NewApproach to Predict the Motion Characteristics of Single Bubbles in Still Water
Abstract
:Featured Application
Abstract
1. Introduction
1.1. Background
1.2. Problem Statement
1.3. Motivation
1.4. Research Objectives
2. Materials and Methods
2.1. Laboratory Experiment
2.2. Data Extraction
2.3. Machine Learning Approaches
2.3.1. Regression Problem-Solving
2.3.2. Classification Problem-Solving
3. Results
3.1. Prediction Model for the Final Velocity of Single Bubbles
3.2. Prediction Model for the Drag Coefficient of Single Bubbles
3.3. Prediction Model for the Shape of Single Bubbles
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Grace, J.R. Shapes and velocities of single drops and bubbles moving freely through immiscible liquids. Chem. Eng. Res. Des. 1976, 54, 167–173. [Google Scholar]
- Terrill, E.J.; Melville, W.K.; Stramski, D. Bubble entrainment by breaking waves and their influence on optical scattering in the upper ocean. J. Geophys. Res. Ocean. 2001, 106, 16815–16823. [Google Scholar] [CrossRef] [Green Version]
- Rayleigh, L. On the pressure developed in a liquid during the collapse of a spherical cavity. Philisophical Mag. 1917, 34, 94–98. [Google Scholar] [CrossRef]
- Mendelson, H.D. The prediction of bubble terminal velocities from wave theory. Aiche J. 1967, 13, 250–253. [Google Scholar] [CrossRef]
- Michaelides, E.E. Particles, Bubbles and Drops: Their Motion, Heat and Mass Transfer; World Scientific Publishing Co. Pte. Ltd.: Singapore, 2006. [Google Scholar]
- Plesset, M.S.; Chapman, R.B. Collapse of initially spherical vapour cavity in the neighbourhood of a solid boundary. J. Fluid Mech. 1971, 47, 283–290. [Google Scholar] [CrossRef]
- VanKrevelen, D.W.; Hoftijzer, P.J. Studies of gas-bubble formation- Calculation of interfacial area in bubble contactors. Chem. Eng. Prog. 1950, 46, 29–35. [Google Scholar]
- Wellek, R.M.; Agrawal, A.K.; Skelland, A.H. Shape of liquid drops moving in liquid media. Aiche J. 1966, 12, 854–862. [Google Scholar] [CrossRef]
- Wu, M.; Gharib, M. Experimental studies on the shape and path of small air bubbles rising in clean water. Phys. Fluids 2002, 14, L49–L52. [Google Scholar] [CrossRef]
- Amaya-Bower, L.; Lee, T. Single bubble rising dynamics for moderate Reynolds number using Lattice Boltzmann Method. Handb. Fluids Motion 2010, 39, 1191–1207. [Google Scholar] [CrossRef]
- Bhaga, D.; Weber, M.E. Bubbles in viscous liquids: Shapes, wakes and velocities. J. Fluid Mech. 2006, 105, 61–85. [Google Scholar] [CrossRef]
- Brücker, C. Structure and dynamics of the wake of bubbles and its relevance for bubble interaction. Phys. Fluids 1999, 11, 1781–1796. [Google Scholar] [CrossRef]
- Funfschilling, D.; Li, H.Z. Flow of non-Newtonian fluids around bubbles: PIV measurements and birefringence visualisation. Chem. Eng. Sci. 2001, 56, 1137–1141. [Google Scholar] [CrossRef]
- Hassan, Y.A.; Ortiza-Villafuerte, J.; Scmidl, W.D. Three-dimensional measurements of single bubble dynamics in a small diameter pipe using stereoscopic particle image velocimetry. Int. J. Multiph. Flow 2001, 27, 817–842. [Google Scholar] [CrossRef]
- Liu, Z.; Zheng, Y. PIV study of bubble rising behaviour. Powder Technol. 2006, 168, 10–20. [Google Scholar] [CrossRef]
