolar | 128.0 | 0.50 |
nuclear dots | 256.0 | 0.0156 |
nuclear membrane | 128.0 | 0.0625 |
Method | Images Dataset | Sensitivity | Specificity | Accuracy | AZ |
---|---|---|---|---|---|
Di Cataldo et al. [22] | 71 | − | − | 85.7% | − |
Benammar et al. [24] | 1006 | − | − | 85.5% | − |
Our method | 2080 | 92.9% | 70.5% | 87.0% | 91.4% |
Pattern | DICE Index |
---|---|
homogenous | 85.6% |
Speckled | 86.6% |
Centromere | 81.1% |
Nucleolar | 74.1% |
Nuclear dots | 79.0% |
Nuclear membrane | 76.6% |
Method | Images Dataset | Average Dice Index |
---|---|---|
Cheng et al. [23] | 196 | 88.9% |
Tonti et al. [58] | 28 | 62.1% |
Roy et al. [59] | 22 | 86.8% |
Percannella et al. [60] | 28 | 56.8% |
Our method | 95 | 81.1% |
Predicted Class | ||||||||
---|---|---|---|---|---|---|---|---|
HO | SP | CE | NU | DOT | ME | TOT | ||
Actual Class | HO | 19 | 0 | 0 | 2 | 0 | 0 | 21 |
SP | 3 | 38 | 0 | 0 | 0 | 1 | 42 | |
CE | 1 | 0 | 25 | 0 | 0 | 0 | 26 | |
NU | 4 | 10 | 8 | 34 | 4 | 2 | 62 | |
DOT | 0 | 6 | 2 | 5 | 30 | 3 | 46 | |
ME | 3 | 9 | 1 | 0 | 0 | 10 | 23 |
Class | Accuracy |
---|---|
homogenous | 90.5% |
speckled | 90.5% |
centromere | 96.2% |
nucleolar | 54.8% |
nuclear dots | 65.2% |
nuclear membrane | 43.5% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cascio, D.; Taormina, V.; Raso, G. An Automatic HEp-2 Specimen Analysis System Based on an Active Contours Model and an SVM Classification. Appl. Sci. 2019, 9, 307. https://doi.org/10.3390/app9020307
Cascio D, Taormina V, Raso G. An Automatic HEp-2 Specimen Analysis System Based on an Active Contours Model and an SVM Classification. Applied Sciences. 2019; 9(2):307. https://doi.org/10.3390/app9020307
Chicago/Turabian StyleCascio, Donato, Vincenzo Taormina, and Giuseppe Raso. 2019. "An Automatic HEp-2 Specimen Analysis System Based on an Active Contours Model and an SVM Classification" Applied Sciences 9, no. 2: 307. https://doi.org/10.3390/app9020307
APA StyleCascio, D., Taormina, V., & Raso, G. (2019). An Automatic HEp-2 Specimen Analysis System Based on an Active Contours Model and an SVM Classification. Applied Sciences, 9(2), 307. https://doi.org/10.3390/app9020307