Processing of Single-Walled Carbon Nanotubes with Femtosecond Laser Pulses
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Laser Irradiation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, B.; Liu, X.F.; Qiu, J.R. Single femtosecond laser beam induced nanogratings in transparent media-mechanisms and applications. J. Mater. 2019, 5, 1–14. [Google Scholar] [CrossRef]
- Ha, J.; Jung, H.Y.; Hao, J.; Li, B.; Raeliarijaona, A.; Alarcón, J.; Terrones, H.; Ajayan, P.M.; Jung, Y.J.; Kim, J.; et al. Ultrafast structural evolution and formation of linear carbon chains in single-walled carbon nanotube networks by femtosecond laser irradiation. Nanoscale 2017, 9, 16627–16631. [Google Scholar] [CrossRef] [PubMed]
- Rahim, K.; Mian, A. A review on laser processing in electronic and mems packaging. J. Electron. Packag. 2017, 139, 030801. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, A.D.; Li, B.; Cui, T.H.; Lu, Y.F. Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: Modeling, method, measurement and application. Light Sci. Appl. 2018, 7, 17134. [Google Scholar] [CrossRef] [PubMed]
- Hélie, D.; Bégin, M.; Lacroix, F.; Vallée, R. Reinforced direct bonding of optical materials by femtosecond laser welding. Appl. Opt. 2012, 51, 2098–2106. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Cheng, G. Direct welding of glass and metal by 1 khz femtosecond laser pulses. Appl. Opt. 2015, 54, 8957–8961. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.F.; Long, J.Y.; Cai, M.Y.; Lin, Y.; Fan, P.X.; Zhang, H.J.; Zhong, M.L. Femtosecond laser fabricated micro/nano interface structures toward enhanced bonding strength and heat transfer capability of w/cu joining. Mater. Des. 2017, 114, 185–193. [Google Scholar] [CrossRef]
- Jiang, D.F.; Long, J.Y.; Han, J.P.; Cai, M.Y.; Lin, Y.; Fan, P.X.; Zhang, H.J.; Zhong, M.L. Comprehensive enhancement of the mechanical and thermo-mechanical properties of w/cu joints via femtosecond laser fabricated micro/nano interface structures. Mater. Sci. Eng. Struct. Mater. Prop. Microstruct. Process. 2017, 696, 429–436. [Google Scholar] [CrossRef]
- Mizuguchi, Y.; Tamaki, T.; Fukuda, T.; Hatanaka, K.; Juodkazis, S.; Watanabe, W. Dendrite-joining of air-gap-separated pmma substrates using ultrashort laser pulses. Opt. Mater. Express 2017, 7, 2141–2149. [Google Scholar] [CrossRef]
- Ringleb, F.; Eylers, K.; Teubner, T.; Schramm, H.P.; Symietz, C.; Bonse, J.; Andree, S.; Heidmann, B.; Schmid, M.; Kruger, J.; et al. Growth and shape of indium islands on molybdenum at micro-roughened spots created by femtosecond laser pulses. Appl. Surf. Sci. 2017, 418, 548–553. [Google Scholar] [CrossRef]
- Roth, G.L.; Rung, S.; Hellmann, R. Ultrashort pulse laser micro-welding of cyclo-olefin copolymers. Opt. Lasers Eng. 2017, 93, 178–181. [Google Scholar] [CrossRef]
- Zhang, G.D.; Bai, J.; Zhao, W.; Zhou, K.M.; Cheng, G.H. Interface modification based ultrashort laser microwelding between sic and fused silica. Opt. Express 2017, 25, 1702–1709. [Google Scholar] [CrossRef]
- Zhang, G.D.; Stoian, R.; Zhao, W.; Cheng, G.H. Femtosecond laser bessel beam welding of transparent to non-transparent materials with large focal-position tolerant zone. Opt. Express 2018, 26, 917–926. [Google Scholar] [CrossRef]
- Li, R.; Gong, W.; He, Q.; Li, Q.; Lu, W.; Zhu, W. Joining cross-stacked carbon nanotube architecture with covalent bonding. Appl. Phys. Lett. 2017, 110, 183101. [Google Scholar] [CrossRef]