- Ortize-Villafuerte, J.; Schmidl, W.D.; Hassan, Y.A. Three-dimensional ptv study of the surrounding flow and wake of a bubble rising in a stagnant liquid. Exp. Fluids 2000, 29, S202–S210. [Google Scholar] [CrossRef]
- Thoroddsen, S.T.; Etoh, T.G.; Takehara, K. High-speed imaging of drops and bubbles. Annu. Rev. Fluid Mech. 2008, 40, 257–285. [Google Scholar] [CrossRef]
- Tokuhiro, A.; Maekawa, M.; Iizuka, K.; Hishida, K.; Maeda, M. Turbulent flow past a bubble and an ellipsoid using shadow-image and PIV techniques. Int. J. Multiph. Flow 1998, 24, 1383–1406. [Google Scholar] [CrossRef]
- Yu, X.; Efe, M.O.; Kaynak, O. A general back propagation algorithm for feed forward neural networks learning. IEEE Trans. Neural Netw. 2002, 12, 251. [Google Scholar]
- Ehteram, M.; Koting, S.B.; Afan, H.A.; Mohd, N.S.; Malek, M.A.; Ahmed, A.N.; El-shafie, A. New evolutionary algorithm for optimizing hydropower generation considering multireservoir systems. Appl. Sci. 2019, 9, 2280. [Google Scholar] [CrossRef]
- Li, X.; Qiu, J.; Shang, Q.; Li, F. Simulation of reservoir sediment flushing of the Three Gorges reservoir using an artificial neural network. Appl. Sci. 2016, 6, 148. [Google Scholar] [CrossRef]
- Bąk, Ł.; Szeląg, B.; Górski, J.; Górska, K. The Impact of catchment characteristics and weather conditions on heavy metal concentrations in stormwater—Data mining approach. Appl. Sci. 2019, 9, 2210. [Google Scholar] [CrossRef]
- Ravansalar, M.; Rajaee, T.; Ergil, M. Prediction of dissolved oxygen in River Calder by noise elimination time series using wavelet transform. J. Exp. Theor. Artif. Intell. 2016, 28, 689–706. [Google Scholar] [CrossRef]
- Deng, Q.; Shao, S.; Fu, L.; Luan, H.; Feng, Z. An integrated design and optimization approach for radial inflow turbines—Part II: Multidisciplinary optimization design. Appl. Sci. 2018, 8, 2030. [Google Scholar] [CrossRef]
- Zhang, Y.; Kim, B. A fully coupled computational fluid dynamics method for analysis of semi-submersible floating offshore wind turbines under wind-wave excitation conditions based on OC5 data. Appl. Sci. 2018, 8, 2314. [Google Scholar] [CrossRef]
- Aghdam, K.M.; Mirzaee, I.; Pourmahmood, N.; Aghababa, M.P. Design of water distribution networks using accelerated momentum particle swarm optimisation technique. J. Exp. Theor. Artif. Intell. 2014, 26, 459–475. [Google Scholar] [CrossRef]
- Vasto-Terrientes, L.D.; Kumar, V.; Chao, T.C.; Valls, A. A decision support system to find the best water allocation strategies in a Mediterranean river basin in future scenarios of global change. J. Exp. Theor. Artif. Intell. 2016, 28, 331–350. [Google Scholar] [CrossRef]
- Goldstein, E.B.; Coco, G. A machine learning approach for the prediction of settling velocity. Water Resour. Res. 2014, 50, 3595–3601. [Google Scholar] [CrossRef]
- Chang, F.-J. Artificial intelligence for integrated water resources management in Taiwan. J. Water Resour. Res. 2013, 2, 316–322. [Google Scholar]
- Chang, F.-J.; Tsai, W.-P.; Cheng, C.-L. Intelligent water resources management strategy under urbanisation. J. Water Resour. Res. 2016, 5, 314–325. [Google Scholar]