- Nanostructure evolution in joining of al and fe nanoparticles with femtosecond laser irradiation. J. Appl. Phys. 2014, 115, 134305. [CrossRef]
- Zolotovskaya, S.A.; Tang, G.; Wang, Z.; Abdolvand, A. Surface plasmon resonance assisted rapid laser joining of glass. Appl. Phys. Lett. 2014, 105, 083109. [Google Scholar] [CrossRef]
- Poklonski, N.A.; Vyrko, S.A.; Siahlo, A.I.; Poklonskaya, O.N.; Ratkevich, S.V.; Hieu, N.N.; Kocherzhenko, A.A. Synergy of physical properties of low-dimensional carbon-based systems for nanoscale device design. Mater. Res. Express 2019, 6, 042002. [Google Scholar] [CrossRef]
- Ando, T. The electronic properties of graphene and carbon nanotubes. NPG Asia Mater. 2009, 1, 17–21. [Google Scholar] [CrossRef]
- Srivastava, A.; Liu, X.H.; Banadaki, Y.M. Overview of carbon nanotube interconnects. In Carbon Nanotubes for Interconnects: Process, Design and Applications; Todri-Sanial, A., Dijon, J., Maffucci, A., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 37–80. [Google Scholar]
- Naeemi, A.; Sarvari, R.; Meindl, J.D. Performance comparison between carbon nanotube and copper interconnects for gigascale integration (gsi). IEEE Electron Device Lett. 2005, 26, 84–86. [Google Scholar] [CrossRef]
- Zhou, W.; Bai, X.; Wang, E.; Xie, S. Synthesis, structure, and properties of single-walled carbon nanotubes. Adv. Mater. 2009, 21, 4565–4583. [Google Scholar] [CrossRef]
- Liu, C.; Cheng, H.M. Controlled growth of semiconducting and metallic single-wall carbon nanotubes. J. Am. Chem. Soc. 2016, 138, 6690–6698. [Google Scholar] [CrossRef] [PubMed]
- Roberts, G.S.; Singjai, P. Joining carbon nanotubes. Nanoscale 2011, 3, 4503–4514. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wang, X.J.; Meng, P.; Yue, H.X.; Zheng, R.T.; Wu, X.L.; Cheng, G.A. High current density and low emission field of carbon nanotube array microbundle. Appl. Phys. Lett. 2018, 112, 013101. [Google Scholar] [CrossRef]
- Kis, A.; Csányi, G.; Salvetat, J.P.; Lee, T.N.; Couteau, E.; Kulik, A.J.; Benoit, W.; Brugger, J.; Forró, L. Reinforcement of single-walled carbon nanotube bundles by intertube bridging. Nat. Mater. 2004, 3, 153. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Chen, J. Nano-welding of multi-walled carbon nanotubes on silicon and silica surface by laser irradiation. Nanomaterials 2016, 6, 36. [Google Scholar] [CrossRef] [PubMed]
- Danilov, P.A.; Ionin, A.A.; Kudryashov, S.I.; Makarov, S.V.; Mel’nik, N.N.; Rudenko, A.A.; Yurovskikh, V.I.; Zayarny, D.V.; Lednev, V.N.; Obraztsova, E.D.; et al. Femtosecond laser ablation of single-wall carbon nanotube-based material. Laser Phys. Lett. 2014, 11, 106101. [Google Scholar] [CrossRef]
- Arutyunyan, N.R.; Komlenok, M.S.; Kononenko, V.V.; Pashinin, V.P.; Pozharov, A.S.; Konov, V.I.; Obraztsova, E.D. Resonant ablation of single-wall carbon nanotubes by femtosecond laser pulses. Laser Phys. 2014, 25, 015902. [Google Scholar] [CrossRef]
- Ha, J.; Lee, B.J.; Hwang, D.J.; Kim, D. Femtosecond laser nanowelding of silver nanowires for transparent conductive electrodes. RSC Adv. 2016, 6, 86232–86239. [Google Scholar] [CrossRef]
- Herrmann, L.O.; Valev, V.K.; Tserkezis, C.; Barnard, J.S.; Kasera, S.; Scherman, O.A.; Aizpurua, J.; Baumberg, J.J. Threading plasmonic nanoparticle strings with light. Nat. Commun. 2014, 5, 4568. [Google Scholar] [CrossRef]
- Romero, A.H.; Garcia, M.E.; Valencia, F.; Terrones, H.; Terrones, M.; Jeschke, H.O. Femtosecond laser nanosurgery of defects in carbon nanotubes. Nano Lett. 2005, 5, 1361–1365. [Google Scholar] [CrossRef]
- Jeschke, H.O.; Romero, A.H.; Garcia, M.E.; Rubio, A. Microscopic investigation of laser-induced structural changes in single-wall carbon nanotubes. Phys. Rev. B 2007, 75, 125412. [Google Scholar] [CrossRef]
- Huang, H.; Yang, L.M.; Liu, J. Direct Welding of Fused Silica with Femtosecond Fiber Laser; SPIE: Bellingham, WA, USA, 2012; Volume 8244. [Google Scholar]
- Takagi, D.; Homma, Y.; Hibino, H.; Suzuki, S.; Kobayashi, Y. Single-walled carbon nanotube growth from highly activated metal nanoparticles. Nano Lett. 2007, 6, 2642–2645. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.W.; Aziz, A.; Chai, S.P.; Mohamed, A.R.; Hashim, U. Synthesis of single-walled carbon nanotubes: Effects of active metals, catalyst supports, and metal loading percentage. J. Nanomater. 2013, 2013, 8. [Google Scholar] [CrossRef]
- Keller, U. Recent developments in compact ultrafast lasers. Nature 2003, 424, 831. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Miao, J.; Yang, Z.; Xiao, F.X.; Yang, H.B.; Liu, B.; Yang, Y. Carbon nanotube catalysts: Recent advances in synthesis, characterization and applications. Chem. Soc. Rev. 2015, 44, 3295–3346. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Hou, P.X.; Liu, C.; Wang, B.W.; Jiang, H.; Chen, M.L.; Sun, D.M.; Li, J.C.; Cong, H.T.; Kauppinen, E.I.; et al. Growth of semiconducting single-wall carbon nanotubes with a narrow band-gap distribution. Nat. Commun. 2016, 7, 11160. [Google Scholar] [CrossRef] [PubMed]
- Terakawa, M. Femtosecond laser processing of biodegradable polymers. Appl. Sci. 2018, 8, 1123. [Google Scholar] [CrossRef]
- Farkas, J.P.; Hoopman, J.E.; Kenkel, J.M. Five parameters you must understand to master control of your laser/light-based devices. Aesthet. Surg. J. 2013, 33, 1059–1064. [Google Scholar] [CrossRef]
- Hu, A.; Peng, P.; Alarifi, H.; Zhang, X.Y.; Guo, J.Y.; Zhou, Y.; Duley, W.W. Femtosecond laser welded nanostructures and plasmonic devices. J. Laser Appl. 2012, 24, 042001. [Google Scholar] [CrossRef]
- Hu, A.; Zhou, Y.; Duley, W. Femtosecond laser-induced nanowelding: Fundamentals and applications. Open Surf. Sci. J. 2011, 311, 42–49. [Google Scholar] [CrossRef][Green Version]
- Hu, A.; Rybachuk, M.; Lu, Q.B.; Duley, W.W. Direct synthesis of sp-bonded carbon chains on graphite surface by femtosecond laser irradiation. Appl. Phys. Lett. 2007, 91, 131906. [Google Scholar] [CrossRef]
- von der Linde, D.; Sokolowski-Tinten, K.; Bialkowski, J. Laser–solid interaction in the femtosecond time regime. Appl. Surf. Sci. 1997, 109–110, 1–10. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almutairi, Z.; Ahmad, K.; Alanazi, M.; Alhazaa, A. Processing of Single-Walled Carbon Nanotubes with Femtosecond Laser Pulses. Appl. Sci. 2019, 9, 4022. https://doi.org/10.3390/app9194022
Almutairi Z, Ahmad K, Alanazi M, Alhazaa A. Processing of Single-Walled Carbon Nanotubes with Femtosecond Laser Pulses. Applied Sciences. 2019; 9(19):4022. https://doi.org/10.3390/app9194022
Chicago/Turabian StyleAlmutairi, Zeyad, Kaleem Ahmad, Mosaad Alanazi, and Abdulaziz Alhazaa. 2019. "Processing of Single-Walled Carbon Nanotubes with Femtosecond Laser Pulses" Applied Sciences 9, no. 19: 4022. https://doi.org/10.3390/app9194022
APA StyleAlmutairi, Z., Ahmad, K., Alanazi, M., & Alhazaa, A. (2019). Processing of Single-Walled Carbon Nanotubes with Femtosecond Laser Pulses. Applied Sciences, 9(19), 4022. https://doi.org/10.3390/app9194022