- Chin, R.J.; Lai, S.H.; Shaliza, I.; Wan Zurina, W.J.; Elshafie, A. Rheological wall slip velocity prediction model based on artificial neural network. J. Exp. Theor. Artif. Intell. 2019, 659–676. [Google Scholar] [CrossRef]
- Chin, R.J.; Lai, S.H.; Shaliza, I.; Wan Zurina, W.J.; Elshafie, A.H. New approach to mimic rheological actual shear rate under wall slip condition. Eng. Comput. 2018, 35, 1–10. [Google Scholar] [CrossRef]
- Brackhill, J.U.; Kothe, D.B.; Zemach, C. A continuum method for modelling surface tension. J. Comput. Phys. 1992, 100, 335–354. [Google Scholar] [CrossRef]
- Samkhaniani, N.; Ansari, M.R. Numerical simulation of bubble condensation using CF-VOF. Prog. Nucl. Energy 2016, 89, 120–131. [Google Scholar] [CrossRef]
- Tomiyama, A.; Celta, G.P.; Hosokawa, S.; Yoshida, S. Terminal velocity of single bubbles in surface tension force dominant regime. Int. J. Multiph. Flow 2002, 28, 1497–1519. [Google Scholar] [CrossRef]
- Dijkhuizen, W.; Annaland, M.V.; Kuiper, J.A. Numerical and experimental investigation of the lift force on single bubbles. Chem. Eng. Sci. 2010, 65, 1274–1287. [Google Scholar] [CrossRef]
- Cliff, R.; Grace, J.R.; Weber, M.E. Bubbles, Drops, and Particles; Dover Publications Inc: New York, NY, USA, 2005. [Google Scholar]
- Cohen, J. A coefficient of agreement for nominal scale. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Grace, J.R. Hydrodynamics of liquid drops in immiscible liquids. Handb. Fluids Motion 1983, 38, 273. [Google Scholar]
Properties | Value |
---|---|
Density of air (kg/m3) | 1.225 |
Density of water (kg/m3) | 988.2 |
Viscosity of air (Pa.s) | 1.789 × 10−5 |
Viscosity of water (kg/m3) | 0.001 |
Surface tension coefficient (N/m) | 0.074 |
Predicted label | |||||
Actual label | Label | 1 | 2 | 3 | Total sample |
1 | 90 | 27 | 0 | 117 | |
2 | 36 | 115 | 2 | 151 | |
3 | 0 | 5 | 31 | 36 | |
Total | 126 | 147 | 33 | 304 |
Predicted label | |||||
Actual label | Label | 1 | 2 | 3 | Total sample |
1 | 99 | 18 | 0 | 117 | |
2 | 17 | 132 | 2 | 151 | |
3 | 0 | 2 | 34 | 36 | |
Total | 116 | 152 | 36 | 304 |
Predicted label | |||||
Actual label | Label | 1 | 2 | 3 | Total sample |
1 | 102 | 15 | 0 | 117 | |
2 | 21 | 130 | 2 | 151 | |
3 | 0 | 6 | 30 | 36 | |
Total | 123 | 151 | 30 | 304 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, B.; Chin, R.J.; Tang, Y.; Jiang, C.; Lai, S.H. NewApproach to Predict the Motion Characteristics of Single Bubbles in Still Water. Appl. Sci. 2019, 9, 3981. https://doi.org/10.3390/app9193981
Deng B, Chin RJ, Tang Y, Jiang C, Lai SH. NewApproach to Predict the Motion Characteristics of Single Bubbles in Still Water. Applied Sciences. 2019; 9(19):3981. https://doi.org/10.3390/app9193981
Chicago/Turabian StyleDeng, Bin, Ren Jie Chin, Yao Tang, Changbo Jiang, and Sai Hin Lai. 2019. "NewApproach to Predict the Motion Characteristics of Single Bubbles in Still Water" Applied Sciences 9, no. 19: 3981. https://doi.org/10.3390/app9193981
APA StyleDeng, B., Chin, R. J., Tang, Y., Jiang, C., & Lai, S. H. (2019). NewApproach to Predict the Motion Characteristics of Single Bubbles in Still Water. Applied Sciences, 9(19), 3981. https://doi.org/10.3390/app9193981